# # # The Nim Compiler # (c) Copyright 2015 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # # abstract syntax tree + symbol table import msgs, hashes, nversion, options, strutils, securehash, ropes, idents, intsets, idgen type TCallingConvention* = enum ccDefault, # proc has no explicit calling convention ccStdCall, # procedure is stdcall ccCDecl, # cdecl ccSafeCall, # safecall ccSysCall, # system call ccInline, # proc should be inlined ccNoInline, # proc should not be inlined ccFastCall, # fastcall (pass parameters in registers) ccClosure, # proc has a closure ccNoConvention # needed for generating proper C procs sometimes const CallingConvToStr*: array[TCallingConvention, string] = ["", "stdcall", "cdecl", "safecall", "syscall", "inline", "noinline", "fastcall", "closure", "noconv"] type TNodeKind* = enum # order is extremely important, because ranges are used # to check whether a node belongs to a certain class nkNone, # unknown node kind: indicates an error # Expressions: # Atoms: nkEmpty, # the node is empty nkIdent, # node is an identifier nkSym, # node is a symbol nkType, # node is used for its typ field nkCharLit, # a character literal '' nkIntLit, # an integer literal nkInt8Lit, nkInt16Lit, nkInt32Lit, nkInt64Lit, nkUIntLit, # an unsigned integer literal nkUInt8Lit, nkUInt16Lit, nkUInt32Lit, nkUInt64Lit, nkFloatLit, # a floating point literal nkFloat32Lit, nkFloat64Lit, nkFloat128Lit, nkStrLit, # a string literal "" nkRStrLit, # a raw string literal r"" nkTripleStrLit, # a triple string literal """ nkNilLit, # the nil literal # end of atoms nkMetaNode_Obsolete, # difficult to explain; represents itself # (used for macros) nkDotCall, # used to temporarily flag a nkCall node; # this is used # for transforming ``s.len`` to ``len(s)`` nkCommand, # a call like ``p 2, 4`` without parenthesis nkCall, # a call like p(x, y) or an operation like +(a, b) nkCallStrLit, # a call with a string literal # x"abc" has two sons: nkIdent, nkRStrLit # x"""abc""" has two sons: nkIdent, nkTripleStrLit nkInfix, # a call like (a + b) nkPrefix, # a call like !a nkPostfix, # something like a! (also used for visibility) nkHiddenCallConv, # an implicit type conversion via a type converter nkExprEqExpr, # a named parameter with equals: ''expr = expr'' nkExprColonExpr, # a named parameter with colon: ''expr: expr'' nkIdentDefs, # a definition like `a, b: typeDesc = expr` # either typeDesc or expr may be nil; used in # formal parameters, var statements, etc. nkVarTuple, # a ``var (a, b) = expr`` construct nkPar, # syntactic (); may be a tuple constructor nkObjConstr, # object constructor: T(a: 1, b: 2) nkCurly, # syntactic {} nkCurlyExpr, # an expression like a{i} nkBracket, # syntactic [] nkBracketExpr, # an expression like a[i..j, k] nkPragmaExpr, # an expression like a{.pragmas.} nkRange, # an expression like i..j nkDotExpr, # a.b nkCheckedFieldExpr, # a.b, but b is a field that needs to be checked nkDerefExpr, # a^ nkIfExpr, # if as an expression nkElifExpr, nkElseExpr, nkLambda, # lambda expression nkDo, # lambda block appering as trailing proc param nkAccQuoted, # `a` as a node nkTableConstr, # a table constructor {expr: expr} nkBind, # ``bind expr`` node nkClosedSymChoice, # symbol choice node; a list of nkSyms (closed) nkOpenSymChoice, # symbol choice node; a list of nkSyms (open) nkHiddenStdConv, # an implicit standard type conversion nkHiddenSubConv, # an implicit type conversion from a subtype # to a supertype nkConv, # a type conversion nkCast, # a type cast nkStaticExpr, # a static expr nkAddr, # a addr expression nkHiddenAddr, # implicit address operator nkHiddenDeref, # implicit ^ operator nkObjDownConv, # down conversion between object types nkObjUpConv, # up conversion between object types nkChckRangeF, # range check for floats nkChckRange64, # range check for 64 bit ints nkChckRange, # range check for ints nkStringToCString, # string to cstring nkCStringToString, # cstring to string # end of expressions nkAsgn, # a = b nkFastAsgn, # internal node for a fast ``a = b`` # (no string copy) nkGenericParams, # generic parameters nkFormalParams, # formal parameters nkOfInherit, # inherited from symbol nkImportAs, # a 'as' b in an import statement nkProcDef, # a proc nkMethodDef, # a method nkConverterDef, # a converter nkMacroDef, # a macro nkTemplateDef, # a template nkIteratorDef, # an iterator nkOfBranch, # used inside case statements # for (cond, action)-pairs nkElifBranch, # used in if statements nkExceptBranch, # an except section nkElse, # an else part nkAsmStmt, # an assembler block nkPragma, # a pragma statement nkPragmaBlock, # a pragma with a block nkIfStmt, # an if statement nkWhenStmt, # a when expression or statement nkForStmt, # a for statement nkParForStmt, # a parallel for statement nkWhileStmt, # a while statement nkCaseStmt, # a case statement nkTypeSection, # a type section (consists of type definitions) nkVarSection, # a var section nkLetSection, # a let section nkConstSection, # a const section nkConstDef, # a const definition nkTypeDef, # a type definition nkYieldStmt, # the yield statement as a tree nkDefer, # the 'defer' statement nkTryStmt, # a try statement nkFinally, # a finally section nkRaiseStmt, # a raise statement nkReturnStmt, # a return statement nkBreakStmt, # a break statement nkContinueStmt, # a continue statement nkBlockStmt, # a block statement nkStaticStmt, # a static statement nkDiscardStmt, # a discard statement nkStmtList, # a list of statements nkImportStmt, # an import statement nkImportExceptStmt, # an import x except a statement nkExportStmt, # an export statement nkExportExceptStmt, # an 'export except' statement nkFromStmt, # a from * import statement nkIncludeStmt, # an include statement nkBindStmt, # a bind statement nkMixinStmt, # a mixin statement nkUsingStmt, # an using statement nkCommentStmt, # a comment statement nkStmtListExpr, # a statement list followed by an expr; this is used # to allow powerful multi-line templates nkBlockExpr, # a statement block ending in an expr; this is used # to allowe powerful multi-line templates that open a # temporary scope nkStmtListType, # a statement list ending in a type; for macros nkBlockType, # a statement block ending in a type; for macros # types as syntactic trees: nkWith, # distinct with `foo` nkWithout, # distinct without `foo` nkTypeOfExpr, # type(1+2) nkObjectTy, # object body nkTupleTy, # tuple body nkTupleClassTy, # tuple type class nkTypeClassTy, # user-defined type class nkStaticTy, # ``static[T]`` nkRecList, # list of object parts nkRecCase, # case section of object nkRecWhen, # when section of object nkRefTy, # ``ref T`` nkPtrTy, # ``ptr T`` nkVarTy, # ``var T`` nkConstTy, # ``const T`` nkMutableTy, # ``mutable T`` nkDistinctTy, # distinct type nkProcTy, # proc type nkIteratorTy, # iterator type nkSharedTy, # 'shared T' # we use 'nkPostFix' for the 'not nil' addition nkEnumTy, # enum body nkEnumFieldDef, # `ident = expr` in an enumeration nkArgList, # argument list nkPattern, # a special pattern; used for matching nkReturnToken, # token used for interpretation nkClosure, # (prc, env)-pair (internally used for code gen) nkGotoState, # used for the state machine (for iterators) nkState, # give a label to a code section (for iterators) nkBreakState, # special break statement for easier code generation nkFuncDef # a func TNodeKinds* = set[TNodeKind] type TSymFlag* = enum # already 33 flags! sfUsed, # read access of sym (for warnings) or simply used sfExported, # symbol is exported from module sfFromGeneric, # symbol is instantiation of a generic; this is needed # for symbol file generation; such symbols should always # be written into the ROD file sfGlobal, # symbol is at global scope sfForward, # symbol is forward declared sfImportc, # symbol is external; imported sfExportc, # symbol is exported (under a specified name) sfVolatile, # variable is volatile sfRegister, # variable should be placed in a register sfPure, # object is "pure" that means it has no type-information # enum is "pure", its values need qualified access # variable is "pure"; it's an explicit "global" sfNoSideEffect, # proc has no side effects sfSideEffect, # proc may have side effects; cannot prove it has none sfMainModule, # module is the main module sfSystemModule, # module is the system module sfNoReturn, # proc never returns (an exit proc) sfAddrTaken, # the variable's address is taken (ex- or implicitly); # *OR*: a proc is indirectly called (used as first class) sfCompilerProc, # proc is a compiler proc, that is a C proc that is # needed for the code generator sfProcvar, # proc can be passed to a proc var sfDiscriminant, # field is a discriminant in a record/object sfDeprecated, # symbol is deprecated sfExplain, # provide more diagnostics when this symbol is used sfError, # usage of symbol should trigger a compile-time error sfShadowed, # a symbol that was shadowed in some inner scope sfThread, # proc will run as a thread # variable is a thread variable sfCompileTime, # proc can be evaluated at compile time sfConstructor, # proc is a C++ constructor sfDeadCodeElim, # dead code elimination for the module is turned on sfBorrow, # proc is borrowed sfInfixCall, # symbol needs infix call syntax in target language; # for interfacing with C++, JS sfNamedParamCall, # symbol needs named parameter call syntax in target # language; for interfacing with Objective C sfDiscardable, # returned value may be discarded implicitly sfOverriden, # proc is overriden sfGenSym # symbol is 'gensym'ed; do not add to symbol table TSymFlags* = set[TSymFlag] const sfDispatcher* = sfDeadCodeElim # copied method symbol is the dispatcher sfNoInit* = sfMainModule # don't generate code to init the variable sfImmediate* = sfDeadCodeElim # macro or template is immediately expanded # without considering any possible overloads sfAllUntyped* = sfVolatile # macro or template is immediately expanded \ # in a generic context sfDirty* = sfPure # template is not hygienic (old styled template) # module, compiled from a dirty-buffer sfAnon* = sfDiscardable # symbol name that was generated by the compiler # the compiler will avoid printing such names # in user messages. sfNoForward* = sfRegister # forward declarations are not required (per module) sfReorder* = sfForward # reordering pass is enabled sfCompileToCpp* = sfInfixCall # compile the module as C++ code sfCompileToObjc* = sfNamedParamCall # compile the module as Objective-C code sfExperimental* = sfOverriden # module uses the .experimental switch sfGoto* = sfOverriden # var is used for 'goto' code generation sfWrittenTo* = sfBorrow # param is assigned to sfEscapes* = sfProcvar # param escapes sfBase* = sfDiscriminant sfIsSelf* = sfOverriden # param is 'self' const # getting ready for the future expr/stmt merge nkWhen* = nkWhenStmt nkWhenExpr* = nkWhenStmt nkEffectList* = nkArgList # hacks ahead: an nkEffectList is a node with 4 children: exceptionEffects* = 0 # exceptions at position 0 usesEffects* = 1 # read effects at position 1 writeEffects* = 2 # write effects at position 2 tagEffects* = 3 # user defined tag ('gc', 'time' etc.) effectListLen* = 4 # list of effects list type TTypeKind* = enum # order is important! # Don't forget to change hti.nim if you make a change here # XXX put this into an include file to avoid this issue! # several types are no longer used (guess which), but a # spot in the sequence is kept for backwards compatibility # (apparently something with bootstrapping) # if you need to add a type, they can apparently be reused tyNone, tyBool, tyChar, tyEmpty, tyAlias, tyNil, tyExpr, tyStmt, tyTypeDesc, tyGenericInvocation, # ``T[a, b]`` for types to invoke tyGenericBody, # ``T[a, b, body]`` last parameter is the body tyGenericInst, # ``T[a, b, realInstance]`` instantiated generic type # realInstance will be a concrete type like tyObject # unless this is an instance of a generic alias type. # then realInstance will be the tyGenericInst of the # completely (recursively) resolved alias. tyGenericParam, # ``a`` in the above patterns tyDistinct, tyEnum, tyOrdinal, # integer types (including enums and boolean) tyArray, tyObject, tyTuple, tySet, tyRange, tyPtr, tyRef, tyVar, tySequence, tyProc, tyPointer, tyOpenArray, tyString, tyCString, tyForward, tyInt, tyInt8, tyInt16, tyInt32, tyInt64, # signed integers tyFloat, tyFloat32, tyFloat64, tyFloat128, tyUInt, tyUInt8, tyUInt16, tyUInt32, tyUInt64, tyOptAsRef, tyUnused1, tyUnused2, tyVarargs, tyUnused, tyProxy # used as errornous type (for idetools) tyBuiltInTypeClass # Type such as the catch-all object, tuple, seq, etc tyUserTypeClass # the body of a user-defined type class tyUserTypeClassInst # Instance of a parametric user-defined type class. # Structured similarly to tyGenericInst. # tyGenericInst represents concrete types, while # this is still a "generic param" that will bind types # and resolves them during sigmatch and instantiation. tyCompositeTypeClass # Type such as seq[Number] # The notes for tyUserTypeClassInst apply here as well # sons[0]: the original expression used by the user. # sons[1]: fully expanded and instantiated meta type # (potentially following aliases) tyInferred # In the initial state `base` stores a type class constraining # the types that can be inferred. After a candidate type is # selected, it's stored in `lastSon`. Between `base` and `lastSon` # there may be 0, 2 or more types that were also considered as # possible candidates in the inference process (i.e. lastSon will # be updated to store a type best conforming to all candidates) tyAnd, tyOr, tyNot # boolean type classes such as `string|int`,`not seq`, # `Sortable and Enumable`, etc tyAnything # a type class matching any type tyStatic # a value known at compile type (the underlying type is .base) tyFromExpr # This is a type representing an expression that depends # on generic parameters (the expression is stored in t.n) # It will be converted to a real type only during generic # instantiation and prior to this it has the potential to # be any type. tyOpt # Builtin optional type tyVoid # now different from tyEmpty, hurray! static: # remind us when TTypeKind stops to fit in a single 64-bit word assert TTypeKind.high.ord <= 63 const tyPureObject* = tyTuple GcTypeKinds* = {tyRef, tySequence, tyString} tyError* = tyProxy # as an errornous node should match everything tyUnknown* = tyFromExpr tyUnknownTypes* = {tyError, tyFromExpr} tyTypeClasses* = {tyBuiltInTypeClass, tyCompositeTypeClass, tyUserTypeClass, tyUserTypeClassInst, tyAnd, tyOr, tyNot, tyAnything} tyMetaTypes* = {tyGenericParam, tyTypeDesc, tyExpr} + tyTypeClasses tyUserTypeClasses* = {tyUserTypeClass, tyUserTypeClassInst} type TTypeKinds* = set[TTypeKind] TNodeFlag* = enum nfNone, nfBase2, # nfBase10 is default, so not needed nfBase8, nfBase16, nfAllConst, # used to mark complex expressions constant; easy to get rid of # but unfortunately it has measurable impact for compilation # efficiency nfTransf, # node has been transformed nfNoRewrite # node should not be transformed anymore nfSem # node has been checked for semantics nfLL # node has gone through lambda lifting nfDotField # the call can use a dot operator nfDotSetter # the call can use a setter dot operarator nfExplicitCall # x.y() was used instead of x.y nfExprCall # this is an attempt to call a regular expression nfIsRef # this node is a 'ref' node; used for the VM nfPreventCg # this node should be ignored by the codegen nfBlockArg # this a stmtlist appearing in a call (e.g. a do block) nfFromTemplate # a top-level node returned from a template TNodeFlags* = set[TNodeFlag] TTypeFlag* = enum # keep below 32 for efficiency reasons (now: beyond that) tfVarargs, # procedure has C styled varargs # tyArray type represeting a varargs list tfNoSideEffect, # procedure type does not allow side effects tfFinal, # is the object final? tfInheritable, # is the object inheritable? tfAcyclic, # type is acyclic (for GC optimization) tfEnumHasHoles, # enum cannot be mapped into a range tfShallow, # type can be shallow copied on assignment tfThread, # proc type is marked as ``thread``; alias for ``gcsafe`` tfFromGeneric, # type is an instantiation of a generic; this is needed # because for instantiations of objects, structural # type equality has to be used tfUnresolved, # marks unresolved typedesc/static params: e.g. # proc foo(T: typedesc, list: seq[T]): var T # proc foo(L: static[int]): array[L, int] # can be attached to ranges to indicate that the range # can be attached to generic procs with free standing # type parameters: e.g. proc foo[T]() # depends on unresolved static params. tfResolved # marks a user type class, after it has been bound to a # concrete type (lastSon becomes the concrete type) tfRetType, # marks return types in proc (used to detect type classes # used as return types for return type inference) tfCapturesEnv, # whether proc really captures some environment tfByCopy, # pass object/tuple by copy (C backend) tfByRef, # pass object/tuple by reference (C backend) tfIterator, # type is really an iterator, not a tyProc tfPartial, # type is declared as 'partial' tfNotNil, # type cannot be 'nil' tfNeedsInit, # type constains a "not nil" constraint somewhere or some # other type so that it requires initialization tfVarIsPtr, # 'var' type is translated like 'ptr' even in C++ mode tfHasMeta, # type contains "wildcard" sub-types such as generic params # or other type classes tfHasGCedMem, # type contains GC'ed memory tfPacked tfHasStatic tfGenericTypeParam tfImplicitTypeParam tfInferrableStatic tfExplicit # for typedescs, marks types explicitly prefixed with the # `type` operator (e.g. type int) tfWildcard # consider a proc like foo[T, I](x: Type[T, I]) # T and I here can bind to both typedesc and static types # before this is determined, we'll consider them to be a # wildcard type. tfHasAsgn # type has overloaded assignment operator tfBorrowDot # distinct type borrows '.' tfTriggersCompileTime # uses the NimNode type which make the proc # implicitly '.compiletime' tfRefsAnonObj # used for 'ref object' and 'ptr object' tfCovariant # covariant generic param mimicing a ptr type tfWeakCovariant # covariant generic param mimicing a seq/array type tfContravariant # contravariant generic param TTypeFlags* = set[TTypeFlag] TSymKind* = enum # the different symbols (start with the prefix sk); # order is important for the documentation generator! skUnknown, # unknown symbol: used for parsing assembler blocks # and first phase symbol lookup in generics skConditional, # symbol for the preprocessor (may become obsolete) skDynLib, # symbol represents a dynamic library; this is used # internally; it does not exist in Nim code skParam, # a parameter skGenericParam, # a generic parameter; eq in ``proc x[eq=`==`]()`` skTemp, # a temporary variable (introduced by compiler) skModule, # module identifier skType, # a type skVar, # a variable skLet, # a 'let' symbol skConst, # a constant skResult, # special 'result' variable skProc, # a proc skFunc, # a func skMethod, # a method skIterator, # an iterator skConverter, # a type converter skMacro, # a macro skTemplate, # a template; currently also misused for user-defined # pragmas skField, # a field in a record or object skEnumField, # an identifier in an enum skForVar, # a for loop variable skLabel, # a label (for block statement) skStub, # symbol is a stub and not yet loaded from the ROD # file (it is loaded on demand, which may # mean: never) skPackage, # symbol is a package (used for canonicalization) skAlias # an alias (needs to be resolved immediately) TSymKinds* = set[TSymKind] const routineKinds* = {skProc, skFunc, skMethod, skIterator, skConverter, skMacro, skTemplate} tfIncompleteStruct* = tfVarargs tfUncheckedArray* = tfVarargs tfUnion* = tfNoSideEffect tfGcSafe* = tfThread tfObjHasKids* = tfEnumHasHoles tfOldSchoolExprStmt* = tfVarargs # for now used to distinguish \ # 'varargs[expr]' from 'varargs[untyped]'. Eventually 'expr' will be # deprecated and this mess can be cleaned up. tfReturnsNew* = tfInheritable skError* = skUnknown # type flags that are essential for type equality: eqTypeFlags* = {tfIterator, tfNotNil, tfVarIsPtr} type TMagic* = enum # symbols that require compiler magic: mNone, mDefined, mDefinedInScope, mCompiles, mArrGet, mArrPut, mAsgn, mLow, mHigh, mSizeOf, mTypeTrait, mIs, mOf, mAddr, mTypeOf, mRoof, mPlugin, mEcho, mShallowCopy, mSlurp, mStaticExec, mParseExprToAst, mParseStmtToAst, mExpandToAst, mQuoteAst, mUnaryLt, mInc, mDec, mOrd, mNew, mNewFinalize, mNewSeq, mNewSeqOfCap, mLengthOpenArray, mLengthStr, mLengthArray, mLengthSeq, mXLenStr, mXLenSeq, mIncl, mExcl, mCard, mChr, mGCref, mGCunref, mAddI, mSubI, mMulI, mDivI, mModI, mSucc, mPred, mAddF64, mSubF64, mMulF64, mDivF64, mShrI, mShlI, mBitandI, mBitorI, mBitxorI, mMinI, mMaxI, mMinF64, mMaxF64, mAddU, mSubU, mMulU, mDivU, mModU, mEqI, mLeI, mLtI, mEqF64, mLeF64, mLtF64, mLeU, mLtU, mLeU64, mLtU64, mEqEnum, mLeEnum, mLtEnum, mEqCh, mLeCh, mLtCh, mEqB, mLeB, mLtB, mEqRef, mEqUntracedRef, mLePtr, mLtPtr, mXor, mEqCString, mEqProc, mUnaryMinusI, mUnaryMinusI64, mAbsI, mNot, mUnaryPlusI, mBitnotI, mUnaryPlusF64, mUnaryMinusF64, mAbsF64, mZe8ToI, mZe8ToI64, mZe16ToI, mZe16ToI64, mZe32ToI64, mZeIToI64, mToU8, mToU16, mToU32, mToFloat, mToBiggestFloat, mToInt, mToBiggestInt, mCharToStr, mBoolToStr, mIntToStr, mInt64ToStr, mFloatToStr, mCStrToStr, mStrToStr, mEnumToStr, mAnd, mOr, mEqStr, mLeStr, mLtStr, mEqSet, mLeSet, mLtSet, mMulSet, mPlusSet, mMinusSet, mSymDiffSet, mConStrStr, mSlice, mDotDot, # this one is only necessary to give nice compile time warnings mFields, mFieldPairs, mOmpParFor, mAppendStrCh, mAppendStrStr, mAppendSeqElem, mInRange, mInSet, mRepr, mExit, mSetLengthStr, mSetLengthSeq, mIsPartOf, mAstToStr, mParallel, mSwap, mIsNil, mArrToSeq, mCopyStr, mCopyStrLast, mNewString, mNewStringOfCap, mParseBiggestFloat, mReset, mArray, mOpenArray, mRange, mSet, mSeq, mOpt, mVarargs, mRef, mPtr, mVar, mDistinct, mVoid, mTuple, mOrdinal, mInt, mInt8, mInt16, mInt32, mInt64, mUInt, mUInt8, mUInt16, mUInt32, mUInt64, mFloat, mFloat32, mFloat64, mFloat128, mBool, mChar, mString, mCstring, mPointer, mEmptySet, mIntSetBaseType, mNil, mExpr, mStmt, mTypeDesc, mVoidType, mPNimrodNode, mShared, mGuarded, mLock, mSpawn, mDeepCopy, mIsMainModule, mCompileDate, mCompileTime, mProcCall, mCpuEndian, mHostOS, mHostCPU, mBuildOS, mBuildCPU, mAppType, mNaN, mInf, mNegInf, mCompileOption, mCompileOptionArg, mNLen, mNChild, mNSetChild, mNAdd, mNAddMultiple, mNDel, mNKind, mNIntVal, mNFloatVal, mNSymbol, mNIdent, mNGetType, mNStrVal, mNSetIntVal, mNSetFloatVal, mNSetSymbol, mNSetIdent, mNSetType, mNSetStrVal, mNLineInfo, mNNewNimNode, mNCopyNimNode, mNCopyNimTree, mStrToIdent, mIdentToStr, mNBindSym, mLocals, mNCallSite, mEqIdent, mEqNimrodNode, mSameNodeType, mGetImpl, mNHint, mNWarning, mNError, mInstantiationInfo, mGetTypeInfo, mNGenSym, mNimvm, mIntDefine, mStrDefine # things that we can evaluate safely at compile time, even if not asked for it: const ctfeWhitelist* = {mNone, mUnaryLt, mSucc, mPred, mInc, mDec, mOrd, mLengthOpenArray, mLengthStr, mLengthArray, mLengthSeq, mXLenStr, mXLenSeq, mArrGet, mArrPut, mAsgn, mIncl, mExcl, mCard, mChr, mAddI, mSubI, mMulI, mDivI, mModI, mAddF64, mSubF64, mMulF64, mDivF64, mShrI, mShlI, mBitandI, mBitorI, mBitxorI, mMinI, mMaxI, mMinF64, mMaxF64, mAddU, mSubU, mMulU, mDivU, mModU, mEqI, mLeI, mLtI, mEqF64, mLeF64, mLtF64, mLeU, mLtU, mLeU64, mLtU64, mEqEnum, mLeEnum, mLtEnum, mEqCh, mLeCh, mLtCh, mEqB, mLeB, mLtB, mEqRef, mEqProc, mEqUntracedRef, mLePtr, mLtPtr, mEqCString, mXor, mUnaryMinusI, mUnaryMinusI64, mAbsI, mNot, mUnaryPlusI, mBitnotI, mUnaryPlusF64, mUnaryMinusF64, mAbsF64, mZe8ToI, mZe8ToI64, mZe16ToI, mZe16ToI64, mZe32ToI64, mZeIToI64, mToU8, mToU16, mToU32, mToFloat, mToBiggestFloat, mToInt, mToBiggestInt, mCharToStr, mBoolToStr, mIntToStr, mInt64ToStr, mFloatToStr, mCStrToStr, mStrToStr, mEnumToStr, mAnd, mOr, mEqStr, mLeStr, mLtStr, mEqSet, mLeSet, mLtSet, mMulSet, mPlusSet, mMinusSet, mSymDiffSet, mConStrStr, mAppendStrCh, mAppendStrStr, mAppendSeqElem, mInRange, mInSet, mRepr, mCopyStr, mCopyStrLast} # magics that require special semantic checking and # thus cannot be overloaded (also documented in the spec!): SpecialSemMagics* = { mDefined, mDefinedInScope, mCompiles, mLow, mHigh, mSizeOf, mIs, mOf, mShallowCopy, mExpandToAst, mParallel, mSpawn, mAstToStr} type PNode* = ref TNode TNodeSeq* = seq[PNode] PType* = ref TType PSym* = ref TSym TNode*{.final, acyclic.} = object # on a 32bit machine, this takes 32 bytes when defined(useNodeIds): id*: int typ*: PType info*: TLineInfo flags*: TNodeFlags case kind*: TNodeKind of nkCharLit..nkUInt64Lit: intVal*: BiggestInt of nkFloatLit..nkFloat128Lit: floatVal*: BiggestFloat of nkStrLit..nkTripleStrLit: strVal*: string of nkSym: sym*: PSym of nkIdent: ident*: PIdent else: sons*: TNodeSeq comment*: string TSymSeq* = seq[PSym] TStrTable* = object # a table[PIdent] of PSym counter*: int data*: TSymSeq # -------------- backend information ------------------------------- TLocKind* = enum locNone, # no location locTemp, # temporary location locLocalVar, # location is a local variable locGlobalVar, # location is a global variable locParam, # location is a parameter locField, # location is a record field locExpr, # "location" is really an expression locProc, # location is a proc (an address of a procedure) locData, # location is a constant locCall, # location is a call expression locOther # location is something other TLocFlag* = enum lfIndirect, # backend introduced a pointer lfFullExternalName, # only used when 'gCmd == cmdPretty': Indicates # that the symbol has been imported via 'importc: "fullname"' and # no format string. lfNoDeepCopy, # no need for a deep copy lfNoDecl, # do not declare it in C lfDynamicLib, # link symbol to dynamic library lfExportLib, # export symbol for dynamic library generation lfHeader, # include header file for symbol lfImportCompilerProc, # ``importc`` of a compilerproc lfSingleUse # no location yet and will only be used once TStorageLoc* = enum OnUnknown, # location is unknown (stack, heap or static) OnStatic, # in a static section OnStack, # location is on hardware stack OnStackShadowDup, # location is on the stack but also replicated # on the shadow stack OnHeap # location is on heap or global # (reference counting needed) TLocFlags* = set[TLocFlag] TLoc* = object k*: TLocKind # kind of location storage*: TStorageLoc flags*: TLocFlags # location's flags lode*: PNode # Node where the location came from; can be faked r*: Rope # rope value of location (code generators) dup*: Rope # duplicated location for precise stack scans # ---------------- end of backend information ------------------------------ TLibKind* = enum libHeader, libDynamic TLib* = object # also misused for headers! kind*: TLibKind generated*: bool # needed for the backends: isOverriden*: bool name*: Rope path*: PNode # can be a string literal! CompilesId* = int ## id that is used for the caching logic within ## ``system.compiles``. See the seminst module. TInstantiation* = object sym*: PSym concreteTypes*: seq[PType] compilesId*: CompilesId PInstantiation* = ref TInstantiation TScope* = object depthLevel*: int symbols*: TStrTable parent*: PScope PScope* = ref TScope PLib* = ref TLib TSym* {.acyclic.} = object of TIdObj # proc and type instantiations are cached in the generic symbol case kind*: TSymKind of skType, skGenericParam: typeInstCache*: seq[PType] of routineKinds: procInstCache*: seq[PInstantiation] gcUnsafetyReason*: PSym # for better error messages wrt gcsafe #scope*: PScope # the scope where the proc was defined of skModule, skPackage: # modules keep track of the generic symbols they use from other modules. # this is because in incremental compilation, when a module is about to # be replaced with a newer version, we must decrement the usage count # of all previously used generics. # For 'import as' we copy the module symbol but shallowCopy the 'tab' # and set the 'usedGenerics' to ... XXX gah! Better set module.name # instead? But this doesn't work either. --> We need an skModuleAlias? # No need, just leave it as skModule but set the owner accordingly and # check for the owner when touching 'usedGenerics'. usedGenerics*: seq[PInstantiation] tab*: TStrTable # interface table for modules of skLet, skVar, skField, skForVar: guard*: PSym bitsize*: int else: nil magic*: TMagic typ*: PType name*: PIdent info*: TLineInfo owner*: PSym flags*: TSymFlags ast*: PNode # syntax tree of proc, iterator, etc.: # the whole proc including header; this is used # for easy generation of proper error messages # for variant record fields the discriminant # expression # for modules, it's a placeholder for compiler # generated code that will be appended to the # module after the sem pass (see appendToModule) options*: TOptions position*: int # used for many different things: # for enum fields its position; # for fields its offset # for parameters its position # for a conditional: # 1 iff the symbol is defined, else 0 # (or not in symbol table) # for modules, an unique index corresponding # to the module's fileIdx # for variables a slot index for the evaluator # for routines a superop-ID offset*: int # offset of record field loc*: TLoc annex*: PLib # additional fields (seldom used, so we use a # reference to another object to safe space) constraint*: PNode # additional constraints like 'lit|result'; also # misused for the codegenDecl pragma in the hope # it won't cause problems when defined(nimsuggest): allUsages*: seq[TLineInfo] TTypeSeq* = seq[PType] TLockLevel* = distinct int16 TType* {.acyclic.} = object of TIdObj # \ # types are identical iff they have the # same id; there may be multiple copies of a type # in memory! kind*: TTypeKind # kind of type callConv*: TCallingConvention # for procs flags*: TTypeFlags # flags of the type sons*: TTypeSeq # base types, etc. n*: PNode # node for types: # for range types a nkRange node # for record types a nkRecord node # for enum types a list of symbols # for tyInt it can be the int literal # for procs and tyGenericBody, it's the # formal param list # for concepts, the concept body # else: unused owner*: PSym # the 'owner' of the type sym*: PSym # types have the sym associated with them # it is used for converting types to strings destructor*: PSym # destructor. warning: nil here may not necessary # mean that there is no destructor. # see instantiateDestructor in semdestruct.nim deepCopy*: PSym # overriden 'deepCopy' operation assignment*: PSym # overriden '=' operation sink*: PSym # overriden '=sink' operation methods*: seq[(int,PSym)] # attached methods size*: BiggestInt # the size of the type in bytes # -1 means that the size is unkwown align*: int16 # the type's alignment requirements lockLevel*: TLockLevel # lock level as required for deadlock checking loc*: TLoc typeInst*: PType # for generic instantiations the tyGenericInst that led to this # type. TPair* = object key*, val*: RootRef TPairSeq* = seq[TPair] TIdPair* = object key*: PIdObj val*: RootRef TIdPairSeq* = seq[TIdPair] TIdTable* = object # the same as table[PIdent] of PObject counter*: int data*: TIdPairSeq TIdNodePair* = object key*: PIdObj val*: PNode TIdNodePairSeq* = seq[TIdNodePair] TIdNodeTable* = object # the same as table[PIdObj] of PNode counter*: int data*: TIdNodePairSeq TNodePair* = object h*: Hash # because it is expensive to compute! key*: PNode val*: int TNodePairSeq* = seq[TNodePair] TNodeTable* = object # the same as table[PNode] of int; # nodes are compared by structure! counter*: int data*: TNodePairSeq TObjectSeq* = seq[RootRef] TObjectSet* = object counter*: int data*: TObjectSeq TImplication* = enum impUnknown, impNo, impYes # BUGFIX: a module is overloadable so that a proc can have the # same name as an imported module. This is necessary because of # the poor naming choices in the standard library. const OverloadableSyms* = {skProc, skFunc, skMethod, skIterator, skConverter, skModule, skTemplate, skMacro} GenericTypes*: TTypeKinds = {tyGenericInvocation, tyGenericBody, tyGenericParam} StructuralEquivTypes*: TTypeKinds = {tyNil, tyTuple, tyArray, tySet, tyRange, tyPtr, tyRef, tyVar, tySequence, tyProc, tyOpenArray, tyVarargs} ConcreteTypes*: TTypeKinds = { # types of the expr that may occur in:: # var x = expr tyBool, tyChar, tyEnum, tyArray, tyObject, tySet, tyTuple, tyRange, tyPtr, tyRef, tyVar, tySequence, tyProc, tyPointer, tyOpenArray, tyString, tyCString, tyInt..tyInt64, tyFloat..tyFloat128, tyUInt..tyUInt64} IntegralTypes* = {tyBool, tyChar, tyEnum, tyInt..tyInt64, tyFloat..tyFloat128, tyUInt..tyUInt64} ConstantDataTypes*: TTypeKinds = {tyArray, tySet, tyTuple, tySequence} NilableTypes*: TTypeKinds = {tyPointer, tyCString, tyRef, tyPtr, tySequence, tyProc, tyString, tyError} ExportableSymKinds* = {skVar, skConst, skProc, skFunc, skMethod, skType, skIterator, skMacro, skTemplate, skConverter, skEnumField, skLet, skStub, skAlias} PersistentNodeFlags*: TNodeFlags = {nfBase2, nfBase8, nfBase16, nfDotSetter, nfDotField, nfIsRef, nfPreventCg, nfLL, nfFromTemplate} namePos* = 0 patternPos* = 1 # empty except for term rewriting macros genericParamsPos* = 2 paramsPos* = 3 pragmasPos* = 4 miscPos* = 5 # used for undocumented and hacky stuff bodyPos* = 6 # position of body; use rodread.getBody() instead! resultPos* = 7 dispatcherPos* = 8 # caution: if method has no 'result' it can be position 7! nkCallKinds* = {nkCall, nkInfix, nkPrefix, nkPostfix, nkCommand, nkCallStrLit, nkHiddenCallConv} nkIdentKinds* = {nkIdent, nkSym, nkAccQuoted, nkOpenSymChoice, nkClosedSymChoice} nkLiterals* = {nkCharLit..nkTripleStrLit} nkLambdaKinds* = {nkLambda, nkDo} declarativeDefs* = {nkProcDef, nkFuncDef, nkMethodDef, nkIteratorDef, nkConverterDef} procDefs* = nkLambdaKinds + declarativeDefs nkSymChoices* = {nkClosedSymChoice, nkOpenSymChoice} nkStrKinds* = {nkStrLit..nkTripleStrLit} skLocalVars* = {skVar, skLet, skForVar, skParam, skResult} skProcKinds* = {skProc, skFunc, skTemplate, skMacro, skIterator, skMethod, skConverter} var ggDebug* {.deprecated.}: bool ## convenience switch for trying out things var gMainPackageId*: int proc isCallExpr*(n: PNode): bool = result = n.kind in nkCallKinds proc discardSons*(father: PNode) proc len*(n: PNode): int {.inline.} = if isNil(n.sons): result = 0 else: result = len(n.sons) proc safeLen*(n: PNode): int {.inline.} = ## works even for leaves. if n.kind in {nkNone..nkNilLit} or isNil(n.sons): result = 0 else: result = len(n.sons) proc safeArrLen*(n: PNode): int {.inline.} = ## works for array-like objects (strings passed as openArray in VM). if n.kind in {nkStrLit..nkTripleStrLit}:result = len(n.strVal) elif n.kind in {nkNone..nkFloat128Lit}: result = 0 else: result = len(n) proc add*(father, son: PNode) = assert son != nil if isNil(father.sons): father.sons = @[] add(father.sons, son) type Indexable = PNode | PType template `[]`*(n: Indexable, i: int): Indexable = n.sons[i] template `[]=`*(n: Indexable, i: int; x: Indexable) = n.sons[i] = x template `[]`*(n: Indexable, i: BackwardsIndex): Indexable = n[n.len - i.int] template `[]=`*(n: Indexable, i: BackwardsIndex; x: Indexable) = n[n.len - i.int] = x when defined(useNodeIds): const nodeIdToDebug* = -1 # 299750 # 300761 #300863 # 300879 var gNodeId: int proc newNode*(kind: TNodeKind): PNode = new(result) result.kind = kind #result.info = UnknownLineInfo() inlined: result.info.fileIndex = int32(-1) result.info.col = int16(-1) result.info.line = int16(-1) when defined(useNodeIds): result.id = gNodeId if result.id == nodeIdToDebug: echo "KIND ", result.kind writeStackTrace() inc gNodeId proc newTree*(kind: TNodeKind; children: varargs[PNode]): PNode = result = newNode(kind) if children.len > 0: result.info = children[0].info result.sons = @children proc newIntNode*(kind: TNodeKind, intVal: BiggestInt): PNode = result = newNode(kind) result.intVal = intVal proc newIntTypeNode*(kind: TNodeKind, intVal: BiggestInt, typ: PType): PNode = result = newIntNode(kind, intVal) result.typ = typ proc newFloatNode*(kind: TNodeKind, floatVal: BiggestFloat): PNode = result = newNode(kind) result.floatVal = floatVal proc newStrNode*(kind: TNodeKind, strVal: string): PNode = result = newNode(kind) result.strVal = strVal template previouslyInferred*(t: PType): PType = if t.sons.len > 1: t.lastSon else: nil proc newSym*(symKind: TSymKind, name: PIdent, owner: PSym, info: TLineInfo): PSym = # generates a symbol and initializes the hash field too new(result) result.name = name result.kind = symKind result.flags = {} result.info = info result.options = gOptions result.owner = owner result.offset = -1 result.id = getID() when debugIds: registerId(result) #if result.id == 93289: # writeStacktrace() # MessageOut(name.s & " has id: " & toString(result.id)) var emptyNode* = newNode(nkEmpty) # There is a single empty node that is shared! Do not overwrite it! proc isMetaType*(t: PType): bool = return t.kind in tyMetaTypes or (t.kind == tyStatic and t.n == nil) or tfHasMeta in t.flags proc isUnresolvedStatic*(t: PType): bool = return t.kind == tyStatic and t.n == nil proc linkTo*(t: PType, s: PSym): PType {.discardable.} = t.sym = s s.typ = t result = t proc linkTo*(s: PSym, t: PType): PSym {.discardable.} = t.sym = s s.typ = t result = s template fileIdx*(c: PSym): int32 = # XXX: this should be used only on module symbols c.position.int32 template filename*(c: PSym): string = # XXX: this should be used only on module symbols c.position.int32.toFilename proc appendToModule*(m: PSym, n: PNode) = ## The compiler will use this internally to add nodes that will be ## appended to the module after the sem pass if m.ast == nil: m.ast = newNode(nkStmtList) m.ast.sons = @[n] else: assert m.ast.kind == nkStmtList m.ast.sons.add(n) const # for all kind of hash tables: GrowthFactor* = 2 # must be power of 2, > 0 StartSize* = 8 # must be power of 2, > 0 proc copyStrTable*(dest: var TStrTable, src: TStrTable) = dest.counter = src.counter if isNil(src.data): return setLen(dest.data, len(src.data)) for i in countup(0, high(src.data)): dest.data[i] = src.data[i] proc copyIdTable*(dest: var TIdTable, src: TIdTable) = dest.counter = src.counter if isNil(src.data): return newSeq(dest.data, len(src.data)) for i in countup(0, high(src.data)): dest.data[i] = src.data[i] proc copyObjectSet*(dest: var TObjectSet, src: TObjectSet) = dest.counter = src.counter if isNil(src.data): return setLen(dest.data, len(src.data)) for i in countup(0, high(src.data)): dest.data[i] = src.data[i] proc discardSons*(father: PNode) = father.sons = nil proc withInfo*(n: PNode, info: TLineInfo): PNode = n.info = info return n proc newIdentNode*(ident: PIdent, info: TLineInfo): PNode = result = newNode(nkIdent) result.ident = ident result.info = info proc newSymNode*(sym: PSym): PNode = result = newNode(nkSym) result.sym = sym result.typ = sym.typ result.info = sym.info proc newSymNode*(sym: PSym, info: TLineInfo): PNode = result = newNode(nkSym) result.sym = sym result.typ = sym.typ result.info = info proc newNodeI*(kind: TNodeKind, info: TLineInfo): PNode = new(result) result.kind = kind result.info = info when defined(useNodeIds): result.id = gNodeId if result.id == nodeIdToDebug: echo "KIND ", result.kind writeStackTrace() inc gNodeId proc newNodeI*(kind: TNodeKind, info: TLineInfo, children: int): PNode = new(result) result.kind = kind result.info = info if children > 0: newSeq(result.sons, children) when defined(useNodeIds): result.id = gNodeId if result.id == nodeIdToDebug: echo "KIND ", result.kind writeStackTrace() inc gNodeId proc newNode*(kind: TNodeKind, info: TLineInfo, sons: TNodeSeq = @[], typ: PType = nil): PNode = new(result) result.kind = kind result.info = info result.typ = typ # XXX use shallowCopy here for ownership transfer: result.sons = sons when defined(useNodeIds): result.id = gNodeId if result.id == nodeIdToDebug: echo "KIND ", result.kind writeStackTrace() inc gNodeId proc newNodeIT*(kind: TNodeKind, info: TLineInfo, typ: PType): PNode = result = newNode(kind) result.info = info result.typ = typ proc addSon*(father, son: PNode) = assert son != nil if isNil(father.sons): father.sons = @[] add(father.sons, son) var emptyParams = newNode(nkFormalParams) emptyParams.addSon(emptyNode) proc newProcNode*(kind: TNodeKind, info: TLineInfo, body: PNode, params = emptyParams, name, pattern, genericParams, pragmas, exceptions = ast.emptyNode): PNode = result = newNodeI(kind, info) result.sons = @[name, pattern, genericParams, params, pragmas, exceptions, body] const UnspecifiedLockLevel* = TLockLevel(-1'i16) MaxLockLevel* = 1000'i16 UnknownLockLevel* = TLockLevel(1001'i16) proc `$`*(x: TLockLevel): string = if x.ord == UnspecifiedLockLevel.ord: result = "" elif x.ord == UnknownLockLevel.ord: result = "" else: result = $int16(x) proc newType*(kind: TTypeKind, owner: PSym): PType = new(result) result.kind = kind result.owner = owner result.size = - 1 result.align = 2 # default alignment result.id = getID() result.lockLevel = UnspecifiedLockLevel when debugIds: registerId(result) when false: if result.id == 205734: echo "KNID ", kind writeStackTrace() proc mergeLoc(a: var TLoc, b: TLoc) = if a.k == low(a.k): a.k = b.k if a.storage == low(a.storage): a.storage = b.storage a.flags = a.flags + b.flags if a.lode == nil: a.lode = b.lode if a.r == nil: a.r = b.r proc newSons*(father: PNode, length: int) = if isNil(father.sons): newSeq(father.sons, length) else: setLen(father.sons, length) proc newSons*(father: PType, length: int) = if isNil(father.sons): newSeq(father.sons, length) else: setLen(father.sons, length) proc sonsLen*(n: PType): int = n.sons.len proc len*(n: PType): int = n.sons.len proc sonsLen*(n: PNode): int = n.sons.len proc lastSon*(n: PNode): PNode = n.sons[^1] proc lastSon*(n: PType): PType = n.sons[^1] proc assignType*(dest, src: PType) = dest.kind = src.kind dest.flags = src.flags dest.callConv = src.callConv dest.n = src.n dest.size = src.size dest.align = src.align dest.destructor = src.destructor dest.deepCopy = src.deepCopy dest.sink = src.sink dest.assignment = src.assignment dest.lockLevel = src.lockLevel # this fixes 'type TLock = TSysLock': if src.sym != nil: if dest.sym != nil: dest.sym.flags = dest.sym.flags + (src.sym.flags-{sfExported}) if dest.sym.annex == nil: dest.sym.annex = src.sym.annex mergeLoc(dest.sym.loc, src.sym.loc) else: dest.sym = src.sym newSons(dest, sonsLen(src)) for i in countup(0, sonsLen(src) - 1): dest.sons[i] = src.sons[i] proc copyType*(t: PType, owner: PSym, keepId: bool): PType = result = newType(t.kind, owner) assignType(result, t) if keepId: result.id = t.id else: when debugIds: registerId(result) result.sym = t.sym # backend-info should not be copied proc exactReplica*(t: PType): PType = copyType(t, t.owner, true) proc copySym*(s: PSym, keepId: bool = false): PSym = result = newSym(s.kind, s.name, s.owner, s.info) #result.ast = nil # BUGFIX; was: s.ast which made problems result.typ = s.typ if keepId: result.id = s.id else: result.id = getID() when debugIds: registerId(result) result.flags = s.flags result.magic = s.magic if s.kind == skModule: copyStrTable(result.tab, s.tab) result.options = s.options result.position = s.position result.loc = s.loc result.annex = s.annex # BUGFIX if result.kind in {skVar, skLet, skField}: result.guard = s.guard proc createModuleAlias*(s: PSym, newIdent: PIdent, info: TLineInfo): PSym = result = newSym(s.kind, newIdent, s.owner, info) # keep ID! result.ast = s.ast result.id = s.id result.flags = s.flags system.shallowCopy(result.tab, s.tab) result.options = s.options result.position = s.position result.loc = s.loc result.annex = s.annex # XXX once usedGenerics is used, ensure module aliases keep working! assert s.usedGenerics == nil proc initStrTable*(x: var TStrTable) = x.counter = 0 newSeq(x.data, StartSize) proc newStrTable*: TStrTable = initStrTable(result) proc initIdTable*(x: var TIdTable) = x.counter = 0 newSeq(x.data, StartSize) proc newIdTable*: TIdTable = initIdTable(result) proc resetIdTable*(x: var TIdTable) = x.counter = 0 # clear and set to old initial size: setLen(x.data, 0) setLen(x.data, StartSize) proc initObjectSet*(x: var TObjectSet) = x.counter = 0 newSeq(x.data, StartSize) proc initIdNodeTable*(x: var TIdNodeTable) = x.counter = 0 newSeq(x.data, StartSize) proc initNodeTable*(x: var TNodeTable) = x.counter = 0 newSeq(x.data, StartSize) proc skipTypes*(t: PType, kinds: TTypeKinds): PType = ## Used throughout the compiler code to test whether a type tree contains or ## doesn't contain a specific type/types - it is often the case that only the ## last child nodes of a type tree need to be searched. This is a really hot ## path within the compiler! result = t while result.kind in kinds: result = lastSon(result) proc skipTypes*(t: PType, kinds: TTypeKinds; maxIters: int): PType = result = t var i = maxIters while result.kind in kinds: result = lastSon(result) dec i if i == 0: return nil proc skipTypesOrNil*(t: PType, kinds: TTypeKinds): PType = ## same as skipTypes but handles 'nil' result = t while result != nil and result.kind in kinds: if result.len == 0: return nil result = lastSon(result) proc isGCedMem*(t: PType): bool {.inline.} = result = t.kind in {tyString, tyRef, tySequence} or t.kind == tyProc and t.callConv == ccClosure proc propagateToOwner*(owner, elem: PType) = const HaveTheirOwnEmpty = {tySequence, tyOpt, tySet, tyPtr, tyRef, tyProc} owner.flags = owner.flags + (elem.flags * {tfHasMeta}) if tfNotNil in elem.flags: if owner.kind in {tyGenericInst, tyGenericBody, tyGenericInvocation}: owner.flags.incl tfNotNil elif owner.kind notin HaveTheirOwnEmpty: owner.flags.incl tfNeedsInit if tfNeedsInit in elem.flags: if owner.kind in HaveTheirOwnEmpty: discard else: owner.flags.incl tfNeedsInit if elem.isMetaType: owner.flags.incl tfHasMeta if tfHasAsgn in elem.flags: let o2 = owner.skipTypes({tyGenericInst, tyAlias}) if o2.kind in {tyTuple, tyObject, tyArray, tySequence, tyOpt, tySet, tyDistinct}: o2.flags.incl tfHasAsgn owner.flags.incl tfHasAsgn if tfTriggersCompileTime in elem.flags: owner.flags.incl tfTriggersCompileTime if owner.kind notin {tyProc, tyGenericInst, tyGenericBody, tyGenericInvocation, tyPtr}: let elemB = elem.skipTypes({tyGenericInst, tyAlias}) if elemB.isGCedMem or tfHasGCedMem in elemB.flags: # for simplicity, we propagate this flag even to generics. We then # ensure this doesn't bite us in sempass2. owner.flags.incl tfHasGCedMem proc rawAddSon*(father, son: PType) = if isNil(father.sons): father.sons = @[] add(father.sons, son) if not son.isNil: propagateToOwner(father, son) proc addSonNilAllowed*(father, son: PNode) = if isNil(father.sons): father.sons = @[] add(father.sons, son) proc delSon*(father: PNode, idx: int) = if isNil(father.sons): return var length = sonsLen(father) for i in countup(idx, length - 2): father.sons[i] = father.sons[i + 1] setLen(father.sons, length - 1) proc copyNode*(src: PNode): PNode = # does not copy its sons! if src == nil: return nil result = newNode(src.kind) result.info = src.info result.typ = src.typ result.flags = src.flags * PersistentNodeFlags result.comment = src.comment when defined(useNodeIds): if result.id == nodeIdToDebug: echo "COMES FROM ", src.id case src.kind of nkCharLit..nkUInt64Lit: result.intVal = src.intVal of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal of nkSym: result.sym = src.sym of nkIdent: result.ident = src.ident of nkStrLit..nkTripleStrLit: result.strVal = src.strVal else: discard proc shallowCopy*(src: PNode): PNode = # does not copy its sons, but provides space for them: if src == nil: return nil result = newNode(src.kind) result.info = src.info result.typ = src.typ result.flags = src.flags * PersistentNodeFlags result.comment = src.comment when defined(useNodeIds): if result.id == nodeIdToDebug: echo "COMES FROM ", src.id case src.kind of nkCharLit..nkUInt64Lit: result.intVal = src.intVal of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal of nkSym: result.sym = src.sym of nkIdent: result.ident = src.ident of nkStrLit..nkTripleStrLit: result.strVal = src.strVal else: newSeq(result.sons, sonsLen(src)) proc copyTree*(src: PNode): PNode = # copy a whole syntax tree; performs deep copying if src == nil: return nil result = newNode(src.kind) result.info = src.info result.typ = src.typ result.flags = src.flags * PersistentNodeFlags result.comment = src.comment when defined(useNodeIds): if result.id == nodeIdToDebug: echo "COMES FROM ", src.id case src.kind of nkCharLit..nkUInt64Lit: result.intVal = src.intVal of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal of nkSym: result.sym = src.sym of nkIdent: result.ident = src.ident of nkStrLit..nkTripleStrLit: result.strVal = src.strVal else: newSeq(result.sons, sonsLen(src)) for i in countup(0, sonsLen(src) - 1): result.sons[i] = copyTree(src.sons[i]) proc hasSonWith*(n: PNode, kind: TNodeKind): bool = for i in countup(0, sonsLen(n) - 1): if n.sons[i].kind == kind: return true result = false proc hasNilSon*(n: PNode): bool = for i in countup(0, safeLen(n) - 1): if n.sons[i] == nil: return true elif hasNilSon(n.sons[i]): return true result = false proc containsNode*(n: PNode, kinds: TNodeKinds): bool = if n == nil: return case n.kind of nkEmpty..nkNilLit: result = n.kind in kinds else: for i in countup(0, sonsLen(n) - 1): if n.kind in kinds or containsNode(n.sons[i], kinds): return true proc hasSubnodeWith*(n: PNode, kind: TNodeKind): bool = case n.kind of nkEmpty..nkNilLit: result = n.kind == kind else: for i in countup(0, sonsLen(n) - 1): if (n.sons[i].kind == kind) or hasSubnodeWith(n.sons[i], kind): return true result = false proc getInt*(a: PNode): BiggestInt = case a.kind of nkCharLit..nkUInt64Lit: result = a.intVal else: internalError(a.info, "getInt") result = 0 proc getFloat*(a: PNode): BiggestFloat = case a.kind of nkFloatLit..nkFloat128Lit: result = a.floatVal else: internalError(a.info, "getFloat") result = 0.0 proc getStr*(a: PNode): string = case a.kind of nkStrLit..nkTripleStrLit: result = a.strVal of nkNilLit: # let's hope this fixes more problems than it creates: result = nil else: internalError(a.info, "getStr") result = "" proc getStrOrChar*(a: PNode): string = case a.kind of nkStrLit..nkTripleStrLit: result = a.strVal of nkCharLit..nkUInt64Lit: result = $chr(int(a.intVal)) else: internalError(a.info, "getStrOrChar") result = "" proc isGenericRoutine*(s: PSym): bool = case s.kind of skProcKinds: result = sfFromGeneric in s.flags or (s.ast != nil and s.ast[genericParamsPos].kind != nkEmpty) else: discard proc skipGenericOwner*(s: PSym): PSym = ## Generic instantiations are owned by their originating generic ## symbol. This proc skips such owners and goes straight to the owner ## of the generic itself (the module or the enclosing proc). result = if s.kind in skProcKinds and sfFromGeneric in s.flags: s.owner.owner else: s.owner proc originatingModule*(s: PSym): PSym = result = s.owner while result.kind != skModule: result = result.owner proc isRoutine*(s: PSym): bool {.inline.} = result = s.kind in skProcKinds proc hasPattern*(s: PSym): bool {.inline.} = result = isRoutine(s) and s.ast.sons[patternPos].kind != nkEmpty iterator items*(n: PNode): PNode = for i in 0..= nkNone and n.kind <= nkNilLit proc isEmptyType*(t: PType): bool {.inline.} = ## 'void' and 'stmt' types are often equivalent to 'nil' these days: result = t == nil or t.kind in {tyVoid, tyStmt} proc makeStmtList*(n: PNode): PNode = if n.kind == nkStmtList: result = n else: result = newNodeI(nkStmtList, n.info) result.add n proc skipStmtList*(n: PNode): PNode = if n.kind in {nkStmtList, nkStmtListExpr}: for i in 0 .. n.len-2: if n[i].kind notin {nkEmpty, nkCommentStmt}: return n result = n.lastSon else: result = n proc toRef*(typ: PType): PType = ## If ``typ`` is a tyObject then it is converted into a `ref ` and ## returned. Otherwise ``typ`` is simply returned as-is. result = typ if typ.kind == tyObject: result = newType(tyRef, typ.owner) rawAddSon(result, typ) proc toObject*(typ: PType): PType = ## If ``typ`` is a tyRef then its immediate son is returned (which in many ## cases should be a ``tyObject``). ## Otherwise ``typ`` is simply returned as-is. result = typ if result.kind == tyRef: result = result.lastSon proc findUnresolvedStatic*(n: PNode): PNode = if n.kind == nkSym and n.typ.kind == tyStatic and n.typ.n == nil: return n for son in n: let n = son.findUnresolvedStatic if n != nil: return n return nil when false: proc containsNil*(n: PNode): bool = # only for debugging if n.isNil: return true for i in 0 ..< n.safeLen: if n[i].containsNil: return true template hasDestructor*(t: PType): bool = tfHasAsgn in t.flags template incompleteType*(t: PType): bool = t.sym != nil and {sfForward, sfNoForward} * t.sym.flags == {sfForward} template typeCompleted*(s: PSym) = incl s.flags, sfNoForward