# # # The Nim Compiler # (c) Copyright 2013 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # # included from cgen.nim # -------------------------- constant expressions ------------------------ proc int64Literal(i: BiggestInt): Rope = if i > low(int64): result = rfmt(nil, "IL64($1)", rope(i)) else: result = ~"(IL64(-9223372036854775807) - IL64(1))" proc uint64Literal(i: uint64): Rope = rope($i & "ULL") proc intLiteral(i: BiggestInt): Rope = if i > low(int32) and i <= high(int32): result = rope(i) elif i == low(int32): # Nim has the same bug for the same reasons :-) result = ~"(-2147483647 -1)" elif i > low(int64): result = rfmt(nil, "IL64($1)", rope(i)) else: result = ~"(IL64(-9223372036854775807) - IL64(1))" proc getStrLit(m: BModule, s: string): Rope = discard cgsym(m, "TGenericSeq") result = getTempName(m) addf(m.s[cfsData], "STRING_LITERAL($1, $2, $3);$n", [result, makeCString(s), rope(len(s))]) proc genLiteral(p: BProc, n: PNode, ty: PType): Rope = if ty == nil: internalError(n.info, "genLiteral: ty is nil") case n.kind of nkCharLit..nkUInt64Lit: case skipTypes(ty, abstractVarRange).kind of tyChar, tyNil: result = intLiteral(n.intVal) of tyBool: if n.intVal != 0: result = ~"NIM_TRUE" else: result = ~"NIM_FALSE" of tyInt64: result = int64Literal(n.intVal) of tyUInt64: result = uint64Literal(uint64(n.intVal)) else: result = "(($1) $2)" % [getTypeDesc(p.module, ty), intLiteral(n.intVal)] of nkNilLit: let t = skipTypes(ty, abstractVarRange) if t.kind == tyProc and t.callConv == ccClosure: let id = nodeTableTestOrSet(p.module.dataCache, n, p.module.labels) result = p.module.tmpBase & rope(id) if id == p.module.labels: # not found in cache: inc(p.module.labels) addf(p.module.s[cfsData], "static NIM_CONST $1 $2 = {NIM_NIL,NIM_NIL};$n", [getTypeDesc(p.module, ty), result]) else: result = rope("NIM_NIL") of nkStrLit..nkTripleStrLit: if n.strVal.isNil: result = ropecg(p.module, "((#NimStringDesc*) NIM_NIL)", []) elif skipTypes(ty, abstractVarRange).kind == tyString: let id = nodeTableTestOrSet(p.module.dataCache, n, p.module.labels) if id == p.module.labels: # string literal not found in the cache: result = ropecg(p.module, "((#NimStringDesc*) &$1)", [getStrLit(p.module, n.strVal)]) else: result = ropecg(p.module, "((#NimStringDesc*) &$1$2)", [p.module.tmpBase, rope(id)]) else: result = makeCString(n.strVal) of nkFloatLit..nkFloat64Lit: result = rope(n.floatVal.toStrMaxPrecision) else: internalError(n.info, "genLiteral(" & $n.kind & ')') result = nil proc genLiteral(p: BProc, n: PNode): Rope = result = genLiteral(p, n, n.typ) proc bitSetToWord(s: TBitSet, size: int): BiggestInt = result = 0 when true: for j in countup(0, size - 1): if j < len(s): result = result or `shl`(ze64(s[j]), j * 8) else: # not needed, too complex thinking: if CPU[platform.hostCPU].endian == CPU[targetCPU].endian: for j in countup(0, size - 1): if j < len(s): result = result or `shl`(Ze64(s[j]), j * 8) else: for j in countup(0, size - 1): if j < len(s): result = result or `shl`(Ze64(s[j]), (Size - 1 - j) * 8) proc genRawSetData(cs: TBitSet, size: int): Rope = var frmt: FormatStr if size > 8: result = "{$n" % [] for i in countup(0, size - 1): if i < size - 1: # not last iteration? if (i + 1) mod 8 == 0: frmt = "0x$1,$n" else: frmt = "0x$1, " else: frmt = "0x$1}$n" addf(result, frmt, [rope(toHex(ze64(cs[i]), 2))]) else: result = intLiteral(bitSetToWord(cs, size)) # result := rope('0x' + ToHex(bitSetToWord(cs, size), size * 2)) proc genSetNode(p: BProc, n: PNode): Rope = var cs: TBitSet var size = int(getSize(n.typ)) toBitSet(n, cs) if size > 8: let id = nodeTableTestOrSet(p.module.dataCache, n, p.module.labels) result = p.module.tmpBase & rope(id) if id == p.module.labels: # not found in cache: inc(p.module.labels) addf(p.module.s[cfsData], "static NIM_CONST $1 $2 = $3;$n", [getTypeDesc(p.module, n.typ), result, genRawSetData(cs, size)]) else: result = genRawSetData(cs, size) proc getStorageLoc(n: PNode): TStorageLoc = case n.kind of nkSym: case n.sym.kind of skParam, skTemp: result = OnStack of skVar, skForVar, skResult, skLet: if sfGlobal in n.sym.flags: result = OnHeap else: result = OnStack of skConst: if sfGlobal in n.sym.flags: result = OnHeap else: result = OnUnknown else: result = OnUnknown of nkDerefExpr, nkHiddenDeref: case n.sons[0].typ.kind of tyVar: result = OnUnknown of tyPtr: result = OnStack of tyRef: result = OnHeap else: internalError(n.info, "getStorageLoc") of nkBracketExpr, nkDotExpr, nkObjDownConv, nkObjUpConv: result = getStorageLoc(n.sons[0]) else: result = OnUnknown proc genRefAssign(p: BProc, dest, src: TLoc, flags: TAssignmentFlags) = if dest.s == OnStack or not usesNativeGC(): linefmt(p, cpsStmts, "$1 = $2;$n", rdLoc(dest), rdLoc(src)) elif dest.s == OnHeap: # location is on heap # now the writer barrier is inlined for performance: # # if afSrcIsNotNil in flags: # UseMagic(p.module, 'nimGCref') # lineF(p, cpsStmts, 'nimGCref($1);$n', [rdLoc(src)]) # elif afSrcIsNil notin flags: # UseMagic(p.module, 'nimGCref') # lineF(p, cpsStmts, 'if ($1) nimGCref($1);$n', [rdLoc(src)]) # if afDestIsNotNil in flags: # UseMagic(p.module, 'nimGCunref') # lineF(p, cpsStmts, 'nimGCunref($1);$n', [rdLoc(dest)]) # elif afDestIsNil notin flags: # UseMagic(p.module, 'nimGCunref') # lineF(p, cpsStmts, 'if ($1) nimGCunref($1);$n', [rdLoc(dest)]) # lineF(p, cpsStmts, '$1 = $2;$n', [rdLoc(dest), rdLoc(src)]) if canFormAcycle(dest.t): linefmt(p, cpsStmts, "#asgnRef((void**) $1, $2);$n", addrLoc(dest), rdLoc(src)) else: linefmt(p, cpsStmts, "#asgnRefNoCycle((void**) $1, $2);$n", addrLoc(dest), rdLoc(src)) else: linefmt(p, cpsStmts, "#unsureAsgnRef((void**) $1, $2);$n", addrLoc(dest), rdLoc(src)) proc asgnComplexity(n: PNode): int = if n != nil: case n.kind of nkSym: result = 1 of nkRecCase: # 'case objects' are too difficult to inline their assignment operation: result = 100 of nkRecList: for t in items(n): result += asgnComplexity(t) else: discard proc optAsgnLoc(a: TLoc, t: PType, field: Rope): TLoc = assert field != nil result.k = locField result.s = a.s result.t = t result.r = rdLoc(a) & "." & field proc genOptAsgnTuple(p: BProc, dest, src: TLoc, flags: TAssignmentFlags) = let newflags = if src.s == OnStatic: flags + {needToCopy} elif tfShallow in dest.t.flags: flags - {needToCopy} else: flags let t = skipTypes(dest.t, abstractInst).getUniqueType() for i in 0 .. $3) #raiseOverflow();$n", result, intLiteral(firstOrd(t)), intLiteral(lastOrd(t))) proc binaryArithOverflow(p: BProc, e: PNode, d: var TLoc, m: TMagic) = const prc: array[mAddI..mPred, string] = [ "$# = #addInt($#, $#);$n", "$# = #subInt($#, $#);$n", "$# = #mulInt($#, $#);$n", "$# = #divInt($#, $#);$n", "$# = #modInt($#, $#);$n", "$# = #addInt($#, $#);$n", "$# = #subInt($#, $#);$n"] prc64: array[mAddI..mPred, string] = [ "$# = #addInt64($#, $#);$n", "$# = #subInt64($#, $#);$n", "$# = #mulInt64($#, $#);$n", "$# = #divInt64($#, $#);$n", "$# = #modInt64($#, $#);$n", "$# = #addInt64($#, $#);$n", "$# = #subInt64($#, $#);$n"] opr: array[mAddI..mPred, string] = [ "($#)($# + $#)", "($#)($# - $#)", "($#)($# * $#)", "($#)($# / $#)", "($#)($# % $#)", "($#)($# + $#)", "($#)($# - $#)"] var a, b: TLoc assert(e.sons[1].typ != nil) assert(e.sons[2].typ != nil) initLocExpr(p, e.sons[1], a) initLocExpr(p, e.sons[2], b) # skipping 'range' is correct here as we'll generate a proper range check # later via 'chckRange' let t = e.typ.skipTypes(abstractRange) if optOverflowCheck notin p.options: let res = opr[m] % [getTypeDesc(p.module, e.typ), rdLoc(a), rdLoc(b)] putIntoDest(p, d, e.typ, res) else: let res = binaryArithOverflowRaw(p, t, a, b, if t.kind == tyInt64: prc64[m] else: prc[m]) putIntoDest(p, d, e.typ, "($#)($#)" % [getTypeDesc(p.module, e.typ), res]) proc unaryArithOverflow(p: BProc, e: PNode, d: var TLoc, m: TMagic) = const opr: array[mUnaryMinusI..mAbsI, string] = [ mUnaryMinusI: "((NI$2)-($1))", mUnaryMinusI64: "-($1)", mAbsI: "($1 > 0? ($1) : -($1))"] var a: TLoc t: PType assert(e.sons[1].typ != nil) initLocExpr(p, e.sons[1], a) t = skipTypes(e.typ, abstractRange) if optOverflowCheck in p.options: linefmt(p, cpsStmts, "if ($1 == $2) #raiseOverflow();$n", rdLoc(a), intLiteral(firstOrd(t))) putIntoDest(p, d, e.typ, opr[m] % [rdLoc(a), rope(getSize(t) * 8)]) proc binaryArith(p: BProc, e: PNode, d: var TLoc, op: TMagic) = const binArithTab: array[mAddF64..mXor, string] = [ "(($4)($1) + ($4)($2))", # AddF64 "(($4)($1) - ($4)($2))", # SubF64 "(($4)($1) * ($4)($2))", # MulF64 "(($4)($1) / ($4)($2))", # DivF64 "($4)((NU$3)($1) >> (NU$3)($2))", # ShrI "($4)((NU$3)($1) << (NU$3)($2))", # ShlI "($4)($1 & $2)", # BitandI "($4)($1 | $2)", # BitorI "($4)($1 ^ $2)", # BitxorI "(($1 <= $2) ? $1 : $2)", # MinI "(($1 >= $2) ? $1 : $2)", # MaxI "(($1 <= $2) ? $1 : $2)", # MinF64 "(($1 >= $2) ? $1 : $2)", # MaxF64 "($4)((NU$3)($1) + (NU$3)($2))", # AddU "($4)((NU$3)($1) - (NU$3)($2))", # SubU "($4)((NU$3)($1) * (NU$3)($2))", # MulU "($4)((NU$3)($1) / (NU$3)($2))", # DivU "($4)((NU$3)($1) % (NU$3)($2))", # ModU "($1 == $2)", # EqI "($1 <= $2)", # LeI "($1 < $2)", # LtI "($1 == $2)", # EqF64 "($1 <= $2)", # LeF64 "($1 < $2)", # LtF64 "((NU$3)($1) <= (NU$3)($2))", # LeU "((NU$3)($1) < (NU$3)($2))", # LtU "((NU64)($1) <= (NU64)($2))", # LeU64 "((NU64)($1) < (NU64)($2))", # LtU64 "($1 == $2)", # EqEnum "($1 <= $2)", # LeEnum "($1 < $2)", # LtEnum "((NU8)($1) == (NU8)($2))", # EqCh "((NU8)($1) <= (NU8)($2))", # LeCh "((NU8)($1) < (NU8)($2))", # LtCh "($1 == $2)", # EqB "($1 <= $2)", # LeB "($1 < $2)", # LtB "($1 == $2)", # EqRef "($1 == $2)", # EqPtr "($1 <= $2)", # LePtr "($1 < $2)", # LtPtr "($1 != $2)"] # Xor var a, b: TLoc s: BiggestInt assert(e.sons[1].typ != nil) assert(e.sons[2].typ != nil) initLocExpr(p, e.sons[1], a) initLocExpr(p, e.sons[2], b) # BUGFIX: cannot use result-type here, as it may be a boolean s = max(getSize(a.t), getSize(b.t)) * 8 putIntoDest(p, d, e.typ, binArithTab[op] % [rdLoc(a), rdLoc(b), rope(s), getSimpleTypeDesc(p.module, e.typ)]) proc genEqProc(p: BProc, e: PNode, d: var TLoc) = var a, b: TLoc assert(e.sons[1].typ != nil) assert(e.sons[2].typ != nil) initLocExpr(p, e.sons[1], a) initLocExpr(p, e.sons[2], b) if a.t.skipTypes(abstractInst).callConv == ccClosure: putIntoDest(p, d, e.typ, "($1.ClP_0 == $2.ClP_0 && $1.ClE_0 == $2.ClE_0)" % [rdLoc(a), rdLoc(b)]) else: putIntoDest(p, d, e.typ, "($1 == $2)" % [rdLoc(a), rdLoc(b)]) proc genIsNil(p: BProc, e: PNode, d: var TLoc) = let t = skipTypes(e.sons[1].typ, abstractRange) if t.kind == tyProc and t.callConv == ccClosure: unaryExpr(p, e, d, "($1.ClP_0 == 0)") else: unaryExpr(p, e, d, "($1 == 0)") proc unaryArith(p: BProc, e: PNode, d: var TLoc, op: TMagic) = const unArithTab: array[mNot..mToBiggestInt, string] = ["!($1)", # Not "$1", # UnaryPlusI "($3)((NU$2) ~($1))", # BitnotI "$1", # UnaryPlusF64 "-($1)", # UnaryMinusF64 "($1 < 0? -($1) : ($1))", # AbsF64; BUGFIX: fabs() makes problems # for Tiny C, so we don't use it "(($3)(NU)(NU8)($1))", # mZe8ToI "(($3)(NU64)(NU8)($1))", # mZe8ToI64 "(($3)(NU)(NU16)($1))", # mZe16ToI "(($3)(NU64)(NU16)($1))", # mZe16ToI64 "(($3)(NU64)(NU32)($1))", # mZe32ToI64 "(($3)(NU64)(NU)($1))", # mZeIToI64 "(($3)(NU8)(NU)($1))", # ToU8 "(($3)(NU16)(NU)($1))", # ToU16 "(($3)(NU32)(NU64)($1))", # ToU32 "((double) ($1))", # ToFloat "((double) ($1))", # ToBiggestFloat "float64ToInt32($1)", # ToInt "float64ToInt64($1)"] # ToBiggestInt var a: TLoc t: PType assert(e.sons[1].typ != nil) initLocExpr(p, e.sons[1], a) t = skipTypes(e.typ, abstractRange) putIntoDest(p, d, e.typ, unArithTab[op] % [rdLoc(a), rope(getSize(t) * 8), getSimpleTypeDesc(p.module, e.typ)]) proc isCppRef(p: BProc; typ: PType): bool {.inline.} = result = p.module.compileToCpp and skipTypes(typ, abstractInst).kind == tyVar and tfVarIsPtr notin skipTypes(typ, abstractInst).flags proc genDeref(p: BProc, e: PNode, d: var TLoc; enforceDeref=false) = let mt = mapType(e.sons[0].typ) if mt in {ctArray, ctPtrToArray} and not enforceDeref: # XXX the amount of hacks for C's arrays is incredible, maybe we should # simply wrap them in a struct? --> Losing auto vectorization then? #if e[0].kind != nkBracketExpr: # message(e.info, warnUser, "CAME HERE " & renderTree(e)) expr(p, e.sons[0], d) if e.sons[0].typ.skipTypes(abstractInst).kind == tyRef: d.s = OnHeap else: var a: TLoc let typ = skipTypes(e.sons[0].typ, abstractInst) if typ.kind == tyVar and tfVarIsPtr notin typ.flags and p.module.compileToCpp and e.sons[0].kind == nkHiddenAddr: initLocExprSingleUse(p, e[0][0], d) return else: initLocExprSingleUse(p, e.sons[0], a) if d.k == locNone: # dest = *a; <-- We do not know that 'dest' is on the heap! # It is completely wrong to set 'd.s' here, unless it's not yet # been assigned to. case typ.kind of tyRef: d.s = OnHeap of tyVar: d.s = OnUnknown if tfVarIsPtr notin typ.flags and p.module.compileToCpp and e.kind == nkHiddenDeref: putIntoDest(p, d, e.typ, rdLoc(a), a.s) return of tyPtr: d.s = OnUnknown # BUGFIX! else: internalError(e.info, "genDeref " & $typ.kind) elif p.module.compileToCpp: if typ.kind == tyVar and tfVarIsPtr notin typ.flags and e.kind == nkHiddenDeref: putIntoDest(p, d, e.typ, rdLoc(a), a.s) return if enforceDeref and mt == ctPtrToArray: # we lie about the type for better C interop: 'ptr array[3,T]' is # translated to 'ptr T', but for deref'ing this produces wrong code. # See tmissingderef. So we get rid of the deref instead. The codegen # ends up using 'memcpy' for the array assignment, # so the '&' and '*' cancel out: putIntoDest(p, d, a.t.sons[0], rdLoc(a), a.s) else: putIntoDest(p, d, e.typ, "(*$1)" % [rdLoc(a)], a.s) proc genAddr(p: BProc, e: PNode, d: var TLoc) = # careful 'addr(myptrToArray)' needs to get the ampersand: if e.sons[0].typ.skipTypes(abstractInst).kind in {tyRef, tyPtr}: var a: TLoc initLocExpr(p, e.sons[0], a) putIntoDest(p, d, e.typ, "&" & a.r, a.s) #Message(e.info, warnUser, "HERE NEW &") elif mapType(e.sons[0].typ) == ctArray or isCppRef(p, e.sons[0].typ): expr(p, e.sons[0], d) else: var a: TLoc initLocExpr(p, e.sons[0], a) putIntoDest(p, d, e.typ, addrLoc(a), a.s) template inheritLocation(d: var TLoc, a: TLoc) = if d.k == locNone: d.s = a.s proc genRecordFieldAux(p: BProc, e: PNode, d, a: var TLoc) = initLocExpr(p, e.sons[0], a) if e.sons[1].kind != nkSym: internalError(e.info, "genRecordFieldAux") d.inheritLocation(a) discard getTypeDesc(p.module, a.t) # fill the record's fields.loc proc genTupleElem(p: BProc, e: PNode, d: var TLoc) = var a: TLoc i: int initLocExpr(p, e.sons[0], a) let tupType = a.t.skipTypes(abstractInst) assert tupType.kind == tyTuple d.inheritLocation(a) discard getTypeDesc(p.module, a.t) # fill the record's fields.loc var r = rdLoc(a) case e.sons[1].kind of nkIntLit..nkUInt64Lit: i = int(e.sons[1].intVal) else: internalError(e.info, "genTupleElem") addf(r, ".Field$1", [rope(i)]) putIntoDest(p, d, tupType.sons[i], r, a.s) proc lookupFieldAgain(p: BProc, ty: PType; field: PSym; r: var Rope): PSym = var ty = ty assert r != nil while ty != nil: ty = ty.skipTypes(skipPtrs) assert(ty.kind in {tyTuple, tyObject}) result = lookupInRecord(ty.n, field.name) if result != nil: break if not p.module.compileToCpp: add(r, ".Sup") ty = ty.sons[0] if result == nil: internalError(field.info, "genCheckedRecordField") proc genRecordField(p: BProc, e: PNode, d: var TLoc) = var a: TLoc genRecordFieldAux(p, e, d, a) var r = rdLoc(a) var f = e.sons[1].sym let ty = skipTypes(a.t, abstractInst + tyUserTypeClasses) if ty.kind == tyTuple: # we found a unique tuple type which lacks field information # so we use Field$i addf(r, ".Field$1", [rope(f.position)]) putIntoDest(p, d, f.typ, r, a.s) else: let field = lookupFieldAgain(p, ty, f, r) if field.loc.r == nil: fillObjectFields(p.module, ty) if field.loc.r == nil: internalError(e.info, "genRecordField 3 " & typeToString(ty)) addf(r, ".$1", [field.loc.r]) putIntoDest(p, d, field.typ, r, a.s) #d.s = a.s proc genInExprAux(p: BProc, e: PNode, a, b, d: var TLoc) proc genFieldCheck(p: BProc, e: PNode, obj: Rope, field: PSym; origTy: PType) = var test, u, v: TLoc for i in countup(1, sonsLen(e) - 1): var it = e.sons[i] assert(it.kind in nkCallKinds) assert(it.sons[0].kind == nkSym) let op = it.sons[0].sym if op.magic == mNot: it = it.sons[1] let disc = it.sons[2].skipConv assert(disc.kind == nkSym) initLoc(test, locNone, it.typ, OnStack) initLocExpr(p, it.sons[1], u) var o = obj let d = lookupFieldAgain(p, origTy, disc.sym, o) initLoc(v, locExpr, d.typ, OnUnknown) v.r = o v.r.add(".") v.r.add(d.loc.r) genInExprAux(p, it, u, v, test) let id = nodeTableTestOrSet(p.module.dataCache, newStrNode(nkStrLit, field.name.s), p.module.labels) let strLit = if id == p.module.labels: getStrLit(p.module, field.name.s) else: p.module.tmpBase & rope(id) if op.magic == mNot: linefmt(p, cpsStmts, "if ($1) #raiseFieldError(((#NimStringDesc*) &$2));$n", rdLoc(test), strLit) else: linefmt(p, cpsStmts, "if (!($1)) #raiseFieldError(((#NimStringDesc*) &$2));$n", rdLoc(test), strLit) proc genCheckedRecordField(p: BProc, e: PNode, d: var TLoc) = if optFieldCheck in p.options: var a: TLoc genRecordFieldAux(p, e.sons[0], d, a) let ty = skipTypes(a.t, abstractInst) var r = rdLoc(a) let f = e.sons[0].sons[1].sym let field = lookupFieldAgain(p, ty, f, r) if field.loc.r == nil: fillObjectFields(p.module, ty) if field.loc.r == nil: internalError(e.info, "genCheckedRecordField") # generate the checks: genFieldCheck(p, e, r, field, ty) add(r, rfmt(nil, ".$1", field.loc.r)) putIntoDest(p, d, field.typ, r, a.s) else: genRecordField(p, e.sons[0], d) proc genArrayElem(p: BProc, x, y: PNode, d: var TLoc) = var a, b: TLoc initLocExpr(p, x, a) initLocExpr(p, y, b) var ty = skipTypes(skipTypes(a.t, abstractVarRange), abstractPtrs) var first = intLiteral(firstOrd(ty)) # emit range check: if optBoundsCheck in p.options and tfUncheckedArray notin ty.flags: if not isConstExpr(y): # semantic pass has already checked for const index expressions if firstOrd(ty) == 0: if (firstOrd(b.t) < firstOrd(ty)) or (lastOrd(b.t) > lastOrd(ty)): linefmt(p, cpsStmts, "if ((NU)($1) > (NU)($2)) #raiseIndexError();$n", rdCharLoc(b), intLiteral(lastOrd(ty))) else: linefmt(p, cpsStmts, "if ($1 < $2 || $1 > $3) #raiseIndexError();$n", rdCharLoc(b), first, intLiteral(lastOrd(ty))) else: let idx = getOrdValue(y) if idx < firstOrd(ty) or idx > lastOrd(ty): localError(x.info, errIndexOutOfBounds) d.inheritLocation(a) putIntoDest(p, d, elemType(skipTypes(ty, abstractVar)), rfmt(nil, "$1[($2)- $3]", rdLoc(a), rdCharLoc(b), first), a.s) proc genCStringElem(p: BProc, x, y: PNode, d: var TLoc) = var a, b: TLoc initLocExpr(p, x, a) initLocExpr(p, y, b) var ty = skipTypes(a.t, abstractVarRange) if d.k == locNone: d.s = a.s putIntoDest(p, d, elemType(skipTypes(ty, abstractVar)), rfmt(nil, "$1[$2]", rdLoc(a), rdCharLoc(b)), a.s) proc genOpenArrayElem(p: BProc, x, y: PNode, d: var TLoc) = var a, b: TLoc initLocExpr(p, x, a) initLocExpr(p, y, b) # emit range check: if optBoundsCheck in p.options: linefmt(p, cpsStmts, "if ((NU)($1) >= (NU)($2Len_0)) #raiseIndexError();$n", rdLoc(b), rdLoc(a)) # BUGFIX: ``>=`` and not ``>``! if d.k == locNone: d.s = a.s putIntoDest(p, d, elemType(skipTypes(a.t, abstractVar)), rfmt(nil, "$1[$2]", rdLoc(a), rdCharLoc(b)), a.s) proc genSeqElem(p: BProc, x, y: PNode, d: var TLoc) = var a, b: TLoc initLocExpr(p, x, a) initLocExpr(p, y, b) var ty = skipTypes(a.t, abstractVarRange) if ty.kind in {tyRef, tyPtr}: ty = skipTypes(ty.lastSon, abstractVarRange) # emit range check: if optBoundsCheck in p.options: if ty.kind == tyString: linefmt(p, cpsStmts, "if ((NU)($1) > (NU)($2->$3)) #raiseIndexError();$n", rdLoc(b), rdLoc(a), lenField(p)) else: linefmt(p, cpsStmts, "if ((NU)($1) >= (NU)($2->$3)) #raiseIndexError();$n", rdLoc(b), rdLoc(a), lenField(p)) if d.k == locNone: d.s = OnHeap if skipTypes(a.t, abstractVar).kind in {tyRef, tyPtr}: a.r = rfmt(nil, "(*$1)", a.r) putIntoDest(p, d, elemType(skipTypes(a.t, abstractVar)), rfmt(nil, "$1->data[$2]", rdLoc(a), rdCharLoc(b)), a.s) proc genBracketExpr(p: BProc; n: PNode; d: var TLoc) = var ty = skipTypes(n.sons[0].typ, abstractVarRange + tyUserTypeClasses) if ty.kind in {tyRef, tyPtr}: ty = skipTypes(ty.lastSon, abstractVarRange) case ty.kind of tyArray: genArrayElem(p, n.sons[0], n.sons[1], d) of tyOpenArray, tyVarargs: genOpenArrayElem(p, n.sons[0], n.sons[1], d) of tySequence, tyString: genSeqElem(p, n.sons[0], n.sons[1], d) of tyCString: genCStringElem(p, n.sons[0], n.sons[1], d) of tyTuple: genTupleElem(p, n, d) else: internalError(n.info, "expr(nkBracketExpr, " & $ty.kind & ')') proc genAndOr(p: BProc, e: PNode, d: var TLoc, m: TMagic) = # how to generate code? # 'expr1 and expr2' becomes: # result = expr1 # fjmp result, end # result = expr2 # end: # ... (result computed) # BUGFIX: # a = b or a # used to generate: # a = b # if a: goto end # a = a # end: # now it generates: # tmp = b # if tmp: goto end # tmp = a # end: # a = tmp var L: TLabel tmp: TLoc getTemp(p, e.typ, tmp) # force it into a temp! inc p.splitDecls expr(p, e.sons[1], tmp) L = getLabel(p) if m == mOr: lineF(p, cpsStmts, "if ($1) goto $2;$n", [rdLoc(tmp), L]) else: lineF(p, cpsStmts, "if (!($1)) goto $2;$n", [rdLoc(tmp), L]) expr(p, e.sons[2], tmp) fixLabel(p, L) if d.k == locNone: d = tmp else: genAssignment(p, d, tmp, {}) # no need for deep copying dec p.splitDecls proc genEcho(p: BProc, n: PNode) = # this unusal way of implementing it ensures that e.g. ``echo("hallo", 45)`` # is threadsafe. internalAssert n.kind == nkBracket var args: Rope = nil var a: TLoc for i in countup(0, n.len-1): if n.sons[i].skipConv.kind == nkNilLit: add(args, ", \"nil\"") else: initLocExpr(p, n.sons[i], a) addf(args, ", $1? ($1)->data:\"nil\"", [rdLoc(a)]) if platform.targetOS == osGenode: # bypass libc and print directly to the Genode LOG session p.module.includeHeader("") linefmt(p, cpsStmts, """Genode::log(""$1);$n""", args) else: p.module.includeHeader("") linefmt(p, cpsStmts, "printf($1$2);$n", makeCString(repeat("%s", n.len) & tnl), args) linefmt(p, cpsStmts, "fflush(stdout);$n") proc gcUsage(n: PNode) = if gSelectedGC == gcNone: message(n.info, warnGcMem, n.renderTree) proc genStrConcat(p: BProc, e: PNode, d: var TLoc) = # # s = 'Hello ' & name & ', how do you feel?' & 'z' # # # { # string tmp0; # ... # tmp0 = rawNewString(6 + 17 + 1 + s2->len); # // we cannot generate s = rawNewString(...) here, because # // ``s`` may be used on the right side of the expression # appendString(tmp0, strlit_1); # appendString(tmp0, name); # appendString(tmp0, strlit_2); # appendChar(tmp0, 'z'); # asgn(s, tmp0); # } var a, tmp: TLoc getTemp(p, e.typ, tmp) var L = 0 var appends: Rope = nil var lens: Rope = nil for i in countup(0, sonsLen(e) - 2): # compute the length expression: initLocExpr(p, e.sons[i + 1], a) if skipTypes(e.sons[i + 1].typ, abstractVarRange).kind == tyChar: inc(L) add(appends, rfmt(p.module, "#appendChar($1, $2);$n", tmp.r, rdLoc(a))) else: if e.sons[i + 1].kind in {nkStrLit..nkTripleStrLit}: inc(L, len(e.sons[i + 1].strVal)) else: addf(lens, "$1->$2 + ", [rdLoc(a), lenField(p)]) add(appends, rfmt(p.module, "#appendString($1, $2);$n", tmp.r, rdLoc(a))) linefmt(p, cpsStmts, "$1 = #rawNewString($2$3);$n", tmp.r, lens, rope(L)) add(p.s(cpsStmts), appends) if d.k == locNone: d = tmp else: genAssignment(p, d, tmp, {}) # no need for deep copying gcUsage(e) proc genStrAppend(p: BProc, e: PNode, d: var TLoc) = # # s &= 'Hello ' & name & ', how do you feel?' & 'z' # // BUG: what if s is on the left side too? # # { # s = resizeString(s, 6 + 17 + 1 + name->len); # appendString(s, strlit_1); # appendString(s, name); # appendString(s, strlit_2); # appendChar(s, 'z'); # } var a, dest: TLoc appends, lens: Rope assert(d.k == locNone) var L = 0 initLocExpr(p, e.sons[1], dest) for i in countup(0, sonsLen(e) - 3): # compute the length expression: initLocExpr(p, e.sons[i + 2], a) if skipTypes(e.sons[i + 2].typ, abstractVarRange).kind == tyChar: inc(L) add(appends, rfmt(p.module, "#appendChar($1, $2);$n", rdLoc(dest), rdLoc(a))) else: if e.sons[i + 2].kind in {nkStrLit..nkTripleStrLit}: inc(L, len(e.sons[i + 2].strVal)) else: addf(lens, "$1->$2 + ", [rdLoc(a), lenField(p)]) add(appends, rfmt(p.module, "#appendString($1, $2);$n", rdLoc(dest), rdLoc(a))) linefmt(p, cpsStmts, "$1 = #resizeString($1, $2$3);$n", rdLoc(dest), lens, rope(L)) add(p.s(cpsStmts), appends) gcUsage(e) proc genSeqElemAppend(p: BProc, e: PNode, d: var TLoc) = # seq &= x --> # seq = (typeof seq) incrSeq(&seq->Sup, sizeof(x)); # seq->data[seq->len-1] = x; let seqAppendPattern = if not p.module.compileToCpp: "$1 = ($2) #incrSeqV2(&($1)->Sup, sizeof($3));$n" else: "$1 = ($2) #incrSeqV2($1, sizeof($3));$n" var a, b, dest: TLoc initLocExpr(p, e.sons[1], a) initLocExpr(p, e.sons[2], b) let bt = skipTypes(e.sons[2].typ, {tyVar}) lineCg(p, cpsStmts, seqAppendPattern, [ rdLoc(a), getTypeDesc(p.module, e.sons[1].typ), getTypeDesc(p.module, bt)]) #if bt != b.t: # echo "YES ", e.info, " new: ", typeToString(bt), " old: ", typeToString(b.t) initLoc(dest, locExpr, bt, OnHeap) dest.r = rfmt(nil, "$1->data[$1->$2]", rdLoc(a), lenField(p)) genAssignment(p, dest, b, {needToCopy, afDestIsNil}) lineCg(p, cpsStmts, "++$1->$2;$n", rdLoc(a), lenField(p)) gcUsage(e) proc genReset(p: BProc, n: PNode) = var a: TLoc initLocExpr(p, n.sons[1], a) linefmt(p, cpsStmts, "#genericReset((void*)$1, $2);$n", addrLoc(a), genTypeInfo(p.module, skipTypes(a.t, {tyVar}))) proc rawGenNew(p: BProc, a: TLoc, sizeExpr: Rope) = var sizeExpr = sizeExpr let typ = a.t var b: TLoc initLoc(b, locExpr, a.t, OnHeap) let refType = typ.skipTypes(abstractInst) assert refType.kind == tyRef let bt = refType.lastSon if sizeExpr.isNil: sizeExpr = "sizeof($1)" % [getTypeDesc(p.module, bt)] let args = [getTypeDesc(p.module, typ), genTypeInfo(p.module, typ), sizeExpr] if a.s == OnHeap and usesNativeGC(): # use newObjRC1 as an optimization if canFormAcycle(a.t): linefmt(p, cpsStmts, "if ($1) #nimGCunref($1);$n", a.rdLoc) else: linefmt(p, cpsStmts, "if ($1) #nimGCunrefNoCycle($1);$n", a.rdLoc) b.r = ropecg(p.module, "($1) #newObjRC1($2, $3)", args) linefmt(p, cpsStmts, "$1 = $2;$n", a.rdLoc, b.rdLoc) else: b.r = ropecg(p.module, "($1) #newObj($2, $3)", args) genAssignment(p, a, b, {}) # set the object type: genObjectInit(p, cpsStmts, bt, a, false) proc genNew(p: BProc, e: PNode) = var a: TLoc initLocExpr(p, e.sons[1], a) # 'genNew' also handles 'unsafeNew': if e.len == 3: var se: TLoc initLocExpr(p, e.sons[2], se) rawGenNew(p, a, se.rdLoc) else: rawGenNew(p, a, nil) gcUsage(e) proc genNewSeqAux(p: BProc, dest: TLoc, length: Rope) = let seqtype = skipTypes(dest.t, abstractVarRange) let args = [getTypeDesc(p.module, seqtype), genTypeInfo(p.module, seqtype), length] var call: TLoc initLoc(call, locExpr, dest.t, OnHeap) if dest.s == OnHeap and usesNativeGC(): if canFormAcycle(dest.t): linefmt(p, cpsStmts, "if ($1) #nimGCunref($1);$n", dest.rdLoc) else: linefmt(p, cpsStmts, "if ($1) #nimGCunrefNoCycle($1);$n", dest.rdLoc) call.r = ropecg(p.module, "($1) #newSeqRC1($2, $3)", args) linefmt(p, cpsStmts, "$1 = $2;$n", dest.rdLoc, call.rdLoc) else: call.r = ropecg(p.module, "($1) #newSeq($2, $3)", args) genAssignment(p, dest, call, {}) proc genNewSeq(p: BProc, e: PNode) = var a, b: TLoc initLocExpr(p, e.sons[1], a) initLocExpr(p, e.sons[2], b) genNewSeqAux(p, a, b.rdLoc) gcUsage(e) proc genNewSeqOfCap(p: BProc; e: PNode; d: var TLoc) = let seqtype = skipTypes(e.typ, abstractVarRange) var a: TLoc initLocExpr(p, e.sons[1], a) putIntoDest(p, d, e.typ, ropecg(p.module, "($1)#nimNewSeqOfCap($2, $3)", [ getTypeDesc(p.module, seqtype), genTypeInfo(p.module, seqtype), a.rdLoc])) gcUsage(e) proc genConstExpr(p: BProc, n: PNode): Rope proc handleConstExpr(p: BProc, n: PNode, d: var TLoc): bool = if d.k == locNone and n.len > ord(n.kind == nkObjConstr) and n.isDeepConstExpr: let t = n.typ discard getTypeDesc(p.module, t) # so that any fields are initialized let id = nodeTableTestOrSet(p.module.dataCache, n, p.module.labels) fillLoc(d, locData, t, p.module.tmpBase & rope(id), OnStatic) if id == p.module.labels: # expression not found in the cache: inc(p.module.labels) addf(p.module.s[cfsData], "NIM_CONST $1 $2 = $3;$n", [getTypeDesc(p.module, t), d.r, genConstExpr(p, n)]) result = true else: result = false proc genObjConstr(p: BProc, e: PNode, d: var TLoc) = #echo rendertree e, " ", e.isDeepConstExpr if handleConstExpr(p, e, d): return var tmp: TLoc var t = e.typ.skipTypes(abstractInst) getTemp(p, t, tmp) let isRef = t.kind == tyRef var r = rdLoc(tmp) if isRef: rawGenNew(p, tmp, nil) t = t.lastSon.skipTypes(abstractInst) r = "(*$1)" % [r] gcUsage(e) else: constructLoc(p, tmp) discard getTypeDesc(p.module, t) let ty = getUniqueType(t) for i in 1 .. data[$2]", rdLoc(d), intLiteral(i)) arr.s = OnHeap # we know that sequences are on the heap expr(p, t.sons[i], arr) gcUsage(t) proc genArrToSeq(p: BProc, t: PNode, d: var TLoc) = var elem, a, arr: TLoc if t.sons[1].kind == nkBracket: t.sons[1].typ = t.typ genSeqConstr(p, t.sons[1], d) return if d.k == locNone: getTemp(p, t.typ, d) # generate call to newSeq before adding the elements per hand: var L = int(lengthOrd(t.sons[1].typ)) genNewSeqAux(p, d, intLiteral(L)) initLocExpr(p, t.sons[1], a) for i in countup(0, L - 1): initLoc(elem, locExpr, elemType(skipTypes(t.typ, abstractInst)), OnHeap) elem.r = rfmt(nil, "$1->data[$2]", rdLoc(d), intLiteral(i)) elem.s = OnHeap # we know that sequences are on the heap initLoc(arr, locExpr, elemType(skipTypes(t.sons[1].typ, abstractInst)), a.s) arr.r = rfmt(nil, "$1[$2]", rdLoc(a), intLiteral(i)) genAssignment(p, elem, arr, {afDestIsNil, needToCopy}) proc genNewFinalize(p: BProc, e: PNode) = var a, b, f: TLoc refType, bt: PType ti: Rope refType = skipTypes(e.sons[1].typ, abstractVarRange) initLocExpr(p, e.sons[1], a) initLocExpr(p, e.sons[2], f) initLoc(b, locExpr, a.t, OnHeap) ti = genTypeInfo(p.module, refType) addf(p.module.s[cfsTypeInit3], "$1->finalizer = (void*)$2;$n", [ti, rdLoc(f)]) b.r = ropecg(p.module, "($1) #newObj($2, sizeof($3))", [ getTypeDesc(p.module, refType), ti, getTypeDesc(p.module, skipTypes(refType.lastSon, abstractRange))]) genAssignment(p, a, b, {}) # set the object type: bt = skipTypes(refType.lastSon, abstractRange) genObjectInit(p, cpsStmts, bt, a, false) gcUsage(e) proc genOfHelper(p: BProc; dest: PType; a: Rope): Rope = # unfortunately 'genTypeInfo' sets tfObjHasKids as a side effect, so we # have to call it here first: let ti = genTypeInfo(p.module, dest) if tfFinal in dest.flags or (objHasKidsValid in p.module.flags and tfObjHasKids notin dest.flags): result = "$1.m_type == $2" % [a, ti] else: discard cgsym(p.module, "TNimType") inc p.module.labels let cache = "Nim_OfCheck_CACHE" & p.module.labels.rope addf(p.module.s[cfsVars], "static TNimType* $#[2];$n", [cache]) result = rfmt(p.module, "#isObjWithCache($#.m_type, $#, $#)", a, ti, cache) when false: # former version: result = rfmt(p.module, "#isObj($1.m_type, $2)", a, genTypeInfo(p.module, dest)) proc genOf(p: BProc, x: PNode, typ: PType, d: var TLoc) = var a: TLoc initLocExpr(p, x, a) var dest = skipTypes(typ, typedescPtrs) var r = rdLoc(a) var nilCheck: Rope = nil var t = skipTypes(a.t, abstractInst) while t.kind in {tyVar, tyPtr, tyRef}: if t.kind != tyVar: nilCheck = r if t.kind != tyVar or not p.module.compileToCpp: r = rfmt(nil, "(*$1)", r) t = skipTypes(t.lastSon, typedescInst) if not p.module.compileToCpp: while t.kind == tyObject and t.sons[0] != nil: add(r, ~".Sup") t = skipTypes(t.sons[0], skipPtrs) if isObjLackingTypeField(t): globalError(x.info, errGenerated, "no 'of' operator available for pure objects") if nilCheck != nil: r = rfmt(p.module, "(($1) && ($2))", nilCheck, genOfHelper(p, dest, r)) else: r = rfmt(p.module, "($1)", genOfHelper(p, dest, r)) putIntoDest(p, d, getSysType(tyBool), r, a.s) proc genOf(p: BProc, n: PNode, d: var TLoc) = genOf(p, n.sons[1], n.sons[2].typ, d) proc genRepr(p: BProc, e: PNode, d: var TLoc) = var a: TLoc initLocExpr(p, e.sons[1], a) var t = skipTypes(e.sons[1].typ, abstractVarRange) case t.kind of tyInt..tyInt64, tyUInt..tyUInt64: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprInt((NI64)$1)", [rdLoc(a)]), a.s) of tyFloat..tyFloat128: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprFloat($1)", [rdLoc(a)]), a.s) of tyBool: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprBool($1)", [rdLoc(a)]), a.s) of tyChar: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprChar($1)", [rdLoc(a)]), a.s) of tyEnum, tyOrdinal: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprEnum((NI)$1, $2)", [ rdLoc(a), genTypeInfo(p.module, t)]), a.s) of tyString: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprStr($1)", [rdLoc(a)]), a.s) of tySet: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprSet($1, $2)", [ addrLoc(a), genTypeInfo(p.module, t)]), a.s) of tyOpenArray, tyVarargs: var b: TLoc case a.t.kind of tyOpenArray, tyVarargs: putIntoDest(p, b, e.typ, "$1, $1Len_0" % [rdLoc(a)], a.s) of tyString, tySequence: putIntoDest(p, b, e.typ, "$1->data, $1->$2" % [rdLoc(a), lenField(p)], a.s) of tyArray: putIntoDest(p, b, e.typ, "$1, $2" % [rdLoc(a), rope(lengthOrd(a.t))], a.s) else: internalError(e.sons[0].info, "genRepr()") putIntoDest(p, d, e.typ, ropecg(p.module, "#reprOpenArray($1, $2)", [rdLoc(b), genTypeInfo(p.module, elemType(t))]), a.s) of tyCString, tyArray, tyRef, tyPtr, tyPointer, tyNil, tySequence: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprAny($1, $2)", [ rdLoc(a), genTypeInfo(p.module, t)]), a.s) of tyEmpty, tyVoid: localError(e.info, "'repr' doesn't support 'void' type") else: putIntoDest(p, d, e.typ, ropecg(p.module, "#reprAny($1, $2)", [addrLoc(a), genTypeInfo(p.module, t)]), a.s) gcUsage(e) proc genGetTypeInfo(p: BProc, e: PNode, d: var TLoc) = let t = e.sons[1].typ putIntoDest(p, d, e.typ, genTypeInfo(p.module, t)) proc genDollar(p: BProc, n: PNode, d: var TLoc, frmt: string) = var a: TLoc initLocExpr(p, n.sons[1], a) a.r = ropecg(p.module, frmt, [rdLoc(a)]) if d.k == locNone: getTemp(p, n.typ, d) genAssignment(p, d, a, {}) gcUsage(n) proc genArrayLen(p: BProc, e: PNode, d: var TLoc, op: TMagic) = var a = e.sons[1] if a.kind == nkHiddenAddr: a = a.sons[0] var typ = skipTypes(a.typ, abstractVar + tyUserTypeClasses) case typ.kind of tyOpenArray, tyVarargs: if op == mHigh: unaryExpr(p, e, d, "($1Len_0-1)") else: unaryExpr(p, e, d, "$1Len_0") of tyCString: useStringh(p.module) if op == mHigh: unaryExpr(p, e, d, "($1 ? (strlen($1)-1) : -1)") else: unaryExpr(p, e, d, "($1 ? strlen($1) : 0)") of tyString, tySequence: if not p.module.compileToCpp: if op == mHigh: unaryExpr(p, e, d, "($1 ? ($1->Sup.len-1) : -1)") else: unaryExpr(p, e, d, "($1 ? $1->Sup.len : 0)") else: if op == mHigh: unaryExpr(p, e, d, "($1 ? ($1->len-1) : -1)") else: unaryExpr(p, e, d, "($1 ? $1->len : 0)") of tyArray: # YYY: length(sideeffect) is optimized away incorrectly? if op == mHigh: putIntoDest(p, d, e.typ, rope(lastOrd(typ))) else: putIntoDest(p, d, e.typ, rope(lengthOrd(typ))) else: internalError(e.info, "genArrayLen()") proc genSetLengthSeq(p: BProc, e: PNode, d: var TLoc) = var a, b: TLoc assert(d.k == locNone) var x = e.sons[1] if x.kind in {nkAddr, nkHiddenAddr}: x = x[0] initLocExpr(p, x, a) initLocExpr(p, e.sons[2], b) let t = skipTypes(e.sons[1].typ, {tyVar}) let setLenPattern = if not p.module.compileToCpp: "$1 = ($3) #setLengthSeq(&($1)->Sup, sizeof($4), $2);$n" else: "$1 = ($3) #setLengthSeq($1, sizeof($4), $2);$n" lineCg(p, cpsStmts, setLenPattern, [ rdLoc(a), rdLoc(b), getTypeDesc(p.module, t), getTypeDesc(p.module, t.skipTypes(abstractInst).sons[0])]) gcUsage(e) proc genSetLengthStr(p: BProc, e: PNode, d: var TLoc) = binaryStmt(p, e, d, "$1 = #setLengthStr($1, $2);$n") gcUsage(e) proc genSwap(p: BProc, e: PNode, d: var TLoc) = # swap(a, b) --> # temp = a # a = b # b = temp var a, b, tmp: TLoc getTemp(p, skipTypes(e.sons[1].typ, abstractVar), tmp) initLocExpr(p, e.sons[1], a) # eval a initLocExpr(p, e.sons[2], b) # eval b genAssignment(p, tmp, a, {}) genAssignment(p, a, b, {}) genAssignment(p, b, tmp, {}) proc rdSetElemLoc(a: TLoc, setType: PType): Rope = # read a location of an set element; it may need a subtraction operation # before the set operation result = rdCharLoc(a) assert(setType.kind == tySet) if firstOrd(setType) != 0: result = "($1- $2)" % [result, rope(firstOrd(setType))] proc fewCmps(s: PNode): bool = # this function estimates whether it is better to emit code # for constructing the set or generating a bunch of comparisons directly if s.kind != nkCurly: internalError(s.info, "fewCmps") if (getSize(s.typ) <= platform.intSize) and (nfAllConst in s.flags): result = false # it is better to emit the set generation code elif elemType(s.typ).kind in {tyInt, tyInt16..tyInt64}: result = true # better not emit the set if int is basetype! else: result = sonsLen(s) <= 8 # 8 seems to be a good value proc binaryExprIn(p: BProc, e: PNode, a, b, d: var TLoc, frmt: string) = putIntoDest(p, d, e.typ, frmt % [rdLoc(a), rdSetElemLoc(b, a.t)]) proc genInExprAux(p: BProc, e: PNode, a, b, d: var TLoc) = case int(getSize(skipTypes(e.sons[1].typ, abstractVar))) of 1: binaryExprIn(p, e, a, b, d, "(($1 &(1U<<((NU)($2)&7U)))!=0)") of 2: binaryExprIn(p, e, a, b, d, "(($1 &(1U<<((NU)($2)&15U)))!=0)") of 4: binaryExprIn(p, e, a, b, d, "(($1 &(1U<<((NU)($2)&31U)))!=0)") of 8: binaryExprIn(p, e, a, b, d, "(($1 &((NU64)1<<((NU)($2)&63U)))!=0)") else: binaryExprIn(p, e, a, b, d, "(($1[(NU)($2)>>3] &(1U<<((NU)($2)&7U)))!=0)") proc binaryStmtInExcl(p: BProc, e: PNode, d: var TLoc, frmt: string) = var a, b: TLoc assert(d.k == locNone) initLocExpr(p, e.sons[1], a) initLocExpr(p, e.sons[2], b) lineF(p, cpsStmts, frmt, [rdLoc(a), rdSetElemLoc(b, a.t)]) proc genInOp(p: BProc, e: PNode, d: var TLoc) = var a, b, x, y: TLoc if (e.sons[1].kind == nkCurly) and fewCmps(e.sons[1]): # a set constructor but not a constant set: # do not emit the set, but generate a bunch of comparisons; and if we do # so, we skip the unnecessary range check: This is a semantical extension # that code now relies on. :-/ XXX let ea = if e.sons[2].kind in {nkChckRange, nkChckRange64}: e.sons[2].sons[0] else: e.sons[2] initLocExpr(p, ea, a) initLoc(b, locExpr, e.typ, OnUnknown) b.r = rope("(") var length = sonsLen(e.sons[1]) for i in countup(0, length - 1): if e.sons[1].sons[i].kind == nkRange: initLocExpr(p, e.sons[1].sons[i].sons[0], x) initLocExpr(p, e.sons[1].sons[i].sons[1], y) addf(b.r, "$1 >= $2 && $1 <= $3", [rdCharLoc(a), rdCharLoc(x), rdCharLoc(y)]) else: initLocExpr(p, e.sons[1].sons[i], x) addf(b.r, "$1 == $2", [rdCharLoc(a), rdCharLoc(x)]) if i < length - 1: add(b.r, " || ") add(b.r, ")") putIntoDest(p, d, e.typ, b.r) else: assert(e.sons[1].typ != nil) assert(e.sons[2].typ != nil) initLocExpr(p, e.sons[1], a) initLocExpr(p, e.sons[2], b) genInExprAux(p, e, a, b, d) proc genSetOp(p: BProc, e: PNode, d: var TLoc, op: TMagic) = const lookupOpr: array[mLeSet..mSymDiffSet, string] = [ "for ($1 = 0; $1 < $2; $1++) { $n" & " $3 = (($4[$1] & ~ $5[$1]) == 0);$n" & " if (!$3) break;}$n", "for ($1 = 0; $1 < $2; $1++) { $n" & " $3 = (($4[$1] & ~ $5[$1]) == 0);$n" & " if (!$3) break;}$n" & "if ($3) $3 = (memcmp($4, $5, $2) != 0);$n", "&", "|", "& ~", "^"] var a, b, i: TLoc var setType = skipTypes(e.sons[1].typ, abstractVar) var size = int(getSize(setType)) case size of 1, 2, 4, 8: case op of mIncl: var ts = "NU" & $(size * 8) binaryStmtInExcl(p, e, d, "$1 |= ((" & ts & ")1)<<(($2)%(sizeof(" & ts & ")*8));$n") of mExcl: var ts = "NU" & $(size * 8) binaryStmtInExcl(p, e, d, "$1 &= ~(((" & ts & ")1) << (($2) % (sizeof(" & ts & ")*8)));$n") of mCard: if size <= 4: unaryExprChar(p, e, d, "#countBits32($1)") else: unaryExprChar(p, e, d, "#countBits64($1)") of mLtSet: binaryExprChar(p, e, d, "(($1 & ~ $2 ==0)&&($1 != $2))") of mLeSet: binaryExprChar(p, e, d, "(($1 & ~ $2)==0)") of mEqSet: binaryExpr(p, e, d, "($1 == $2)") of mMulSet: binaryExpr(p, e, d, "($1 & $2)") of mPlusSet: binaryExpr(p, e, d, "($1 | $2)") of mMinusSet: binaryExpr(p, e, d, "($1 & ~ $2)") of mSymDiffSet: binaryExpr(p, e, d, "($1 ^ $2)") of mInSet: genInOp(p, e, d) else: internalError(e.info, "genSetOp()") else: case op of mIncl: binaryStmtInExcl(p, e, d, "$1[(NU)($2)>>3] |=(1U<<($2&7U));$n") of mExcl: binaryStmtInExcl(p, e, d, "$1[(NU)($2)>>3] &= ~(1U<<($2&7U));$n") of mCard: unaryExprChar(p, e, d, "#cardSet($1, " & $size & ')') of mLtSet, mLeSet: getTemp(p, getSysType(tyInt), i) # our counter initLocExpr(p, e.sons[1], a) initLocExpr(p, e.sons[2], b) if d.k == locNone: getTemp(p, getSysType(tyBool), d) lineF(p, cpsStmts, lookupOpr[op], [rdLoc(i), rope(size), rdLoc(d), rdLoc(a), rdLoc(b)]) of mEqSet: useStringh(p.module) binaryExprChar(p, e, d, "(memcmp($1, $2, " & $(size) & ")==0)") of mMulSet, mPlusSet, mMinusSet, mSymDiffSet: # we inline the simple for loop for better code generation: getTemp(p, getSysType(tyInt), i) # our counter initLocExpr(p, e.sons[1], a) initLocExpr(p, e.sons[2], b) if d.k == locNone: getTemp(p, a.t, d) lineF(p, cpsStmts, "for ($1 = 0; $1 < $2; $1++) $n" & " $3[$1] = $4[$1] $6 $5[$1];$n", [ rdLoc(i), rope(size), rdLoc(d), rdLoc(a), rdLoc(b), rope(lookupOpr[op])]) of mInSet: genInOp(p, e, d) else: internalError(e.info, "genSetOp") proc genOrd(p: BProc, e: PNode, d: var TLoc) = unaryExprChar(p, e, d, "$1") proc genSomeCast(p: BProc, e: PNode, d: var TLoc) = const ValueTypes = {tyTuple, tyObject, tyArray, tyOpenArray, tyVarargs} # we use whatever C gives us. Except if we have a value-type, we need to go # through its address: var a: TLoc initLocExpr(p, e.sons[1], a) let etyp = skipTypes(e.typ, abstractRange) if etyp.kind in ValueTypes and lfIndirect notin a.flags: putIntoDest(p, d, e.typ, "(*($1*) ($2))" % [getTypeDesc(p.module, e.typ), addrLoc(a)], a.s) elif etyp.kind == tyProc and etyp.callConv == ccClosure: putIntoDest(p, d, e.typ, "(($1) ($2))" % [getClosureType(p.module, etyp, clHalfWithEnv), rdCharLoc(a)], a.s) else: putIntoDest(p, d, e.typ, "(($1) ($2))" % [getTypeDesc(p.module, e.typ), rdCharLoc(a)], a.s) proc genCast(p: BProc, e: PNode, d: var TLoc) = const ValueTypes = {tyFloat..tyFloat128, tyTuple, tyObject, tyArray} let destt = skipTypes(e.typ, abstractRange) srct = skipTypes(e.sons[1].typ, abstractRange) if destt.kind in ValueTypes or srct.kind in ValueTypes: # 'cast' and some float type involved? --> use a union. inc(p.labels) var lbl = p.labels.rope var tmp: TLoc tmp.r = "LOC$1.source" % [lbl] linefmt(p, cpsLocals, "union { $1 source; $2 dest; } LOC$3;$n", getTypeDesc(p.module, e.sons[1].typ), getTypeDesc(p.module, e.typ), lbl) tmp.k = locExpr tmp.t = srct tmp.s = OnStack tmp.flags = {} expr(p, e.sons[1], tmp) putIntoDest(p, d, e.typ, "LOC$#.dest" % [lbl], tmp.s) else: # I prefer the shorter cast version for pointer types -> generate less # C code; plus it's the right thing to do for closures: genSomeCast(p, e, d) proc genRangeChck(p: BProc, n: PNode, d: var TLoc, magic: string) = var a: TLoc var dest = skipTypes(n.typ, abstractVar) # range checks for unsigned turned out to be buggy and annoying: if optRangeCheck notin p.options or dest.skipTypes({tyRange}).kind in {tyUInt..tyUInt64}: initLocExpr(p, n.sons[0], a) putIntoDest(p, d, n.typ, "(($1) ($2))" % [getTypeDesc(p.module, dest), rdCharLoc(a)], a.s) else: initLocExpr(p, n.sons[0], a) putIntoDest(p, d, dest, ropecg(p.module, "(($1)#$5($2, $3, $4))", [ getTypeDesc(p.module, dest), rdCharLoc(a), genLiteral(p, n.sons[1], dest), genLiteral(p, n.sons[2], dest), rope(magic)]), a.s) proc genConv(p: BProc, e: PNode, d: var TLoc) = let destType = e.typ.skipTypes({tyVar, tyGenericInst, tyAlias}) if compareTypes(destType, e.sons[1].typ, dcEqIgnoreDistinct): expr(p, e.sons[1], d) else: genSomeCast(p, e, d) proc convStrToCStr(p: BProc, n: PNode, d: var TLoc) = var a: TLoc initLocExpr(p, n.sons[0], a) putIntoDest(p, d, skipTypes(n.typ, abstractVar), "$1->data" % [rdLoc(a)], a.s) proc convCStrToStr(p: BProc, n: PNode, d: var TLoc) = var a: TLoc initLocExpr(p, n.sons[0], a) putIntoDest(p, d, skipTypes(n.typ, abstractVar), ropecg(p.module, "#cstrToNimstr($1)", [rdLoc(a)]), a.s) gcUsage(n) proc genStrEquals(p: BProc, e: PNode, d: var TLoc) = var x: TLoc var a = e.sons[1] var b = e.sons[2] if (a.kind == nkNilLit) or (b.kind == nkNilLit): binaryExpr(p, e, d, "($1 == $2)") elif (a.kind in {nkStrLit..nkTripleStrLit}) and (a.strVal == ""): initLocExpr(p, e.sons[2], x) putIntoDest(p, d, e.typ, rfmt(nil, "(($1) && ($1)->$2 == 0)", rdLoc(x), lenField(p))) elif (b.kind in {nkStrLit..nkTripleStrLit}) and (b.strVal == ""): initLocExpr(p, e.sons[1], x) putIntoDest(p, d, e.typ, rfmt(nil, "(($1) && ($1)->$2 == 0)", rdLoc(x), lenField(p))) else: binaryExpr(p, e, d, "#eqStrings($1, $2)") proc binaryFloatArith(p: BProc, e: PNode, d: var TLoc, m: TMagic) = if {optNaNCheck, optInfCheck} * p.options != {}: const opr: array[mAddF64..mDivF64, string] = ["+", "-", "*", "/"] var a, b: TLoc assert(e.sons[1].typ != nil) assert(e.sons[2].typ != nil) initLocExpr(p, e.sons[1], a) initLocExpr(p, e.sons[2], b) putIntoDest(p, d, e.typ, rfmt(nil, "(($4)($2) $1 ($4)($3))", rope(opr[m]), rdLoc(a), rdLoc(b), getSimpleTypeDesc(p.module, e[1].typ))) if optNaNCheck in p.options: linefmt(p, cpsStmts, "#nanCheck($1);$n", rdLoc(d)) if optInfCheck in p.options: linefmt(p, cpsStmts, "#infCheck($1);$n", rdLoc(d)) else: binaryArith(p, e, d, m) proc genMagicExpr(p: BProc, e: PNode, d: var TLoc, op: TMagic) = case op of mOr, mAnd: genAndOr(p, e, d, op) of mNot..mToBiggestInt: unaryArith(p, e, d, op) of mUnaryMinusI..mAbsI: unaryArithOverflow(p, e, d, op) of mAddF64..mDivF64: binaryFloatArith(p, e, d, op) of mShrI..mXor: binaryArith(p, e, d, op) of mEqProc: genEqProc(p, e, d) of mAddI..mPred: binaryArithOverflow(p, e, d, op) of mRepr: genRepr(p, e, d) of mGetTypeInfo: genGetTypeInfo(p, e, d) of mSwap: genSwap(p, e, d) of mUnaryLt: if optOverflowCheck notin p.options: unaryExpr(p, e, d, "($1 - 1)") else: unaryExpr(p, e, d, "#subInt($1, 1)") of mInc, mDec: const opr: array[mInc..mDec, string] = ["$1 += $2;$n", "$1 -= $2;$n"] const fun64: array[mInc..mDec, string] = ["$# = #addInt64($#, $#);$n", "$# = #subInt64($#, $#);$n"] const fun: array[mInc..mDec, string] = ["$# = #addInt($#, $#);$n", "$# = #subInt($#, $#);$n"] let underlying = skipTypes(e.sons[1].typ, {tyGenericInst, tyAlias, tyVar, tyRange}) if optOverflowCheck notin p.options or underlying.kind in {tyUInt..tyUInt64}: binaryStmt(p, e, d, opr[op]) else: var a, b: TLoc assert(e.sons[1].typ != nil) assert(e.sons[2].typ != nil) initLocExpr(p, e.sons[1], a) initLocExpr(p, e.sons[2], b) let ranged = skipTypes(e.sons[1].typ, {tyGenericInst, tyAlias, tyVar}) let res = binaryArithOverflowRaw(p, ranged, a, b, if underlying.kind == tyInt64: fun64[op] else: fun[op]) putIntoDest(p, a, ranged, "($#)($#)" % [ getTypeDesc(p.module, ranged), res]) of mConStrStr: genStrConcat(p, e, d) of mAppendStrCh: binaryStmt(p, e, d, "$1 = #addChar($1, $2);$n") of mAppendStrStr: genStrAppend(p, e, d) of mAppendSeqElem: genSeqElemAppend(p, e, d) of mEqStr: genStrEquals(p, e, d) of mLeStr: binaryExpr(p, e, d, "(#cmpStrings($1, $2) <= 0)") of mLtStr: binaryExpr(p, e, d, "(#cmpStrings($1, $2) < 0)") of mIsNil: genIsNil(p, e, d) of mIntToStr: genDollar(p, e, d, "#nimIntToStr($1)") of mInt64ToStr: genDollar(p, e, d, "#nimInt64ToStr($1)") of mBoolToStr: genDollar(p, e, d, "#nimBoolToStr($1)") of mCharToStr: genDollar(p, e, d, "#nimCharToStr($1)") of mFloatToStr: genDollar(p, e, d, "#nimFloatToStr($1)") of mCStrToStr: genDollar(p, e, d, "#cstrToNimstr($1)") of mStrToStr: expr(p, e.sons[1], d) of mEnumToStr: genRepr(p, e, d) of mOf: genOf(p, e, d) of mNew: genNew(p, e) of mNewFinalize: genNewFinalize(p, e) of mNewSeq: genNewSeq(p, e) of mNewSeqOfCap: genNewSeqOfCap(p, e, d) of mSizeOf: let t = e.sons[1].typ.skipTypes({tyTypeDesc}) putIntoDest(p, d, e.typ, "((NI)sizeof($1))" % [getTypeDesc(p.module, t)]) of mChr: genSomeCast(p, e, d) of mOrd: genOrd(p, e, d) of mLengthArray, mHigh, mLengthStr, mLengthSeq, mLengthOpenArray: genArrayLen(p, e, d, op) of mXLenStr, mXLenSeq: if not p.module.compileToCpp: unaryExpr(p, e, d, "($1->Sup.len)") else: unaryExpr(p, e, d, "$1->len") of mGCref: unaryStmt(p, e, d, "#nimGCref($1);$n") of mGCunref: unaryStmt(p, e, d, "#nimGCunref($1);$n") of mSetLengthStr: genSetLengthStr(p, e, d) of mSetLengthSeq: genSetLengthSeq(p, e, d) of mIncl, mExcl, mCard, mLtSet, mLeSet, mEqSet, mMulSet, mPlusSet, mMinusSet, mInSet: genSetOp(p, e, d, op) of mNewString, mNewStringOfCap, mCopyStr, mCopyStrLast, mExit, mParseBiggestFloat: var opr = e.sons[0].sym if lfNoDecl notin opr.loc.flags: discard cgsym(p.module, $opr.loc.r) genCall(p, e, d) of mReset: genReset(p, e) of mEcho: genEcho(p, e[1].skipConv) of mArrToSeq: genArrToSeq(p, e, d) of mNLen..mNError, mSlurp..mQuoteAst: localError(e.info, errXMustBeCompileTime, e.sons[0].sym.name.s) of mSpawn: let n = lowerings.wrapProcForSpawn(p.module.module, e, e.typ, nil, nil) expr(p, n, d) of mParallel: let n = semparallel.liftParallel(p.module.module, e) expr(p, n, d) of mDeepCopy: var a, b: TLoc let x = if e[1].kind in {nkAddr, nkHiddenAddr}: e[1][0] else: e[1] initLocExpr(p, x, a) initLocExpr(p, e.sons[2], b) genDeepCopy(p, a, b) of mDotDot, mEqCString: genCall(p, e, d) else: internalError(e.info, "genMagicExpr: " & $op) proc genSetConstr(p: BProc, e: PNode, d: var TLoc) = # example: { a..b, c, d, e, f..g } # we have to emit an expression of the form: # memset(tmp, 0, sizeof(tmp)); inclRange(tmp, a, b); incl(tmp, c); # incl(tmp, d); incl(tmp, e); inclRange(tmp, f, g); var a, b, idx: TLoc if nfAllConst in e.flags: putIntoDest(p, d, e.typ, genSetNode(p, e)) else: if d.k == locNone: getTemp(p, e.typ, d) if getSize(e.typ) > 8: # big set: useStringh(p.module) lineF(p, cpsStmts, "memset($1, 0, sizeof($1));$n", [rdLoc(d)]) for i in countup(0, sonsLen(e) - 1): if e.sons[i].kind == nkRange: getTemp(p, getSysType(tyInt), idx) # our counter initLocExpr(p, e.sons[i].sons[0], a) initLocExpr(p, e.sons[i].sons[1], b) lineF(p, cpsStmts, "for ($1 = $3; $1 <= $4; $1++) $n" & "$2[(NU)($1)>>3] |=(1U<<((NU)($1)&7U));$n", [rdLoc(idx), rdLoc(d), rdSetElemLoc(a, e.typ), rdSetElemLoc(b, e.typ)]) else: initLocExpr(p, e.sons[i], a) lineF(p, cpsStmts, "$1[(NU)($2)>>3] |=(1U<<((NU)($2)&7U));$n", [rdLoc(d), rdSetElemLoc(a, e.typ)]) else: # small set var ts = "NU" & $(getSize(e.typ) * 8) lineF(p, cpsStmts, "$1 = 0;$n", [rdLoc(d)]) for i in countup(0, sonsLen(e) - 1): if e.sons[i].kind == nkRange: getTemp(p, getSysType(tyInt), idx) # our counter initLocExpr(p, e.sons[i].sons[0], a) initLocExpr(p, e.sons[i].sons[1], b) lineF(p, cpsStmts, "for ($1 = $3; $1 <= $4; $1++) $n" & "$2 |=((" & ts & ")(1)<<(($1)%(sizeof(" & ts & ")*8)));$n", [ rdLoc(idx), rdLoc(d), rdSetElemLoc(a, e.typ), rdSetElemLoc(b, e.typ)]) else: initLocExpr(p, e.sons[i], a) lineF(p, cpsStmts, "$1 |=((" & ts & ")(1)<<(($2)%(sizeof(" & ts & ")*8)));$n", [rdLoc(d), rdSetElemLoc(a, e.typ)]) proc genTupleConstr(p: BProc, n: PNode, d: var TLoc) = var rec: TLoc if not handleConstExpr(p, n, d): let t = n.typ discard getTypeDesc(p.module, t) # so that any fields are initialized if d.k == locNone: getTemp(p, t, d) for i in countup(0, sonsLen(n) - 1): var it = n.sons[i] if it.kind == nkExprColonExpr: it = it.sons[1] initLoc(rec, locExpr, it.typ, d.s) rec.r = "$1.Field$2" % [rdLoc(d), rope(i)] expr(p, it, rec) proc isConstClosure(n: PNode): bool {.inline.} = result = n.sons[0].kind == nkSym and isRoutine(n.sons[0].sym) and n.sons[1].kind == nkNilLit proc genClosure(p: BProc, n: PNode, d: var TLoc) = assert n.kind == nkClosure if isConstClosure(n): inc(p.module.labels) var tmp = "CNSTCLOSURE" & rope(p.module.labels) addf(p.module.s[cfsData], "static NIM_CONST $1 $2 = $3;$n", [getTypeDesc(p.module, n.typ), tmp, genConstExpr(p, n)]) putIntoDest(p, d, n.typ, tmp, OnStatic) else: var tmp, a, b: TLoc initLocExpr(p, n.sons[0], a) initLocExpr(p, n.sons[1], b) if n.sons[0].skipConv.kind == nkClosure: internalError(n.info, "closure to closure created") # tasyncawait.nim breaks with this optimization: when false: if d.k != locNone: linefmt(p, cpsStmts, "$1.ClP_0 = $2; $1.ClE_0 = $3;$n", d.rdLoc, a.rdLoc, b.rdLoc) else: getTemp(p, n.typ, tmp) linefmt(p, cpsStmts, "$1.ClP_0 = $2; $1.ClE_0 = $3;$n", tmp.rdLoc, a.rdLoc, b.rdLoc) putLocIntoDest(p, d, tmp) proc genArrayConstr(p: BProc, n: PNode, d: var TLoc) = var arr: TLoc if not handleConstExpr(p, n, d): if d.k == locNone: getTemp(p, n.typ, d) for i in countup(0, sonsLen(n) - 1): initLoc(arr, locExpr, elemType(skipTypes(n.typ, abstractInst)), d.s) arr.r = "$1[$2]" % [rdLoc(d), intLiteral(i)] expr(p, n.sons[i], arr) proc genComplexConst(p: BProc, sym: PSym, d: var TLoc) = requestConstImpl(p, sym) assert((sym.loc.r != nil) and (sym.loc.t != nil)) putLocIntoDest(p, d, sym.loc) proc genStmtListExpr(p: BProc, n: PNode, d: var TLoc) = var length = sonsLen(n) for i in countup(0, length - 2): genStmts(p, n.sons[i]) if length > 0: expr(p, n.sons[length - 1], d) proc upConv(p: BProc, n: PNode, d: var TLoc) = var a: TLoc initLocExpr(p, n.sons[0], a) let dest = skipTypes(n.typ, abstractPtrs) if optObjCheck in p.options and not isObjLackingTypeField(dest): var r = rdLoc(a) var nilCheck: Rope = nil var t = skipTypes(a.t, abstractInst) while t.kind in {tyVar, tyPtr, tyRef}: if t.kind != tyVar: nilCheck = r if t.kind != tyVar or not p.module.compileToCpp: r = "(*$1)" % [r] t = skipTypes(t.lastSon, abstractInst) if not p.module.compileToCpp: while t.kind == tyObject and t.sons[0] != nil: add(r, ".Sup") t = skipTypes(t.sons[0], skipPtrs) if nilCheck != nil: linefmt(p, cpsStmts, "if ($1) #chckObj($2.m_type, $3);$n", nilCheck, r, genTypeInfo(p.module, dest)) else: linefmt(p, cpsStmts, "#chckObj($1.m_type, $2);$n", r, genTypeInfo(p.module, dest)) if n.sons[0].typ.kind != tyObject: putIntoDest(p, d, n.typ, "(($1) ($2))" % [getTypeDesc(p.module, n.typ), rdLoc(a)], a.s) else: putIntoDest(p, d, n.typ, "(*($1*) ($2))" % [getTypeDesc(p.module, dest), addrLoc(a)], a.s) proc downConv(p: BProc, n: PNode, d: var TLoc) = if p.module.compileToCpp: expr(p, n.sons[0], d) # downcast does C++ for us else: var dest = skipTypes(n.typ, abstractPtrs) var arg = n.sons[0] while arg.kind == nkObjDownConv: arg = arg.sons[0] var src = skipTypes(arg.typ, abstractPtrs) var a: TLoc initLocExpr(p, arg, a) var r = rdLoc(a) let isRef = skipTypes(arg.typ, abstractInst).kind in {tyRef, tyPtr, tyVar} if isRef: add(r, "->Sup") else: add(r, ".Sup") for i in countup(2, abs(inheritanceDiff(dest, src))): add(r, ".Sup") if isRef: # it can happen that we end up generating '&&x->Sup' here, so we pack # the '&x->Sup' into a temporary and then those address is taken # (see bug #837). However sometimes using a temporary is not correct: # init(TFigure(my)) # where it is passed to a 'var TFigure'. We test # this by ensuring the destination is also a pointer: if d.k == locNone and skipTypes(n.typ, abstractInst).kind in {tyRef, tyPtr, tyVar}: getTemp(p, n.typ, d) linefmt(p, cpsStmts, "$1 = &$2;$n", rdLoc(d), r) else: r = "&" & r putIntoDest(p, d, n.typ, r, a.s) else: putIntoDest(p, d, n.typ, r, a.s) proc exprComplexConst(p: BProc, n: PNode, d: var TLoc) = let t = n.typ discard getTypeDesc(p.module, t) # so that any fields are initialized let id = nodeTableTestOrSet(p.module.dataCache, n, p.module.labels) let tmp = p.module.tmpBase & rope(id) if id == p.module.labels: # expression not found in the cache: inc(p.module.labels) addf(p.module.s[cfsData], "NIM_CONST $1 $2 = $3;$n", [getTypeDesc(p.module, t), tmp, genConstExpr(p, n)]) if d.k == locNone: fillLoc(d, locData, t, tmp, OnStatic) else: putDataIntoDest(p, d, t, tmp) # This fixes bug #4551, but we really need better dataflow # analysis to make this 100% safe. if t.kind notin {tySequence, tyString}: d.s = OnStatic proc expr(p: BProc, n: PNode, d: var TLoc) = p.currLineInfo = n.info case n.kind of nkSym: var sym = n.sym case sym.kind of skMethod: if {sfDispatcher, sfForward} * sym.flags != {}: # we cannot produce code for the dispatcher yet: fillProcLoc(p.module, sym) genProcPrototype(p.module, sym) else: genProc(p.module, sym) putLocIntoDest(p, d, sym.loc) of skProc, skConverter, skIterator: #if sym.kind == skIterator: # echo renderTree(sym.getBody, {renderIds}) if sfCompileTime in sym.flags: localError(n.info, "request to generate code for .compileTime proc: " & sym.name.s) genProc(p.module, sym) if sym.loc.r == nil or sym.loc.t == nil: internalError(n.info, "expr: proc not init " & sym.name.s) putLocIntoDest(p, d, sym.loc) of skConst: if isSimpleConst(sym.typ): putIntoDest(p, d, n.typ, genLiteral(p, sym.ast, sym.typ), OnStatic) else: genComplexConst(p, sym, d) of skEnumField: putIntoDest(p, d, n.typ, rope(sym.position)) of skVar, skForVar, skResult, skLet: if {sfGlobal, sfThread} * sym.flags != {}: genVarPrototype(p.module, sym) if sym.loc.r == nil or sym.loc.t == nil: #echo "FAILED FOR PRCO ", p.prc.name.s #echo renderTree(p.prc.ast, {renderIds}) internalError n.info, "expr: var not init " & sym.name.s & "_" & $sym.id if sfThread in sym.flags: accessThreadLocalVar(p, sym) if emulatedThreadVars(): putIntoDest(p, d, sym.loc.t, "NimTV_->" & sym.loc.r) else: putLocIntoDest(p, d, sym.loc) else: putLocIntoDest(p, d, sym.loc) of skTemp: if sym.loc.r == nil or sym.loc.t == nil: #echo "FAILED FOR PRCO ", p.prc.name.s #echo renderTree(p.prc.ast, {renderIds}) internalError(n.info, "expr: temp not init " & sym.name.s & "_" & $sym.id) putLocIntoDest(p, d, sym.loc) of skParam: if sym.loc.r == nil or sym.loc.t == nil: # echo "FAILED FOR PRCO ", p.prc.name.s # debug p.prc.typ.n # echo renderTree(p.prc.ast, {renderIds}) internalError(n.info, "expr: param not init " & sym.name.s & "_" & $sym.id) putLocIntoDest(p, d, sym.loc) else: internalError(n.info, "expr(" & $sym.kind & "); unknown symbol") of nkNilLit: if not isEmptyType(n.typ): putIntoDest(p, d, n.typ, genLiteral(p, n)) of nkStrLit..nkTripleStrLit: putDataIntoDest(p, d, n.typ, genLiteral(p, n)) of nkIntLit..nkUInt64Lit, nkFloatLit..nkFloat128Lit, nkCharLit: putIntoDest(p, d, n.typ, genLiteral(p, n)) of nkCall, nkHiddenCallConv, nkInfix, nkPrefix, nkPostfix, nkCommand, nkCallStrLit: genLineDir(p, n) let op = n.sons[0] if n.typ.isNil: # discard the value: var a: TLoc if op.kind == nkSym and op.sym.magic != mNone: genMagicExpr(p, n, a, op.sym.magic) else: genCall(p, n, a) else: # load it into 'd': if op.kind == nkSym and op.sym.magic != mNone: genMagicExpr(p, n, d, op.sym.magic) else: genCall(p, n, d) of nkCurly: if isDeepConstExpr(n) and n.len != 0: putIntoDest(p, d, n.typ, genSetNode(p, n)) else: genSetConstr(p, n, d) of nkBracket: if isDeepConstExpr(n) and n.len != 0: exprComplexConst(p, n, d) elif skipTypes(n.typ, abstractVarRange).kind == tySequence: genSeqConstr(p, n, d) else: genArrayConstr(p, n, d) of nkPar: if isDeepConstExpr(n) and n.len != 0: exprComplexConst(p, n, d) else: genTupleConstr(p, n, d) of nkObjConstr: genObjConstr(p, n, d) of nkCast: genCast(p, n, d) of nkHiddenStdConv, nkHiddenSubConv, nkConv: genConv(p, n, d) of nkHiddenAddr, nkAddr: genAddr(p, n, d) of nkBracketExpr: genBracketExpr(p, n, d) of nkDerefExpr, nkHiddenDeref: genDeref(p, n, d) of nkDotExpr: genRecordField(p, n, d) of nkCheckedFieldExpr: genCheckedRecordField(p, n, d) of nkBlockExpr, nkBlockStmt: genBlock(p, n, d) of nkStmtListExpr: genStmtListExpr(p, n, d) of nkStmtList: for i in countup(0, sonsLen(n) - 1): genStmts(p, n.sons[i]) of nkIfExpr, nkIfStmt: genIf(p, n, d) of nkWhen: # This should be a "when nimvm" node. expr(p, n.sons[1].sons[0], d) of nkObjDownConv: downConv(p, n, d) of nkObjUpConv: upConv(p, n, d) of nkChckRangeF: genRangeChck(p, n, d, "chckRangeF") of nkChckRange64: genRangeChck(p, n, d, "chckRange64") of nkChckRange: genRangeChck(p, n, d, "chckRange") of nkStringToCString: convStrToCStr(p, n, d) of nkCStringToString: convCStrToStr(p, n, d) of nkLambdaKinds: var sym = n.sons[namePos].sym genProc(p.module, sym) if sym.loc.r == nil or sym.loc.t == nil: internalError(n.info, "expr: proc not init " & sym.name.s) putLocIntoDest(p, d, sym.loc) of nkClosure: genClosure(p, n, d) of nkEmpty: discard of nkWhileStmt: genWhileStmt(p, n) of nkVarSection, nkLetSection: genVarStmt(p, n) of nkConstSection: genConstStmt(p, n) of nkForStmt: internalError(n.info, "for statement not eliminated") of nkCaseStmt: genCase(p, n, d) of nkReturnStmt: genReturnStmt(p, n) of nkBreakStmt: genBreakStmt(p, n) of nkAsgn: if nfPreventCg notin n.flags: genAsgn(p, n, fastAsgn=false) of nkFastAsgn: if nfPreventCg notin n.flags: # transf is overly aggressive with 'nkFastAsgn', so we work around here. # See tests/run/tcnstseq3 for an example that would fail otherwise. genAsgn(p, n, fastAsgn=p.prc != nil) of nkDiscardStmt: if n.sons[0].kind != nkEmpty: genLineDir(p, n) var a: TLoc initLocExpr(p, n.sons[0], a) of nkAsmStmt: genAsmStmt(p, n) of nkTryStmt: if p.module.compileToCpp and optNoCppExceptions notin gGlobalOptions: genTryCpp(p, n, d) else: genTry(p, n, d) of nkRaiseStmt: genRaiseStmt(p, n) of nkTypeSection: # we have to emit the type information for object types here to support # separate compilation: genTypeSection(p.module, n) of nkCommentStmt, nkIteratorDef, nkIncludeStmt, nkImportStmt, nkImportExceptStmt, nkExportStmt, nkExportExceptStmt, nkFromStmt, nkTemplateDef, nkMacroDef: discard of nkPragma: genPragma(p, n) of nkPragmaBlock: expr(p, n.lastSon, d) of nkProcDef, nkMethodDef, nkConverterDef: if n.sons[genericParamsPos].kind == nkEmpty: var prc = n.sons[namePos].sym # due to a bug/limitation in the lambda lifting, unused inner procs # are not transformed correctly. We work around this issue (#411) here # by ensuring it's no inner proc (owner is a module): if prc.skipGenericOwner.kind == skModule and sfCompileTime notin prc.flags: if (optDeadCodeElim notin gGlobalOptions and sfDeadCodeElim notin getModule(prc).flags) or ({sfExportc, sfCompilerProc} * prc.flags == {sfExportc}) or (sfExportc in prc.flags and lfExportLib in prc.loc.flags) or (prc.kind == skMethod): # we have not only the header: if prc.getBody.kind != nkEmpty or lfDynamicLib in prc.loc.flags: genProc(p.module, prc) of nkParForStmt: genParForStmt(p, n) of nkState: genState(p, n) of nkGotoState: genGotoState(p, n) of nkBreakState: genBreakState(p, n) else: internalError(n.info, "expr(" & $n.kind & "); unknown node kind") proc genNamedConstExpr(p: BProc, n: PNode): Rope = if n.kind == nkExprColonExpr: result = genConstExpr(p, n.sons[1]) else: result = genConstExpr(p, n) proc getDefaultValue(p: BProc; typ: PType; info: TLineInfo): Rope = var t = skipTypes(typ, abstractRange-{tyTypeDesc}) case t.kind of tyBool: result = rope"NIM_FALSE" of tyEnum, tyChar, tyInt..tyInt64, tyUInt..tyUInt64: result = rope"0" of tyFloat..tyFloat128: result = rope"0.0" of tyCString, tyString, tyVar, tyPointer, tyPtr, tySequence, tyExpr, tyStmt, tyTypeDesc, tyStatic, tyRef, tyNil: result = rope"NIM_NIL" of tyProc: if t.callConv != ccClosure: result = rope"NIM_NIL" else: result = rope"{NIM_NIL, NIM_NIL}" of tyObject: if not isObjLackingTypeField(t) and not p.module.compileToCpp: result = "{{$1}}" % [genTypeInfo(p.module, t)] else: result = rope"{}" of tyArray, tyTuple: result = rope"{}" of tySet: if mapType(t) == ctArray: result = rope"{}" else: result = rope"0" else: globalError(info, "cannot create null element for: " & $t.kind) proc getNullValueAux(p: BProc; obj, cons: PNode, result: var Rope) = case obj.kind of nkRecList: for i in countup(0, sonsLen(obj) - 1): getNullValueAux(p, obj.sons[i], cons, result) of nkRecCase: getNullValueAux(p, obj.sons[0], cons, result) for i in countup(1, sonsLen(obj) - 1): getNullValueAux(p, lastSon(obj.sons[i]), cons, result) of nkSym: if not result.isNil: result.add ", " let field = obj.sym for i in 1.. 0: add(result, genNamedConstExpr(p, n.sons[length - 1])) addf(result, "}$n", []) proc genConstSeq(p: BProc, n: PNode, t: PType): Rope = var data = "{{$1, $1}" % [n.len.rope] if n.len > 0: # array part needs extra curlies: data.add(", {") for i in countup(0, n.len - 1): if i > 0: data.addf(",$n", []) data.add genConstExpr(p, n.sons[i]) data.add("}") data.add("}") result = getTempName(p.module) let base = t.skipTypes(abstractInst).sons[0] appcg(p.module, cfsData, "NIM_CONST struct {$n" & " #TGenericSeq Sup;$n" & " $1 data[$2];$n" & "} $3 = $4;$n", [ getTypeDesc(p.module, base), n.len.rope, result, data]) result = "(($1)&$2)" % [getTypeDesc(p.module, t), result] proc genConstExpr(p: BProc, n: PNode): Rope = case n.kind of nkHiddenStdConv, nkHiddenSubConv: result = genConstExpr(p, n.sons[1]) of nkCurly: var cs: TBitSet toBitSet(n, cs) result = genRawSetData(cs, int(getSize(n.typ))) of nkBracket, nkPar, nkClosure: var t = skipTypes(n.typ, abstractInst) if t.kind == tySequence: result = genConstSeq(p, n, n.typ) else: result = genConstSimpleList(p, n) of nkObjConstr: result = genConstObjConstr(p, n) else: var d: TLoc initLocExpr(p, n, d) result = rdLoc(d)