From 6de04da3a54276fccac880dcec7b23bc4c98e27f Mon Sep 17 00:00:00 2001 From: lcrees Date: Thu, 16 Nov 2017 12:34:13 -0700 Subject: Removed deprecated numeric and poly module from the stdlib --- lib/pure/poly.nim | 371 ------------------------------------------------------ 1 file changed, 371 deletions(-) delete mode 100644 lib/pure/poly.nim (limited to 'lib/pure/poly.nim') diff --git a/lib/pure/poly.nim b/lib/pure/poly.nim deleted file mode 100644 index e286c5d17..000000000 --- a/lib/pure/poly.nim +++ /dev/null @@ -1,371 +0,0 @@ -# -# -# Nim's Runtime Library -# (c) Copyright 2013 Robert Persson -# -# See the file "copying.txt", included in this -# distribution, for details about the copyright. -# - -## **Warning:** This module will be moved out of the stdlib and into a -## Nimble package, don't use it. - -import math -import strutils -import numeric - -type - Poly* = object - cofs:seq[float] - -{.deprecated: [TPoly: Poly].} - -proc degree*(p:Poly):int= - ## Returns the degree of the polynomial, - ## that is the number of coefficients-1 - return p.cofs.len-1 - - -proc eval*(p:Poly,x:float):float= - ## Evaluates a polynomial function value for `x` - ## quickly using Horners method - var n=p.degree - result=p.cofs[n] - dec n - while n>=0: - result = result*x+p.cofs[n] - dec n - -proc `[]` *(p:Poly;idx:int):float= - ## Gets a coefficient of the polynomial. - ## p[2] will returns the quadric term, p[3] the cubic etc. - ## Out of bounds index will return 0.0. - if idx<0 or idx>p.degree: - return 0.0 - return p.cofs[idx] - -proc `[]=` *(p:var Poly;idx:int,v:float)= - ## Sets an coefficient of the polynomial by index. - ## p[2] set the quadric term, p[3] the cubic etc. - ## If index is out of range for the coefficients, - ## the polynomial grows to the smallest needed degree. - assert(idx>=0) - - if idx>p.degree: #polynomial must grow - var oldlen=p.cofs.len - p.cofs.setLen(idx+1) - for q in oldlen.. =0: - yield p[i] - dec i - -proc clean*(p:var Poly;zerotol=0.0)= - ## Removes leading zero coefficients of the polynomial. - ## An optional tolerance can be given for what's considered zero. - var n=p.degree - var relen=false - - while n>0 and abs(p[n])<=zerotol: # >0 => keep at least one coefficient - dec n - relen=true - - if relen: p.cofs.setLen(n+1) - - -proc `$` *(p:Poly):string = - ## Gets a somewhat reasonable string representation of the polynomial - ## The format should be compatible with most online function plotters, - ## for example directly in google search - result="" - var first=true #might skip + sign if first coefficient - - for idx in countdown(p.degree,0): - let a=p[idx] - - if a==0.0: - continue - - if a>= 0.0 and not first: - result.add('+') - first=false - - if a!=1.0 or idx==0: - result.add(formatFloat(a,ffDefault,0)) - if idx>=2: - result.add("x^" & $idx) - elif idx==1: - result.add("x") - - if result=="": - result="0" - - -proc derivative*(p: Poly): Poly= - ## Returns a new polynomial, which is the derivative of `p` - newSeq[float](result.cofs,p.degree) - for idx in 0..high(result.cofs): - result.cofs[idx]=p.cofs[idx+1]*float(idx+1) - -proc diff*(p:Poly,x:float):float= - ## Evaluates the differentiation of a polynomial with - ## respect to `x` quickly using a modifed Horners method - var n=p.degree - result=p[n]*float(n) - dec n - while n>=1: - result = result*x+p[n]*float(n) - dec n - -proc integral*(p:Poly):Poly= - ## Returns a new polynomial which is the indefinite - ## integral of `p`. The constant term is set to 0.0 - newSeq(result.cofs,p.cofs.len+1) - result.cofs[0]=0.0 #constant arbitrary term, use 0.0 - for i in 1..high(result.cofs): - result.cofs[i]=p.cofs[i-1]/float(i) - - -proc integrate*(p:Poly;xmin,xmax:float):float= - ## Computes the definite integral of `p` between `xmin` and `xmax` - ## quickly using a modified version of Horners method - var - n=p.degree - s1=p[n]/float(n+1) - s2=s1 - fac:float - - dec n - while n>=0: - fac=p[n]/float(n+1) - s1 = s1*xmin+fac - s2 = s2*xmax+fac - dec n - - result=s2*xmax-s1*xmin - -proc initPoly*(cofs:varargs[float]):Poly= - ## Initializes a polynomial with given coefficients. - ## The most significant coefficient is first, so to create x^2-2x+3: - ## intiPoly(1.0,-2.0,3.0) - if len(cofs)<=0: - result.cofs= @[0.0] #need at least one coefficient - else: - # reverse order of coefficients so indexing matches degree of - # coefficient... - result.cofs= @[] - for idx in countdown(cofs.len-1,0): - result.cofs.add(cofs[idx]) - - result.clean #remove leading zero terms - - -proc divMod*(p,d:Poly;q,r:var Poly)= - ## Divides `p` with `d`, and stores the quotinent in `q` and - ## the remainder in `d` - var - pdeg=p.degree - ddeg=d.degree - power=p.degree-d.degree - ratio:float - - r.cofs = p.cofs #initial remainder=numerator - if power<0: #denominator is larger than numerator - q.cofs= @ [0.0] #quotinent is 0.0 - return # keep remainder as numerator - - q.cofs=newSeq[float](power+1) - - for i in countdown(pdeg,ddeg): - ratio=r.cofs[i]/d.cofs[ddeg] - - q.cofs[i-ddeg]=ratio - r.cofs[i]=0.0 - - for j in countup(0,=res[high(res)]+mergetol: #dont add equal roots. - res.add(br.rootx) - else: - #this might be a 'touching' case, check function value against - #zero tolerance - if abs(br.rooty)<=zerotol: - if res.len==0 or br.rootx>=res[high(res)]+mergetol: #dont add equal roots. - res.add(br.rootx) - - -proc roots*(p:Poly,tol=1.0e-9,zerotol=1.0e-6,mergetol=1.0e-12,maxiter=1000):seq[float]= - ## Computes the real roots of the polynomial `p` - ## `tol` is the tolerance used to break searching for each root when reached. - ## `zerotol` is the tolerance, which is 'close enough' to zero to be considered a root - ## and is used to find roots for curves that only 'touch' the x-axis. - ## `mergetol` is the tolerance, of which two x-values are considered being the same root. - ## `maxiter` can be used to limit the number of iterations for each root. - ## Returns a (possibly empty) sorted sequence with the solutions. - var deg=p.degree - if deg<=0: #constant only => no roots - return @[] - elif p.degree==1: #linear - var linrt= -p.cofs[0]/p.cofs[1] - if linrt==Inf or linrt==NegInf: - return @[] #constant only => no roots - return @[linrt] - elif p.degree==2: - return solveQuadric(p.cofs[2],p.cofs[1],p.cofs[0],zerotol) - else: - # degree >=3 , find min/max points of polynomial with recursive - # derivative and do a numerical search for root between each min/max - var range=p.getRangeForRoots() - var minmax=p.derivative.roots(tol,zerotol,mergetol) - result= @[] - if minmax!=nil: #ie. we have minimas/maximas in this function - for x in minmax.items: - addRoot(p,result,range.xmin,x,tol,zerotol,mergetol,maxiter) - range.xmin=x - addRoot(p,result,range.xmin,range.xmax,tol,zerotol,mergetol,maxiter) - -- cgit 1.4.1-2-gfad0