#
#
# The Nim Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# included from cgen.nim
# -------------------------- constant expressions ------------------------
proc int64Literal(i: BiggestInt): Rope =
if i > low(int64):
result = rfmt(nil, "IL64($1)", rope(i))
else:
result = ~"(IL64(-9223372036854775807) - IL64(1))"
proc uint64Literal(i: uint64): Rope = rope($i & "ULL")
proc intLiteral(i: BiggestInt): Rope =
if i > low(int32) and i <= high(int32):
result = rope(i)
elif i == low(int32):
# Nim has the same bug for the same reasons :-)
result = ~"(-2147483647 -1)"
elif i > low(int64):
result = rfmt(nil, "IL64($1)", rope(i))
else:
result = ~"(IL64(-9223372036854775807) - IL64(1))"
proc getStrLit(m: BModule, s: string): Rope =
discard cgsym(m, "TGenericSeq")
result = getTempName(m)
addf(m.s[cfsData], "STRING_LITERAL($1, $2, $3);$n",
[result, makeCString(s), rope(len(s))])
proc genLiteral(p: BProc, n: PNode, ty: PType): Rope =
if ty == nil: internalError(n.info, "genLiteral: ty is nil")
case n.kind
of nkCharLit..nkUInt64Lit:
case skipTypes(ty, abstractVarRange).kind
of tyChar, tyNil:
result = intLiteral(n.intVal)
of tyBool:
if n.intVal != 0: result = ~"NIM_TRUE"
else: result = ~"NIM_FALSE"
of tyInt64: result = int64Literal(n.intVal)
of tyUInt64: result = uint64Literal(uint64(n.intVal))
else:
result = "(($1) $2)" % [getTypeDesc(p.module,
ty), intLiteral(n.intVal)]
of nkNilLit:
let t = skipTypes(ty, abstractVarRange)
if t.kind == tyProc and t.callConv == ccClosure:
let id = nodeTableTestOrSet(p.module.dataCache, n, p.module.labels)
result = p.module.tmpBase & rope(id)
if id == p.module.labels:
# not found in cache:
inc(p.module.labels)
addf(p.module.s[cfsData],
"static NIM_CONST $1 $2 = {NIM_NIL,NIM_NIL};$n",
[getTypeDesc(p.module, ty), result])
else:
result = rope("NIM_NIL")
of nkStrLit..nkTripleStrLit:
if n.strVal.isNil:
result = ropecg(p.module, "((#NimStringDesc*) NIM_NIL)", [])
elif skipTypes(ty, abstractVarRange).kind == tyString:
let id = nodeTableTestOrSet(p.module.dataCache, n, p.module.labels)
if id == p.module.labels:
# string literal not found in the cache:
result = ropecg(p.module, "((#NimStringDesc*) &$1)",
[getStrLit(p.module, n.strVal)])
else:
result = ropecg(p.module, "((#NimStringDesc*) &$1$2)",
[p.module.tmpBase, rope(id)])
else:
result = makeCString(n.strVal)
of nkFloatLit, nkFloat64Lit:
result = rope(n.floatVal.toStrMaxPrecision)
of nkFloat32Lit:
result = rope(n.floatVal.toStrMaxPrecision("f"))
else:
internalError(n.info, "genLiteral(" & $n.kind & ')')
result = nil
proc genLiteral(p: BProc, n: PNode): Rope =
result = genLiteral(p, n, n.typ)
proc bitSetToWord(s: TBitSet, size: int): BiggestInt =
result = 0
when true:
for j in countup(0, size - 1):
if j < len(s): result = result or `shl`(ze64(s[j]), j * 8)
else:
# not needed, too complex thinking:
if CPU[platform.hostCPU].endian == CPU[targetCPU].endian:
for j in countup(0, size - 1):
if j < len(s): result = result or `shl`(Ze64(s[j]), j * 8)
else:
for j in countup(0, size - 1):
if j < len(s): result = result or `shl`(Ze64(s[j]), (Size - 1 - j) * 8)
proc genRawSetData(cs: TBitSet, size: int): Rope =
var frmt: FormatStr
if size > 8:
result = "{$n" % []
for i in countup(0, size - 1):
if i < size - 1:
# not last iteration?
if (i + 1) mod 8 == 0: frmt = "0x$1,$n"
else: frmt = "0x$1, "
else:
frmt = "0x$1}$n"
addf(result, frmt, [rope(toHex(ze64(cs[i]), 2))])
else:
result = intLiteral(bitSetToWord(cs, size))
# result := rope('0x' + ToHex(bitSetToWord(cs, size), size * 2))
proc genSetNode(p: BProc, n: PNode): Rope =
var cs: TBitSet
var size = int(getSize(n.typ))
toBitSet(n, cs)
if size > 8:
let id = nodeTableTestOrSet(p.module.dataCache, n, p.module.labels)
result = p.module.tmpBase & rope(id)
if id == p.module.labels:
# not found in cache:
inc(p.module.labels)
addf(p.module.s[cfsData], "static NIM_CONST $1 $2 = $3;$n",
[getTypeDesc(p.module, n.typ), result, genRawSetData(cs, size)])
else:
result = genRawSetData(cs, size)
proc getStorageLoc(n: PNode): TStorageLoc =
case n.kind
of nkSym:
case n.sym.kind
of skParam, skTemp:
result = OnStack
of skVar, skForVar, skResult, skLet:
if sfGlobal in n.sym.flags: result = OnHeap
else: result = OnStack
of skConst:
if sfGlobal in n.sym.flags: result = OnHeap
else: result = OnUnknown
else: result = OnUnknown
of nkDerefExpr, nkHiddenDeref:
case n.sons[0].typ.kind
of tyVar: result = OnUnknown
of tyPtr: result = OnStack
of tyRef: result = OnHeap
else: internalError(n.info, "getStorageLoc")
of nkBracketExpr, nkDotExpr, nkObjDownConv, nkObjUpConv:
result = getStorageLoc(n.sons[0])
else: result = OnUnknown
proc canMove(n: PNode): bool =
# for now we're conservative here:
if n.kind == nkBracket:
# This needs to be kept consistent with 'const' seq code
# generation!
if not isDeepConstExpr(n) or n.len == 0:
if skipTypes(n.typ, abstractVarRange).kind == tySequence:
return true
result = n.kind in nkCallKinds
#if result:
# echo n.info, " optimized ", n
# result = false
proc genRefAssign(p: BProc, dest, src: TLoc, flags: TAssignmentFlags) =
if dest.storage == OnStack or not usesNativeGC():
linefmt(p, cpsStmts, "$1 = $2;$n", rdLoc(dest), rdLoc(src))
elif dest.storage == OnHeap:
# location is on heap
# now the writer barrier is inlined for performance:
#
# if afSrcIsNotNil in flags:
# UseMagic(p.module, 'nimGCref')
# lineF(p, cpsStmts, 'nimGCref($1);$n', [rdLoc(src)])
# elif afSrcIsNil notin flags:
# UseMagic(p.module, 'nimGCref')
# lineF(p, cpsStmts, 'if ($1) nimGCref($1);$n', [rdLoc(src)])
# if afDestIsNotNil in flags:
# UseMagic(p.module, 'nimGCunref')
# lineF(p, cpsStmts, 'nimGCunref($1);$n', [rdLoc(dest)])
# elif afDestIsNil notin flags:
# UseMagic(p.module, 'nimGCunref')
# lineF(p, cpsStmts, 'if ($1) nimGCunref($1);$n', [rdLoc(dest)])
# lineF(p, cpsStmts, '$1 = $2;$n', [rdLoc(dest), rdLoc(src)])
if canFormAcycle(dest.t):
linefmt(p, cpsStmts, "#asgnRef((void**) $1, $2);$n",
addrLoc(dest), rdLoc(src))
else:
linefmt(p, cpsStmts, "#asgnRefNoCycle((void**) $1, $2);$n",
addrLoc(dest), rdLoc(src))
else:
linefmt(p, cpsStmts, "#unsureAsgnRef((void**) $1, $2);$n",
addrLoc(dest), rdLoc(src))
proc asgnComplexity(n: PNode): int =
if n != nil:
case n.kind
of nkSym: result = 1
of nkRecCase:
# 'case objects' are too difficult to inline their assignment operation:
result = 100
of nkRecList:
for t in items(n):
result += asgnComplexity(t)
else: discard
proc optAsgnLoc(a: TLoc, t: PType, field: Rope): TLoc =
assert field != nil
result.k = locField
result.storage = a.storage
result.lode = lodeTyp t
result.r = rdLoc(a) & "." & field
proc genOptAsgnTuple(p: BProc, dest, src: TLoc, flags: TAssignmentFlags) =
let newflags =
if src.storage == OnStatic:
flags + {needToCopy}
elif tfShallow in dest.t.flags:
flags - {needToCopy}
else:
flags
let t = skipTypes(dest.t, abstractInst).getUniqueType()
for i in 0 ..< t.len:
let t = t.sons[i]
let field = "Field$1" % [i.rope]
genAssignment(p, optAsgnLoc(dest, t, field),
optAsgnLoc(src, t, field), newflags)
proc genOptAsgnObject(p: BProc, dest, src: TLoc, flags: TAssignmentFlags,
t: PNode, typ: PType) =
if t == nil: return
let newflags =
if src.storage == OnStatic:
flags + {needToCopy}
elif tfShallow in dest.t.flags:
flags - {needToCopy}
else:
flags
case t.kind
of nkSym:
let field = t.sym
if field.loc.r == nil: fillObjectFields(p.module, typ)
genAssignment(p, optAsgnLoc(dest, field.typ, field.loc.r),
optAsgnLoc(src, field.typ, field.loc.r), newflags)
of nkRecList:
for child in items(t): genOptAsgnObject(p, dest, src, newflags, child, typ)
else: discard
proc genGenericAsgn(p: BProc, dest, src: TLoc, flags: TAssignmentFlags) =
# Consider:
# type TMyFastString {.shallow.} = string
# Due to the implementation of pragmas this would end up to set the
# tfShallow flag for the built-in string type too! So we check only
# here for this flag, where it is reasonably safe to do so
# (for objects, etc.):
if needToCopy notin flags or
tfShallow in skipTypes(dest.t, abstractVarRange).flags:
if dest.storage == OnStack or not usesNativeGC():
useStringh(p.module)
linefmt(p, cpsStmts,
"memcpy((void*)$1, (NIM_CONST void*)$2, sizeof($3));$n",
addrLoc(dest), addrLoc(src), rdLoc(dest))
else:
linefmt(p, cpsStmts, "#genericShallowAssign((void*)$1, (void*)$2, $3);$n",
addrLoc(dest), addrLoc(src), genTypeInfo(p.module, dest.t, dest.lode.info))
else:
linefmt(p, cpsStmts, "#genericAssign((void*)$1, (void*)$2, $3);$n",
addrLoc(dest), addrLoc(src), genTypeInfo(p.module, dest.t, dest.lode.info))
proc genAssignment(p: BProc, dest, src: TLoc, flags: TAssignmentFlags) =
# This function replaces all other methods for generating
# the assignment operation in C.
if src.t != nil and src.t.kind == tyPtr:
# little HACK to support the new 'var T' as return type:
linefmt(p, cpsStmts, "$1 = $2;$n", rdLoc(dest), rdLoc(src))
return
let ty = skipTypes(dest.t, abstractRange + tyUserTypeClasses)
case ty.kind
of tyRef:
genRefAssign(p, dest, src, flags)
of tySequence:
if (needToCopy notin flags and src.storage != OnStatic) or canMove(src.lode):
genRefAssign(p, dest, src, flags)
else:
linefmt(p, cpsStmts, "#genericSeqAssign($1, $2, $3);$n",
addrLoc(dest), rdLoc(src),
genTypeInfo(p.module, dest.t, dest.lode.info))
of tyString:
if (needToCopy notin flags and src.storage != OnStatic) or canMove(src.lode):
genRefAssign(p, dest, src, flags)
else:
if dest.storage == OnStack or not usesNativeGC():
linefmt(p, cpsStmts, "$1 = #copyString($2);$n", dest.rdLoc, src.rdLoc)
elif dest.storage == OnHeap:
# we use a temporary to care for the dreaded self assignment:
var tmp: TLoc
getTemp(p, ty, tmp)
linefmt(p, cpsStmts, "$3 = $1; $1 = #copyStringRC1($2);$n",
dest.rdLoc, src.rdLoc, tmp.rdLoc)
linefmt(p, cpsStmts, "if ($1) #nimGCunrefNoCycle($1);$n", tmp.rdLoc)
else:
linefmt(p, cpsStmts, "#unsureAsgnRef((void**) $1, #copyString($2));$n",
addrLoc(dest), rdLoc(src))
of tyProc:
if needsComplexAssignment(dest.t):
# optimize closure assignment:
let a = optAsgnLoc(dest, dest.t, "ClE_0".rope)
let b = optAsgnLoc(src, dest.t, "ClE_0".rope)
genRefAssign(p, a, b, flags)
linefmt(p, cpsStmts, "$1.ClP_0 = $2.ClP_0;$n", rdLoc(dest), rdLoc(src))
else:
linefmt(p, cpsStmts, "$1 = $2;$n", rdLoc(dest), rdLoc(src))
of tyTuple:
if needsComplexAssignment(dest.t):
if dest.t.len <= 4: genOptAsgnTuple(p, dest, src, flags)
else: genGenericAsgn(p, dest, src, flags)
else:
linefmt(p, cpsStmts, "$1 = $2;$n", rdLoc(dest), rdLoc(src))
of tyObject:
# XXX: check for subtyping?
if ty.isImportedCppType:
linefmt(p, cpsStmts, "$1 = $2;$n", rdLoc(dest), rdLoc(src))
elif not isObjLackingTypeField(ty):
genGenericAsgn(p, dest, src, flags)
elif needsComplexAssignment(ty):
if ty.sons[0].isNil and asgnComplexity(ty.n) <= 4:
discard getTypeDesc(p.module, ty)
internalAssert ty.n != nil
genOptAsgnObject(p, dest, src, flags, ty.n, ty)
else:
genGenericAsgn(p, dest, src, flags)
else:
linefmt(p, cpsStmts, "$1 = $2;$n", rdLoc(dest), rdLoc(src))
of tyArray:
if needsComplexAssignment(dest.t):
genGenericAsgn(p, dest, src, flags)
else:
useStringh(p.module)
linefmt(p, cpsStmts,
"memcpy((void*)$1, (NIM_CONST void*)$2, sizeof($3));$n",
rdLoc(dest), rdLoc(src), getTypeDesc(p.module, dest.t))
of tyOpenArray, tyVarargs:
# open arrays are always on the stack - really? What if a sequence is
# passed to an open array?
if needsComplexAssignment(dest.t):
linefmt(p, cpsStmts, # XXX: is this correct for arrays?
"#genericAssignOpenArray((void*)$1, (void*)$2, $1Len_0, $3);$n",
addrLoc(dest), addrLoc(src),
genTypeInfo(p.module, dest.t, dest.lode.info))
else:
useStringh(p.module)
linefmt(p, cpsStmts,
"memcpy((void*)$1, (NIM_CONST void*)$2, sizeof($1[0])*$1Len_0);$n",
rdLoc(dest), rdLoc(src))
of tySet:
if mapType(ty) == ctArray:
useStringh(p.module)
linefmt(p, cpsStmts, "memcpy((void*)$1, (NIM_CONST void*)$2, $3);$n",
rdLoc(dest), rdLoc(src), rope(getSize(dest.t)))
else:
linefmt(p, cpsStmts, "$1 = $2;$n", rdLoc(dest), rdLoc(src))
of tyPtr, tyPointer, tyChar, tyBool, tyEnum, tyCString,
tyInt..tyUInt64, tyRange, tyVar:
linefmt(p, cpsStmts, "$1 = $2;$n", rdLoc(dest), rdLoc(src))
else: internalError("genAssignment: " & $ty.kind)
if optMemTracker in p.options and dest.storage in {OnHeap, OnUnknown}:
#writeStackTrace()
#echo p.currLineInfo, " requesting"
linefmt(p, cpsStmts, "#memTrackerWrite((void*)$1, $2, $3, $4);$n",
addrLoc(dest), rope getSize(dest.t),
makeCString(p.currLineInfo.toFullPath),
rope p.currLineInfo.safeLineNm)
proc genDeepCopy(p: BProc; dest, src: TLoc) =
template addrLocOrTemp(a: TLoc): Rope =
if a.k == locExpr:
var tmp: TLoc
getTemp(p, a.t, tmp)
genAssignment(p, tmp, a, {})
addrLoc(tmp)
else:
addrLoc(a)
var ty = skipTypes(dest.t, abstractVarRange)
case ty.kind
of tyPtr, tyRef, tyProc, tyTuple, tyObject, tyArray:
# XXX optimize this
linefmt(p, cpsStmts, "#genericDeepCopy((void*)$1, (void*)$2, $3);$n",
addrLoc(dest), addrLocOrTemp(src),
genTypeInfo(p.module, dest.t, dest.lode.info))
of tySequence, tyString:
linefmt(p, cpsStmts, "#genericSeqDeepCopy($1, $2, $3);$n",
addrLoc(dest), rdLoc(src),
genTypeInfo(p.module, dest.t, dest.lode.info))
of tyOpenArray, tyVarargs:
linefmt(p, cpsStmts,
"#genericDeepCopyOpenArray((void*)$1, (void*)$2, $1Len_0, $3);$n",
addrLoc(dest), addrLocOrTemp(src),
genTypeInfo(p.module, dest.t, dest.lode.info))
of tySet:
if mapType(ty) == ctArray:
useStringh(p.module)
linefmt(p, cpsStmts, "memcpy((void*)$1, (NIM_CONST void*)$2, $3);$n",
rdLoc(dest), rdLoc(src), rope(getSize(dest.t)))
else:
linefmt(p, cpsStmts, "$1 = $2;$n", rdLoc(dest), rdLoc(src))
of tyPointer, tyChar, tyBool, tyEnum, tyCString,
tyInt..tyUInt64, tyRange, tyVar:
linefmt(p, cpsStmts, "$1 = $2;$n", rdLoc(dest), rdLoc(src))
else: internalError("genDeepCopy: " & $ty.kind)
proc putLocIntoDest(p: BProc, d: var TLoc, s: TLoc) =
if d.k != locNone:
if lfNoDeepCopy in d.flags: genAssignment(p, d, s, {})
else: genAssignment(p, d, s, {needToCopy})
else:
d = s # ``d`` is free, so fill it with ``s``
proc putDataIntoDest(p: BProc, d: var TLoc, n: PNode, r: Rope) =
var a: TLoc
if d.k != locNone:
# need to generate an assignment here
initLoc(a, locData, n, OnStatic)
a.r = r
if lfNoDeepCopy in d.flags: genAssignment(p, d, a, {})
else: genAssignment(p, d, a, {needToCopy})
else:
# we cannot call initLoc() here as that would overwrite
# the flags field!
d.k = locData
d.lode = n
d.r = r
proc putIntoDest(p: BProc, d: var TLoc, n: PNode, r: Rope; s=OnUnknown) =
var a: TLoc
if d.k != locNone:
# need to generate an assignment here
initLoc(a, locExpr, n, s)
a.r = r
if lfNoDeepCopy in d.flags: genAssignment(p, d, a, {})
else: genAssignment(p, d, a, {needToCopy})
else:
# we cannot call initLoc() here as that would overwrite
# the flags field!
d.k = locExpr
d.lode = n
d.r = r
proc binaryStmt(p: BProc, e: PNode, d: var TLoc, frmt: string) =
var a, b: TLoc
if d.k != locNone: internalError(e.info, "binaryStmt")
initLocExpr(p, e.sons[1], a)
initLocExpr(p, e.sons[2], b)
lineCg(p, cpsStmts, frmt, rdLoc(a), rdLoc(b))
proc unaryStmt(p: BProc, e: PNode, d: var TLoc, frmt: string) =
var a: TLoc
if d.k != locNone: internalError(e.info, "unaryStmt")
initLocExpr(p, e.sons[1], a)
lineCg(p, cpsStmts, frmt, [rdLoc(a)])
proc binaryExpr(p: BProc, e: PNode, d: var TLoc, frmt: string) =
var a, b: TLoc
assert(e.sons[1].typ != nil)
assert(e.sons[2].typ != nil)
initLocExpr(p, e.sons[1], a)
initLocExpr(p, e.sons[2], b)
putIntoDest(p, d, e, ropecg(p.module, frmt, [rdLoc(a), rdLoc(b)]))
proc binaryExprChar(p: BProc, e: PNode, d: var TLoc, frmt: string) =
var a, b: TLoc
assert(e.sons[1].typ != nil)
assert(e.sons[2].typ != nil)
initLocExpr(p, e.sons[1], a)
initLocExpr(p, e.sons[2], b)
putIntoDest(p, d, e, ropecg(p.module, frmt, [a.rdCharLoc, b.rdCharLoc]))
proc unaryExpr(p: BProc, e: PNode, d: var TLoc, frmt: string) =
var a: TLoc
initLocExpr(p, e.sons[1], a)
putIntoDest(p, d, e, ropecg(p.module, frmt, [rdLoc(a)]))
proc unaryExprChar(p: BProc, e: PNode, d: var TLoc, frmt: string) =
var a: TLoc
initLocExpr(p, e.sons[1], a)
putIntoDest(p, d, e, ropecg(p.module, frmt, [rdCharLoc(a)]))
proc binaryArithOverflowRaw(p: BProc, t: PType, a, b: TLoc;
frmt: string): Rope =
var size = getSize(t)
let storage = if size < platform.intSize: rope("NI")
else: getTypeDesc(p.module, t)
result = getTempName(p.module)
linefmt(p, cpsLocals, "$1 $2;$n", storage, result)
lineCg(p, cpsStmts, frmt, result, rdCharLoc(a), rdCharLoc(b))
if size < platform.intSize or t.kind in {tyRange, tyEnum}:
linefmt(p, cpsStmts, "if ($1 < $2 || $1 > $3) #raiseOverflow();$n",
result, intLiteral(firstOrd(t)), intLiteral(lastOrd(t)))
proc binaryArithOverflow(p: BProc, e: PNode, d: var TLoc, m: TMagic) =
const
prc: array[mAddI..mPred, string] = [
"$# = #addInt($#, $#);$n", "$# = #subInt($#, $#);$n",
"$# = #mulInt($#, $#);$n", "$# = #divInt($#, $#);$n",
"$# = #modInt($#, $#);$n",
"$# = #addInt($#, $#);$n", "$# = #subInt($#, $#);$n"]
prc64: array[mAddI..mPred, string] = [
"$# = #addInt64($#, $#);$n", "$# = #subInt64($#, $#);$n",
"$# = #mulInt64($#, $#);$n", "$# = #divInt64($#, $#);$n",
"$# = #modInt64($#, $#);$n",
"$# = #addInt64($#, $#);$n", "$# = #subInt64($#, $#);$n"]
opr: array[mAddI..mPred, string] = [
"($#)($# + $#)", "($#)($# - $#)", "($#)($# * $#)",
"($#)($# / $#)", "($#)($# % $#)",
"($#)($# + $#)", "($#)($# - $#)"]
var a, b: TLoc
assert(e.sons[1].typ != nil)
assert(e.sons[2].typ != nil)
initLocExpr(p, e.sons[1], a)
initLocExpr(p, e.sons[2], b)
# skipping 'range' is correct here as we'll generate a proper range check
# later via 'chckRange'
let t = e.typ.skipTypes(abstractRange)
if optOverflowCheck notin p.options:
let res = opr[m] % [getTypeDesc(p.module, e.typ), rdLoc(a), rdLoc(b)]
putIntoDest(p, d, e, res)
else:
let res = binaryArithOverflowRaw(p, t, a, b,
if t.kind == tyInt64: prc64[m] else: prc[m])
putIntoDest(p, d, e, "($#)($#)" % [getTypeDesc(p.module, e.typ), res])
proc unaryArithOverflow(p: BProc, e: PNode, d: var TLoc, m: TMagic) =
const
opr: array[mUnaryMinusI..mAbsI, string] = [
mUnaryMinusI: "((NI$2)-($1))",
mUnaryMinusI64: "-($1)",
mAbsI: "($1 > 0? ($1) : -($1))"]
var
a: TLoc
t: PType
assert(e.sons[1].typ != nil)
initLocExpr(p, e.sons[1], a)
t = skipTypes(e.typ, abstractRange)
if optOverflowCheck in p.options:
linefmt(p, cpsStmts, "if ($1 == $2) #raiseOverflow();$n",
rdLoc(a), intLiteral(firstOrd(t)))
putIntoDest(p, d, e, opr[m] % [rdLoc(a), rope(getSize(t) * 8)])
proc binaryArith(p: BProc, e: PNode, d: var TLoc, op: TMagic) =
const
binArithTab: array[mAddF64..mXor, string] = [
"(($4)($1) + ($4)($2))", # AddF64
"(($4)($1) - ($4)($2))", # SubF64
"(($4)($1) * ($4)($2))", # MulF64
"(($4)($1) / ($4)($2))", # DivF64
"($4)((NU$5)($1) >> (NU$3)($2))", # ShrI
"($4)((NU$3)($1) << (NU$3)($2))", # ShlI
"($4)($1 & $2)", # BitandI
"($4)($1 | $2)", # BitorI
"($4)($1 ^ $2)", # BitxorI
"(($1 <= $2) ? $1 : $2)", # MinI
"(($1 >= $2) ? $1 : $2)", # MaxI
"(($1 <= $2) ? $1 : $2)", # MinF64
"(($1 >= $2) ? $1 : $2)", # MaxF64
"($4)((NU$3)($1) + (NU$3)($2))", # AddU
"($4)((NU$3)($1) - (NU$3)($2))", # SubU
"($4)((NU$3)($1) * (NU$3)($2))", # MulU
"($4)((NU$3)($1) / (NU$3)($2))", # DivU
"($4)((NU$3)($1) % (NU$3)($2))", # ModU
"($1 == $2)", # EqI
"($1 <= $2)", # LeI
"($1 < $2)", # LtI
"($1 == $2)", # EqF64
"($1 <= $2)", # LeF64
"($1 < $2)", # LtF64
"((NU$3)($1) <= (NU$3)($2))", # LeU
"((NU$3)($1) < (NU$3)($2))", # LtU
"((NU64)($1) <= (NU64)($2))", # LeU64
"((NU64)($1) < (NU64)($2))", # LtU64
"($1 == $2)", # EqEnum
"($1 <= $2)", # LeEnum
"($1 < $2)", # LtEnum
"((NU8)($1) == (NU8)($2))", # EqCh
"((NU8)($1) <= (NU8)($2))", # LeCh
"((NU8)($1) < (NU8)($2))", # LtCh
"($1 == $2)", # EqB
"($1 <= $2)", # LeB
"($1 < $2)", # LtB
"($1 == $2)", # EqRef
"($1 == $2)", # EqPtr
"($1 <= $2)", # LePtr
"($1 < $2)", # LtPtr
"($1 != $2)"] # Xor
var
a, b: TLoc
s, k: BiggestInt
assert(e.sons[1].typ != nil)
assert(e.sons[2].typ != nil)
initLocExpr(p, e.sons[1], a)
initLocExpr(p, e.sons[2], b)
# BUGFIX: cannot use result-type here, as it may be a boolean
s = max(getSize(a.t), getSize(b.t)) * 8
k = getSize(a.t) * 8
putIntoDest(p, d, e,
binArithTab[op] % [rdLoc(a), rdLoc(b), rope(s),
getSimpleTypeDesc(p.module, e.typ), rope(k)])
proc genEqProc(p: BProc, e: PNode, d: var TLoc) =
var a, b: TLoc
assert(e.sons[1].typ != nil)
assert(e.sons[2].typ != nil)
initLocExpr(p, e.sons[1], a)
initLocExpr(p, e.sons[2], b)
if a.t.skipTypes(abstractInst).callConv == ccClosure:
putIntoDest(p, d, e,
"($1.ClP_0 == $2.ClP_0 && $1.ClE_0 == $2.ClE_0)" % [rdLoc(a), rdLoc(b)])
else:
putIntoDest(p, d, e, "($1 == $2)" % [rdLoc(a), rdLoc(b)])
proc genIsNil(p: BProc, e: PNode, d: var TLoc) =
let t = skipTypes(e.sons[1].typ, abstractRange)
if t.kind == tyProc and t.callConv == ccClosure:
unaryExpr(p, e, d, "($1.ClP_0 == 0)")
else:
unaryExpr(p, e, d, "($1 == 0)")
proc unaryArith(p: BProc, e: PNode, d: var TLoc, op: TMagic) =
const
unArithTab: array[mNot..mToBiggestInt, string] = ["!($1)", # Not
"$1", # UnaryPlusI
"($3)((NU$2) ~($1))", # BitnotI
"$1", # UnaryPlusF64
"-($1)", # UnaryMinusF64
"($1 < 0? -($1) : ($1))", # AbsF64; BUGFIX: fabs() makes problems
# for Tiny C, so we don't use it
"(($3)(NU)(NU8)($1))", # mZe8ToI
"(($3)(NU64)(NU8)($1))", # mZe8ToI64
"(($3)(NU)(NU16)($1))", # mZe16ToI
"(($3)(NU64)(NU16)($1))", # mZe16ToI64
"(($3)(NU64)(NU32)($1))", # mZe32ToI64
"(($3)(NU64)(NU)($1))", # mZeIToI64
"(($3)(NU8)(NU)($1))", # ToU8
"(($3)(NU16)(NU)($1))", # ToU16
"(($3)(NU32)(NU64)($1))", # ToU32
"((double) ($1))", # ToFloat
"((double) ($1))", # ToBiggestFloat
"float64ToInt32($1)", # ToInt
"float64ToInt64($1)"] # ToBiggestInt
var
a: TLoc
t: PType
assert(e.sons[1].typ != nil)
initLocExpr(p, e.sons[1], a)
t = skipTypes(e.typ, abstractRange)
putIntoDest(p, d, e,
unArithTab[op] % [rdLoc(a), rope(getSize(t) * 8),
getSimpleTypeDesc(p.module, e.typ)])
proc isCppRef(p: BProc; typ: PType): bool {.inline.} =
result = p.module.compileToCpp and
skipTypes(typ, abstractInst).kind == tyVar and
tfVarIsPtr notin skipTypes(typ, abstractInst).flags
proc genDeref(p: BProc, e: PNode, d: var TLoc; enforceDeref=false) =
let mt = mapType(e.sons[0].typ)
if mt in {ctArray, ctPtrToArray} and not enforceDeref:
# XXX the amount of hacks for C's arrays is incredible, maybe we should
# simply wrap them in a struct? --> Losing auto vectorization then?
#if e[0].kind != nkBracketExpr:
# message(e.info, warnUser, "CAME HERE " & renderTree(e))
expr(p, e.sons[0], d)
if e.sons[0].typ.skipTypes(abstractInst).kind == tyRef:
d.storage = OnHeap
else:
var a: TLoc
var typ = skipTypes(e.sons[0].typ, abstractInst)
if typ.kind in {tyUserTypeClass, tyUserTypeClassInst} and typ.isResolvedUserTypeClass:
typ = typ.lastSon
if typ.kind == tyVar and tfVarIsPtr notin typ.flags and p.module.compileToCpp and e.sons[0].kind == nkHiddenAddr:
initLocExprSingleUse(p, e[0][0], d)
return
else:
initLocExprSingleUse(p, e.sons[0], a)
if d.k == locNone:
# dest = *a; <-- We do not know that 'dest' is on the heap!
# It is completely wrong to set 'd.storage' here, unless it's not yet
# been assigned to.
case typ.kind
of tyRef:
d.storage = OnHeap
of tyVar:
d.storage = OnUnknown
if tfVarIsPtr notin typ.flags and p.module.compileToCpp and
e.kind == nkHiddenDeref:
putIntoDest(p, d, e, rdLoc(a), a.storage)
return
of tyPtr:
d.storage = OnUnknown # BUGFIX!
else:
internalError(e.info, "genDeref " & $typ.kind)
elif p.module.compileToCpp:
if typ.kind == tyVar and tfVarIsPtr notin typ.flags and
e.kind == nkHiddenDeref:
putIntoDest(p, d, e, rdLoc(a), a.storage)
return
if enforceDeref and mt == ctPtrToArray:
# we lie about the type for better C interop: 'ptr array[3,T]' is
# translated to 'ptr T', but for deref'ing this produces wrong code.
# See tmissingderef. So we get rid of the deref instead. The codegen
# ends up using 'memcpy' for the array assignment,
# so the '&' and '*' cancel out:
putIntoDest(p, d, lodeTyp(a.t.sons[0]), rdLoc(a), a.storage)
else:
putIntoDest(p, d, e, "(*$1)" % [rdLoc(a)], a.storage)
proc genAddr(p: BProc, e: PNode, d: var TLoc) =
# careful 'addr(myptrToArray)' needs to get the ampersand:
if e.sons[0].typ.skipTypes(abstractInst).kind in {tyRef, tyPtr}:
var a: TLoc
initLocExpr(p, e.sons[0], a)
putIntoDest(p, d, e, "&" & a.r, a.storage)
#Message(e.info, warnUser, "HERE NEW &")
elif mapType(e.sons[0].typ) == ctArray or isCppRef(p, e.sons[0].typ):
expr(p, e.sons[0], d)
else:
var a: TLoc
initLocExpr(p, e.sons[0], a)
putIntoDest(p, d, e, addrLoc(a), a.storage)
template inheritLocation(d: var TLoc, a: TLoc) =
if d.k == locNone: d.storage = a.storage
proc genRecordFieldAux(p: BProc, e: PNode, d, a: var TLoc) =
initLocExpr(p, e.sons[0], a)
if e.sons[1].kind != nkSym: internalError(e.info, "genRecordFieldAux")
d.inheritLocation(a)
discard getTypeDesc(p.module, a.t) # fill the record's fields.loc
proc genTupleElem(p: BProc, e: PNode, d: var TLoc) =
var
a: TLoc
i: int
initLocExpr(p, e.sons[0], a)
let tupType = a.t.skipTypes(abstractInst)
assert tupType.kind == tyTuple
d.inheritLocation(a)
discard getTypeDesc(p.module, a.t) # fill the record's fields.loc
var r = rdLoc(a)
case e.sons[1].kind
of nkIntLit..nkUInt64Lit: i = int(e.sons[1].intVal)
else: internalError(e.info, "genTupleElem")
addf(r, ".Field$1", [rope(i)])
putIntoDest(p, d, e, r, a.storage)
proc lookupFieldAgain(p: BProc, ty: PType; field: PSym; r: var Rope;
resTyp: ptr PType = nil): PSym =
var ty = ty
assert r != nil
while ty != nil:
ty = ty.skipTypes(skipPtrs)
assert(ty.kind in {tyTuple, tyObject})
result = lookupInRecord(ty.n, field.name)
if result != nil:
if resTyp != nil: resTyp[] = ty
break
if not p.module.compileToCpp: add(r, ".Sup")
ty = ty.sons[0]
if result == nil: internalError(field.info, "genCheckedRecordField")
proc genRecordField(p: BProc, e: PNode, d: var TLoc) =
var a: TLoc
genRecordFieldAux(p, e, d, a)
var r = rdLoc(a)
var f = e.sons[1].sym
let ty = skipTypes(a.t, abstractInst + tyUserTypeClasses)
if ty.kind == tyTuple:
# we found a unique tuple type which lacks field information
# so we use Field$i
addf(r, ".Field$1", [rope(f.position)])
putIntoDest(p, d, e, r, a.storage)
else:
var rtyp: PType
let field = lookupFieldAgain(p, ty, f, r, addr rtyp)
if field.loc.r == nil and rtyp != nil: fillObjectFields(p.module, rtyp)
if field.loc.r == nil: internalError(e.info, "genRecordField 3 " & typeToString(ty))
addf(r, ".$1", [field.loc.r])
putIntoDest(p, d, e, r, a.storage)
proc genInExprAux(p: BProc, e: PNode, a, b, d: var TLoc)
proc genFieldCheck(p: BProc, e: PNode, obj: Rope, field: PSym;
origTy: PType) =
var test, u, v: TLoc
for i in countup(1, sonsLen(e) - 1):
var it = e.sons[i]
assert(it.kind in nkCallKinds)
assert(it.sons[0].kind == nkSym)
let op = it.sons[0].sym
if op.magic == mNot: it = it.sons[1]
let disc = it.sons[2].skipConv
assert(disc.kind == nkSym)
initLoc(test, locNone, it, OnStack)
initLocExpr(p, it.sons[1], u)
var o = obj
let d = lookupFieldAgain(p, origTy, disc.sym, o)
initLoc(v, locExpr, disc, OnUnknown)
v.r = o
v.r.add(".")
v.r.add(d.loc.r)
genInExprAux(p, it, u, v, test)
let id = nodeTableTestOrSet(p.module.dataCache,
newStrNode(nkStrLit, field.name.s), p.module.labels)
let strLit = if id == p.module.labels: getStrLit(p.module, field.name.s)
else: p.module.tmpBase & rope(id)
if op.magic == mNot:
linefmt(p, cpsStmts,
"if ($1) #raiseFieldError(((#NimStringDesc*) &$2));$n",
rdLoc(test), strLit)
else:
linefmt(p, cpsStmts,
"if (!($1)) #raiseFieldError(((#NimStringDesc*) &$2));$n",
rdLoc(test), strLit)
proc genCheckedRecordField(p: BProc, e: PNode, d: var TLoc) =
if optFieldCheck in p.options:
var a: TLoc
genRecordFieldAux(p, e.sons[0], d, a)
let ty = skipTypes(a.t, abstractInst)
var r = rdLoc(a)
let f = e.sons[0].sons[1].sym
let field = lookupFieldAgain(p, ty, f, r)
if field.loc.r == nil: fillObjectFields(p.module, ty)
if field.loc.r == nil:
internalError(e.info, "genCheckedRecordField") # generate the checks:
genFieldCheck(p, e, r, field, ty)
add(r, rfmt(nil, ".$1", field.loc.r))
putIntoDest(p, d, e.sons[0], r, a.storage)
else:
genRecordField(p, e.sons[0], d)
proc genArrayElem(p: BProc, n, x, y: PNode, d: var TLoc) =
var a, b: TLoc
initLocExpr(p, x, a)
initLocExpr(p, y, b)
var ty = skipTypes(skipTypes(a.t, abstractVarRange), abstractPtrs)
var first = intLiteral(firstOrd(ty))
# emit range check:
if optBoundsCheck in p.options and tfUncheckedArray notin ty.flags:
if not isConstExpr(y):
# semantic pass has already checked for const index expressions
if firstOrd(ty) == 0:
if (firstOrd(b.t) < firstOrd(ty)) or (lastOrd(b.t) > lastOrd(ty)):
linefmt(p, cpsStmts, "if ((NU)($1) > (NU)($2)) #raiseIndexError();$n",
rdCharLoc(b), intLiteral(lastOrd(ty)))
else:
linefmt(p, cpsStmts, "if ($1 < $2 || $1 > $3) #raiseIndexError();$n",
rdCharLoc(b), first, intLiteral(lastOrd(ty)))
else:
let idx = getOrdValue(y)
if idx < firstOrd(ty) or idx > lastOrd(ty):
localError(x.info, errIndexOutOfBounds)
d.inheritLocation(a)
putIntoDest(p, d, n,
rfmt(nil, "$1[($2)- $3]", rdLoc(a), rdCharLoc(b), first), a.storage)
proc genCStringElem(p: BProc, n, x, y: PNode, d: var TLoc) =
var a, b: TLoc
initLocExpr(p, x, a)
initLocExpr(p, y, b)
var ty = skipTypes(a.t, abstractVarRange)
inheritLocation(d, a)
putIntoDest(p, d, n,
rfmt(nil, "$1[$2]", rdLoc(a), rdCharLoc(b)), a.storage)
proc genOpenArrayElem(p: BProc, n, x, y: PNode, d: var TLoc) =
var a, b: TLoc
initLocExpr(p, x, a)
initLocExpr(p, y, b) # emit range check:
if optBoundsCheck in p.options:
linefmt(p, cpsStmts, "if ((NU)($1) >= (NU)($2Len_0)) #raiseIndexError();$n",
rdLoc(b), rdLoc(a)) # BUGFIX: ``>=`` and not ``>``!
inheritLocation(d, a)
putIntoDest(p, d, n,
rfmt(nil, "$1[$2]", rdLoc(a), rdCharLoc(b)), a.storage)
proc genSeqElem(p: BProc, n, x, y: PNode, d: var TLoc) =
var a, b: TLoc
initLocExpr(p, x, a)
initLocExpr(p, y, b)
var ty = skipTypes(a.t, abstractVarRange)
if ty.kind in {tyRef, tyPtr}:
ty = skipTypes(ty.lastSon, abstractVarRange) # emit range check:
if optBoundsCheck in p.options:
if ty.kind == tyString:
linefmt(p, cpsStmts,
"if ((NU)($1) > (NU)($2->$3)) #raiseIndexError();$n",
rdLoc(b), rdLoc(a), lenField(p))
else:
linefmt(p, cpsStmts,
"if ((NU)($1) >= (NU)($2->$3)) #raiseIndexError();$n",
rdLoc(b), rdLoc(a), lenField(p))
if d.k == locNone: d.storage = OnHeap
if skipTypes(a.t, abstractVar).kind in {tyRef, tyPtr}:
a.r = rfmt(nil, "(*$1)", a.r)
putIntoDest(p, d, n,
rfmt(nil, "$1->data[$2]", rdLoc(a), rdCharLoc(b)), a.storage)
proc genBracketExpr(p: BProc; n: PNode; d: var TLoc) =
var ty = skipTypes(n.sons[0].typ, abstractVarRange + tyUserTypeClasses)
if ty.kind in {tyRef, tyPtr}: ty = skipTypes(ty.lastSon, abstractVarRange)
case ty.kind
of tyArray: genArrayElem(p, n, n.sons[0], n.sons[1], d)
of tyOpenArray, tyVarargs: genOpenArrayElem(p, n, n.sons[0], n.sons[1], d)
of tySequence, tyString: genSeqElem(p, n, n.sons[0], n.sons[1], d)
of tyCString: genCStringElem(p, n, n.sons[0], n.sons[1], d)
of tyTuple: genTupleElem(p, n, d)
else: internalError(n.info, "expr(nkBracketExpr, " & $ty.kind & ')')
proc genAndOr(p: BProc, e: PNode, d: var TLoc, m: TMagic) =
# how to generate code?
# 'expr1 and expr2' becomes:
# result = expr1
# fjmp result, end
# result = expr2
# end:
# ... (result computed)
# BUGFIX:
# a = b or a
# used to generate:
# a = b
# if a: goto end
# a = a
# end:
# now it generates:
# tmp = b
# if tmp: goto end
# tmp = a
# end:
# a = tmp
var
L: TLabel
tmp: TLoc
getTemp(p, e.typ, tmp) # force it into a temp!
inc p.splitDecls
expr(p, e.sons[1], tmp)
L = getLabel(p)
if m == mOr:
lineF(p, cpsStmts, "if ($1) goto $2;$n", [rdLoc(tmp), L])
else:
lineF(p, cpsStmts, "if (!($1)) goto $2;$n", [rdLoc(tmp), L])
expr(p, e.sons[2], tmp)
fixLabel(p, L)
if d.k == locNone:
d = tmp
else:
genAssignment(p, d, tmp, {}) # no need for deep copying
dec p.splitDecls
proc genEcho(p: BProc, n: PNode) =
# this unusal way of implementing it ensures that e.g. ``echo("hallo", 45)``
# is threadsafe.
internalAssert n.kind == nkBracket
if platform.targetOS == osGenode:
# bypass libc and print directly to the Genode LOG session
var args: Rope = nil
var a: TLoc
for i in countup(0, n.len-1):
if n.sons[i].skipConv.kind == nkNilLit:
add(args, ", \"nil\"")
else:
initLocExpr(p, n.sons[i], a)
addf(args, ", $1? ($1)->data:\"nil\"", [rdLoc(a)])
p.module.includeHeader("")
linefmt(p, cpsStmts, """Genode::log(""$1);$n""", args)
else:
if n.len == 0:
linefmt(p, cpsStmts, "#echoBinSafe(NIM_NIL, $1);$n", n.len.rope)
else:
var a: TLoc
initLocExpr(p, n, a)
linefmt(p, cpsStmts, "#echoBinSafe($1, $2);$n", a.rdLoc, n.len.rope)
when false:
p.module.includeHeader("")
linefmt(p, cpsStmts, "printf($1$2);$n",
makeCString(repeat("%s", n.len) & tnl), args)
linefmt(p, cpsStmts, "fflush(stdout);$n")
proc gcUsage(n: PNode) =
if gSelectedGC == gcNone: message(n.info, warnGcMem, n.renderTree)
proc genStrConcat(p: BProc, e: PNode, d: var TLoc) =
#
# s = 'Hello ' & name & ', how do you feel?' & 'z'
#
#
# {
# string tmp0;
# ...
# tmp0 = rawNewString(6 + 17 + 1 + s2->len);
# // we cannot generate s = rawNewString(...) here, because
# // ``s`` may be used on the right side of the expression
# appendString(tmp0, strlit_1);
# appendString(tmp0, name);
# appendString(tmp0, strlit_2);
# appendChar(tmp0, 'z');
# asgn(s, tmp0);
# }
var a, tmp: TLoc
getTemp(p, e.typ, tmp)
var L = 0
var appends: Rope = nil
var lens: Rope = nil
for i in countup(0, sonsLen(e) - 2):
# compute the length expression:
initLocExpr(p, e.sons[i + 1], a)
if skipTypes(e.sons[i + 1].typ, abstractVarRange).kind == tyChar:
inc(L)
add(appends, rfmt(p.module, "#appendChar($1, $2);$n", tmp.r, rdLoc(a)))
else:
if e.sons[i + 1].kind in {nkStrLit..nkTripleStrLit}:
inc(L, len(e.sons[i + 1].strVal))
else:
addf(lens, "$1->$2 + ", [rdLoc(a), lenField(p)])
add(appends, rfmt(p.module, "#appendString($1, $2);$n", tmp.r, rdLoc(a)))
linefmt(p, cpsStmts, "$1 = #rawNewString($2$3);$n", tmp.r, lens, rope(L))
add(p.s(cpsStmts), appends)
if d.k == locNone:
d = tmp
else:
genAssignment(p, d, tmp, {}) # no need for deep copying
gcUsage(e)
proc genStrAppend(p: BProc, e: PNode, d: var TLoc) =
#
# s &= 'Hello ' & name & ', how do you feel?' & 'z'
# // BUG: what if s is on the left side too?
#
# {
# s = resizeString(s, 6 + 17 + 1 + name->len);
# appendString(s, strlit_1);
# appendString(s, name);
# appendString(s, strlit_2);
# appendChar(s, 'z');
# }
var
a, dest: TLoc
appends, lens: Rope
assert(d.k == locNone)
var L = 0
initLocExpr(p, e.sons[1], dest)
for i in countup(0, sonsLen(e) - 3):
# compute the length expression:
initLocExpr(p, e.sons[i + 2], a)
if skipTypes(e.sons[i + 2].typ, abstractVarRange).kind == tyChar:
inc(L)
add(appends, rfmt(p.module, "#appendChar($1, $2);$n",
rdLoc(dest), rdLoc(a)))
else:
if e.sons[i + 2].kind in {nkStrLit..nkTripleStrLit}:
inc(L, len(e.sons[i + 2].strVal))
else:
addf(lens, "$1->$2 + ", [rdLoc(a), lenField(p)])
add(appends, rfmt(p.module, "#appendString($1, $2);$n",
rdLoc(dest), rdLoc(a)))
linefmt(p, cpsStmts, "$1 = #resizeString($1, $2$3);$n",
rdLoc(dest), lens, rope(L))
add(p.s(cpsStmts), appends)
gcUsage(e)
proc genSeqElemAppend(p: BProc, e: PNode, d: var TLoc) =
# seq &= x -->
# seq = (typeof seq) incrSeq(&seq->Sup, sizeof(x));
# seq->data[seq->len-1] = x;
let seqAppendPattern = if not p.module.compileToCpp:
"$1 = ($2) #incrSeqV2(&($1)->Sup, sizeof($3));$n"
else:
"$1 = ($2) #incrSeqV2($1, sizeof($3));$n"
var a, b, dest, tmpL: TLoc
initLocExpr(p, e.sons[1], a)
initLocExpr(p, e.sons[2], b)
let bt = skipTypes(e.sons[2].typ, {tyVar})
lineCg(p, cpsStmts, seqAppendPattern, [
rdLoc(a),
getTypeDesc(p.module, e.sons[1].typ),
getTypeDesc(p.module, bt)])
#if bt != b.t:
# echo "YES ", e.info, " new: ", typeToString(bt), " old: ", typeToString(b.t)
initLoc(dest, locExpr, e.sons[2], OnHeap)
getIntTemp(p, tmpL)
lineCg(p, cpsStmts, "$1 = $2->$3++;$n", tmpL.r, rdLoc(a), lenField(p))
dest.r = rfmt(nil, "$1->data[$2]", rdLoc(a), tmpL.r)
genAssignment(p, dest, b, {needToCopy, afDestIsNil})
gcUsage(e)
proc genReset(p: BProc, n: PNode) =
var a: TLoc
initLocExpr(p, n.sons[1], a)
linefmt(p, cpsStmts, "#genericReset((void*)$1, $2);$n",
addrLoc(a),
genTypeInfo(p.module, skipTypes(a.t, {tyVar}), n.info))
proc rawGenNew(p: BProc, a: TLoc, sizeExpr: Rope) =
var sizeExpr = sizeExpr
let typ = a.t
var b: TLoc
initLoc(b, locExpr, a.lode, OnHeap)
let refType = typ.skipTypes(abstractInst)
assert refType.kind == tyRef
let bt = refType.lastSon
if sizeExpr.isNil:
sizeExpr = "sizeof($1)" %
[getTypeDesc(p.module, bt)]
let args = [getTypeDesc(p.module, typ),
genTypeInfo(p.module, typ, a.lode.info),
sizeExpr]
if a.storage == OnHeap and usesNativeGC():
# use newObjRC1 as an optimization
if canFormAcycle(a.t):
linefmt(p, cpsStmts, "if ($1) { #nimGCunrefRC1($1); $1 = NIM_NIL; }$n", a.rdLoc)
else:
linefmt(p, cpsStmts, "if ($1) { #nimGCunrefNoCycle($1); $1 = NIM_NIL; }$n", a.rdLoc)
b.r = ropecg(p.module, "($1) #newObjRC1($2, $3)", args)
linefmt(p, cpsStmts, "$1 = $2;$n", a.rdLoc, b.rdLoc)
else:
b.r = ropecg(p.module, "($1) #newObj($2, $3)", args)
genAssignment(p, a, b, {}) # set the object type:
genObjectInit(p, cpsStmts, bt, a, false)
proc genNew(p: BProc, e: PNode) =
var a: TLoc
initLocExpr(p, e.sons[1], a)
# 'genNew' also handles 'unsafeNew':
if e.len == 3:
var se: TLoc
initLocExpr(p, e.sons[2], se)
rawGenNew(p, a, se.rdLoc)
else:
rawGenNew(p, a, nil)
gcUsage(e)
proc genNewSeqAux(p: BProc, dest: TLoc, length: Rope) =
let seqtype = skipTypes(dest.t, abstractVarRange)
let args = [getTypeDesc(p.module, seqtype),
genTypeInfo(p.module, seqtype, dest.lode.info), length]
var call: TLoc
initLoc(call, locExpr, dest.lode, OnHeap)
if dest.storage == OnHeap and usesNativeGC():
if canFormAcycle(dest.t):
linefmt(p, cpsStmts, "if ($1) { #nimGCunrefRC1($1); $1 = NIM_NIL; }$n", dest.rdLoc)
else:
linefmt(p, cpsStmts, "if ($1) { #nimGCunrefNoCycle($1); $1 = NIM_NIL; }$n", dest.rdLoc)
call.r = ropecg(p.module, "($1) #newSeqRC1($2, $3)", args)
linefmt(p, cpsStmts, "$1 = $2;$n", dest.rdLoc, call.rdLoc)
else:
call.r = ropecg(p.module, "($1) #newSeq($2, $3)", args)
genAssignment(p, dest, call, {})
proc genNewSeq(p: BProc, e: PNode) =
var a, b: TLoc
initLocExpr(p, e.sons[1], a)
initLocExpr(p, e.sons[2], b)
genNewSeqAux(p, a, b.rdLoc)
gcUsage(e)
proc genNewSeqOfCap(p: BProc; e: PNode; d: var TLoc) =
let seqtype = skipTypes(e.typ, abstractVarRange)
var a: TLoc
initLocExpr(p, e.sons[1], a)
putIntoDest(p, d, e, ropecg(p.module,
"($1)#nimNewSeqOfCap($2, $3)", [
getTypeDesc(p.module, seqtype),
genTypeInfo(p.module, seqtype, e.info), a.rdLoc]))
gcUsage(e)
proc genConstExpr(p: BProc, n: PNode): Rope
proc handleConstExpr(p: BProc, n: PNode, d: var TLoc): bool =
if d.k == locNone and n.len > ord(n.kind == nkObjConstr) and n.isDeepConstExpr:
let t = n.typ
discard getTypeDesc(p.module, t) # so that any fields are initialized
let id = nodeTableTestOrSet(p.module.dataCache, n, p.module.labels)
fillLoc(d, locData, n, p.module.tmpBase & rope(id), OnStatic)
if id == p.module.labels:
# expression not found in the cache:
inc(p.module.labels)
addf(p.module.s[cfsData], "NIM_CONST $1 $2 = $3;$n",
[getTypeDesc(p.module, t), d.r, genConstExpr(p, n)])
result = true
else:
result = false
proc genObjConstr(p: BProc, e: PNode, d: var TLoc) =
#echo rendertree e, " ", e.isDeepConstExpr
# inheritance in C++ does not allow struct initialization so
# we skip this step here:
if not p.module.compileToCpp:
if handleConstExpr(p, e, d): return
var tmp: TLoc
var t = e.typ.skipTypes(abstractInst)
getTemp(p, t, tmp)
let isRef = t.kind == tyRef
var r = rdLoc(tmp)
if isRef:
rawGenNew(p, tmp, nil)
t = t.lastSon.skipTypes(abstractInst)
r = "(*$1)" % [r]
gcUsage(e)
else:
constructLoc(p, tmp)
discard getTypeDesc(p.module, t)
let ty = getUniqueType(t)
for i in 1 ..< e.len:
let it = e.sons[i]
var tmp2: TLoc
tmp2.r = r
let field = lookupFieldAgain(p, ty, it.sons[0].sym, tmp2.r)
if field.loc.r == nil: fillObjectFields(p.module, ty)
if field.loc.r == nil: internalError(e.info, "genObjConstr")
if it.len == 3 and optFieldCheck in p.options:
genFieldCheck(p, it.sons[2], r, field, ty)
add(tmp2.r, ".")
add(tmp2.r, field.loc.r)
tmp2.k = locTemp
tmp2.lode = it.sons[1]
tmp2.storage = if isRef: OnHeap else: OnStack
expr(p, it.sons[1], tmp2)
if d.k == locNone:
d = tmp
else:
genAssignment(p, d, tmp, {})
proc genSeqConstr(p: BProc, n: PNode, d: var TLoc) =
var arr: TLoc
if d.k == locNone:
getTemp(p, n.typ, d)
# generate call to newSeq before adding the elements per hand:
genNewSeqAux(p, d, intLiteral(sonsLen(n)))
for i in countup(0, sonsLen(n) - 1):
initLoc(arr, locExpr, n[i], OnHeap)
arr.r = rfmt(nil, "$1->data[$2]", rdLoc(d), intLiteral(i))
arr.storage = OnHeap # we know that sequences are on the heap
expr(p, n[i], arr)
gcUsage(n)
proc genArrToSeq(p: BProc, n: PNode, d: var TLoc) =
var elem, a, arr: TLoc
if n.sons[1].kind == nkBracket:
n.sons[1].typ = n.typ
genSeqConstr(p, n.sons[1], d)
return
if d.k == locNone:
getTemp(p, n.typ, d)
# generate call to newSeq before adding the elements per hand:
let L = int(lengthOrd(n.sons[1].typ))
genNewSeqAux(p, d, intLiteral(L))
initLocExpr(p, n.sons[1], a)
# bug #5007; do not produce excessive C source code:
if L < 10:
for i in countup(0, L - 1):
initLoc(elem, locExpr, lodeTyp elemType(skipTypes(n.typ, abstractInst)), OnHeap)
elem.r = rfmt(nil, "$1->data[$2]", rdLoc(d), intLiteral(i))
elem.storage = OnHeap # we know that sequences are on the heap
initLoc(arr, locExpr, lodeTyp elemType(skipTypes(n.sons[1].typ, abstractInst)), a.storage)
arr.r = rfmt(nil, "$1[$2]", rdLoc(a), intLiteral(i))
genAssignment(p, elem, arr, {afDestIsNil, needToCopy})
else:
var i: TLoc
getTemp(p, getSysType(tyInt), i)
let oldCode = p.s(cpsStmts)
linefmt(p, cpsStmts, "for ($1 = 0; $1 < $2; $1++) {$n", i.r, L.rope)
initLoc(elem, locExpr, lodeTyp elemType(skipTypes(n.typ, abstractInst)), OnHeap)
elem.r = rfmt(nil, "$1->data[$2]", rdLoc(d), rdLoc(i))
elem.storage = OnHeap # we know that sequences are on the heap
initLoc(arr, locExpr, lodeTyp elemType(skipTypes(n.sons[1].typ, abstractInst)), a.storage)
arr.r = rfmt(nil, "$1[$2]", rdLoc(a), rdLoc(i))
genAssignment(p, elem, arr, {afDestIsNil, needToCopy})
lineF(p, cpsStmts, "}$n", [])
proc genNewFinalize(p: BProc, e: PNode) =
var
a, b, f: TLoc
refType, bt: PType
ti: Rope
refType = skipTypes(e.sons[1].typ, abstractVarRange)
initLocExpr(p, e.sons[1], a)
initLocExpr(p, e.sons[2], f)
initLoc(b, locExpr, a.lode, OnHeap)
ti = genTypeInfo(p.module, refType, e.info)
addf(p.module.s[cfsTypeInit3], "$1->finalizer = (void*)$2;$n", [ti, rdLoc(f)])
b.r = ropecg(p.module, "($1) #newObj($2, sizeof($3))", [
getTypeDesc(p.module, refType),
ti, getTypeDesc(p.module, skipTypes(refType.lastSon, abstractRange))])
genAssignment(p, a, b, {}) # set the object type:
bt = skipTypes(refType.lastSon, abstractRange)
genObjectInit(p, cpsStmts, bt, a, false)
gcUsage(e)
proc genOfHelper(p: BProc; dest: PType; a: Rope; info: TLineInfo): Rope =
# unfortunately 'genTypeInfo' sets tfObjHasKids as a side effect, so we
# have to call it here first:
let ti = genTypeInfo(p.module, dest, info)
if tfFinal in dest.flags or (objHasKidsValid in p.module.flags and
tfObjHasKids notin dest.flags):
result = "$1.m_type == $2" % [a, ti]
else:
discard cgsym(p.module, "TNimType")
inc p.module.labels
let cache = "Nim_OfCheck_CACHE" & p.module.labels.rope
addf(p.module.s[cfsVars], "static TNimType* $#[2];$n", [cache])
result = rfmt(p.module, "#isObjWithCache($#.m_type, $#, $#)", a, ti, cache)
when false:
# former version:
result = rfmt(p.module, "#isObj($1.m_type, $2)",
a, genTypeInfo(p.module, dest, info))
proc genOf(p: BProc, x: PNode, typ: PType, d: var TLoc) =
var a: TLoc
initLocExpr(p, x, a)
var dest = skipTypes(typ, typedescPtrs)
var r = rdLoc(a)
var nilCheck: Rope = nil
var t = skipTypes(a.t, abstractInst)
while t.kind in {tyVar, tyPtr, tyRef}:
if t.kind != tyVar: nilCheck = r
if t.kind != tyVar or not p.module.compileToCpp:
r = rfmt(nil, "(*$1)", r)
t = skipTypes(t.lastSon, typedescInst)
if not p.module.compileToCpp:
while t.kind == tyObject and t.sons[0] != nil:
add(r, ~".Sup")
t = skipTypes(t.sons[0], skipPtrs)
if isObjLackingTypeField(t):
globalError(x.info, errGenerated,
"no 'of' operator available for pure objects")
if nilCheck != nil:
r = rfmt(p.module, "(($1) && ($2))", nilCheck, genOfHelper(p, dest, r, x.info))
else:
r = rfmt(p.module, "($1)", genOfHelper(p, dest, r, x.info))
putIntoDest(p, d, x, r, a.storage)
proc genOf(p: BProc, n: PNode, d: var TLoc) =
genOf(p, n.sons[1], n.sons[2].typ, d)
proc genRepr(p: BProc, e: PNode, d: var TLoc) =
var a: TLoc
initLocExpr(p, e.sons[1], a)
var t = skipTypes(e.sons[1].typ, abstractVarRange)
case t.kind
of tyInt..tyInt64, tyUInt..tyUInt64:
putIntoDest(p, d, e,
ropecg(p.module, "#reprInt((NI64)$1)", [rdLoc(a)]), a.storage)
of tyFloat..tyFloat128:
putIntoDest(p, d, e, ropecg(p.module, "#reprFloat($1)", [rdLoc(a)]), a.storage)
of tyBool:
putIntoDest(p, d, e, ropecg(p.module, "#reprBool($1)", [rdLoc(a)]), a.storage)
of tyChar:
putIntoDest(p, d, e, ropecg(p.module, "#reprChar($1)", [rdLoc(a)]), a.storage)
of tyEnum, tyOrdinal:
putIntoDest(p, d, e,
ropecg(p.module, "#reprEnum((NI)$1, $2)", [
rdLoc(a), genTypeInfo(p.module, t, e.info)]), a.storage)
of tyString:
putIntoDest(p, d, e, ropecg(p.module, "#reprStr($1)", [rdLoc(a)]), a.storage)
of tySet:
putIntoDest(p, d, e, ropecg(p.module, "#reprSet($1, $2)", [
addrLoc(a), genTypeInfo(p.module, t, e.info)]), a.storage)
of tyOpenArray, tyVarargs:
var b: TLoc
case a.t.kind
of tyOpenArray, tyVarargs:
putIntoDest(p, b, e, "$1, $1Len_0" % [rdLoc(a)], a.storage)
of tyString, tySequence:
putIntoDest(p, b, e,
"$1->data, $1->$2" % [rdLoc(a), lenField(p)], a.storage)
of tyArray:
putIntoDest(p, b, e,
"$1, $2" % [rdLoc(a), rope(lengthOrd(a.t))], a.storage)
else: internalError(e.sons[0].info, "genRepr()")
putIntoDest(p, d, e,
ropecg(p.module, "#reprOpenArray($1, $2)", [rdLoc(b),
genTypeInfo(p.module, elemType(t), e.info)]), a.storage)
of tyCString, tyArray, tyRef, tyPtr, tyPointer, tyNil, tySequence:
putIntoDest(p, d, e,
ropecg(p.module, "#reprAny($1, $2)", [
rdLoc(a), genTypeInfo(p.module, t, e.info)]), a.storage)
of tyEmpty, tyVoid:
localError(e.info, "'repr' doesn't support 'void' type")
else:
putIntoDest(p, d, e, ropecg(p.module, "#reprAny($1, $2)",
[addrLoc(a), genTypeInfo(p.module, t, e.info)]),
a.storage)
gcUsage(e)
proc genGetTypeInfo(p: BProc, e: PNode, d: var TLoc) =
let t = e.sons[1].typ
putIntoDest(p, d, e, genTypeInfo(p.module, t, e.info))
proc genDollar(p: BProc, n: PNode, d: var TLoc, frmt: string) =
var a: TLoc
initLocExpr(p, n.sons[1], a)
a.r = ropecg(p.module, frmt, [rdLoc(a)])
if d.k == locNone: getTemp(p, n.typ, d)
genAssignment(p, d, a, {})
gcUsage(n)
proc genArrayLen(p: BProc, e: PNode, d: var TLoc, op: TMagic) =
var a = e.sons[1]
if a.kind == nkHiddenAddr: a = a.sons[0]
var typ = skipTypes(a.typ, abstractVar + tyUserTypeClasses)
case typ.kind
of tyOpenArray, tyVarargs:
if op == mHigh: unaryExpr(p, e, d, "($1Len_0-1)")
else: unaryExpr(p, e, d, "$1Len_0")
of tyCString:
useStringh(p.module)
if op == mHigh: unaryExpr(p, e, d, "($1 ? (strlen($1)-1) : -1)")
else: unaryExpr(p, e, d, "($1 ? strlen($1) : 0)")
of tyString:
if not p.module.compileToCpp:
if op == mHigh: unaryExpr(p, e, d, "($1 ? ($1->Sup.len-1) : -1)")
else: unaryExpr(p, e, d, "($1 ? $1->Sup.len : 0)")
else:
if op == mHigh: unaryExpr(p, e, d, "($1 ? ($1->len-1) : -1)")
else: unaryExpr(p, e, d, "($1 ? $1->len : 0)")
of tySequence:
var a, tmp: TLoc
initLocExpr(p, e[1], a)
getIntTemp(p, tmp)
var frmt: FormatStr
if not p.module.compileToCpp:
if op == mHigh:
frmt = "$1 = ($2 ? ($2->Sup.len-1) : -1);$n"
else:
frmt = "$1 = ($2 ? $2->Sup.len : 0);$n"
else:
if op == mHigh:
frmt = "$1 = ($2 ? ($2->len-1) : -1);$n"
else:
frmt = "$1 = ($2 ? $2->len : 0);$n"
lineCg(p, cpsStmts, frmt, tmp.r, rdLoc(a))
putIntoDest(p, d, e, tmp.r)
of tyArray:
# YYY: length(sideeffect) is optimized away incorrectly?
if op == mHigh: putIntoDest(p, d, e, rope(lastOrd(typ)))
else: putIntoDest(p, d, e, rope(lengthOrd(typ)))
else: internalError(e.info, "genArrayLen()")
proc genSetLengthSeq(p: BProc, e: PNode, d: var TLoc) =
var a, b: TLoc
assert(d.k == locNone)
var x = e.sons[1]
if x.kind in {nkAddr, nkHiddenAddr}: x = x[0]
initLocExpr(p, x, a)
initLocExpr(p, e.sons[2], b)
let t = skipTypes(e.sons[1].typ, {tyVar})
let setLenPattern = if not p.module.compileToCpp:
"$1 = ($3) #setLengthSeq(&($1)->Sup, sizeof($4), $2);$n"
else:
"$1 = ($3) #setLengthSeq($1, sizeof($4), $2);$n"
lineCg(p, cpsStmts, setLenPattern, [
rdLoc(a), rdLoc(b), getTypeDesc(p.module, t),
getTypeDesc(p.module, t.skipTypes(abstractInst).sons[0])])
gcUsage(e)
proc genSetLengthStr(p: BProc, e: PNode, d: var TLoc) =
binaryStmt(p, e, d, "$1 = #setLengthStr($1, $2);$n")
gcUsage(e)
proc genSwap(p: BProc, e: PNode, d: var TLoc) =
# swap(a, b) -->
# temp = a
# a = b
# b = temp
var a, b, tmp: TLoc
getTemp(p, skipTypes(e.sons[1].typ, abstractVar), tmp)
initLocExpr(p, e.sons[1], a) # eval a
initLocExpr(p, e.sons[2], b) # eval b
genAssignment(p, tmp, a, {})
genAssignment(p, a, b, {})
genAssignment(p, b, tmp, {})
proc rdSetElemLoc(a: TLoc, setType: PType): Rope =
# read a location of an set element; it may need a subtraction operation
# before the set operation
result = rdCharLoc(a)
assert(setType.kind == tySet)
if firstOrd(setType) != 0:
result = "($1- $2)" % [result, rope(firstOrd(setType))]
proc fewCmps(s: PNode): bool =
# this function estimates whether it is better to emit code
# for constructing the set or generating a bunch of comparisons directly
if s.kind != nkCurly: internalError(s.info, "fewCmps")
if (getSize(s.typ) <= platform.intSize) and (nfAllConst in s.flags):
result = false # it is better to emit the set generation code
elif elemType(s.typ).kind in {tyInt, tyInt16..tyInt64}:
result = true # better not emit the set if int is basetype!
else:
result = sonsLen(s) <= 8 # 8 seems to be a good value
proc binaryExprIn(p: BProc, e: PNode, a, b, d: var TLoc, frmt: string) =
putIntoDest(p, d, e, frmt % [rdLoc(a), rdSetElemLoc(b, a.t)])
proc genInExprAux(p: BProc, e: PNode, a, b, d: var TLoc) =
case int(getSize(skipTypes(e.sons[1].typ, abstractVar)))
of 1: binaryExprIn(p, e, a, b, d, "(($1 &(1U<<((NU)($2)&7U)))!=0)")
of 2: binaryExprIn(p, e, a, b, d, "(($1 &(1U<<((NU)($2)&15U)))!=0)")
of 4: binaryExprIn(p, e, a, b, d, "(($1 &(1U<<((NU)($2)&31U)))!=0)")
of 8: binaryExprIn(p, e, a, b, d, "(($1 &((NU64)1<<((NU)($2)&63U)))!=0)")
else: binaryExprIn(p, e, a, b, d, "(($1[(NU)($2)>>3] &(1U<<((NU)($2)&7U)))!=0)")
proc binaryStmtInExcl(p: BProc, e: PNode, d: var TLoc, frmt: string) =
var a, b: TLoc
assert(d.k == locNone)
initLocExpr(p, e.sons[1], a)
initLocExpr(p, e.sons[2], b)
lineF(p, cpsStmts, frmt, [rdLoc(a), rdSetElemLoc(b, a.t)])
proc genInOp(p: BProc, e: PNode, d: var TLoc) =
var a, b, x, y: TLoc
if (e.sons[1].kind == nkCurly) and fewCmps(e.sons[1]):
# a set constructor but not a constant set:
# do not emit the set, but generate a bunch of comparisons; and if we do
# so, we skip the unnecessary range check: This is a semantical extension
# that code now relies on. :-/ XXX
let ea = if e.sons[2].kind in {nkChckRange, nkChckRange64}:
e.sons[2].sons[0]
else:
e.sons[2]
initLocExpr(p, ea, a)
initLoc(b, locExpr, e, OnUnknown)
b.r = rope("(")
var length = sonsLen(e.sons[1])
for i in countup(0, length - 1):
if e.sons[1].sons[i].kind == nkRange:
initLocExpr(p, e.sons[1].sons[i].sons[0], x)
initLocExpr(p, e.sons[1].sons[i].sons[1], y)
addf(b.r, "$1 >= $2 && $1 <= $3",
[rdCharLoc(a), rdCharLoc(x), rdCharLoc(y)])
else:
initLocExpr(p, e.sons[1].sons[i], x)
addf(b.r, "$1 == $2", [rdCharLoc(a), rdCharLoc(x)])
if i < length - 1: add(b.r, " || ")
add(b.r, ")")
putIntoDest(p, d, e, b.r)
else:
assert(e.sons[1].typ != nil)
assert(e.sons[2].typ != nil)
initLocExpr(p, e.sons[1], a)
initLocExpr(p, e.sons[2], b)
genInExprAux(p, e, a, b, d)
proc genSetOp(p: BProc, e: PNode, d: var TLoc, op: TMagic) =
const
lookupOpr: array[mLeSet..mSymDiffSet, string] = [
"for ($1 = 0; $1 < $2; $1++) { $n" &
" $3 = (($4[$1] & ~ $5[$1]) == 0);$n" &
" if (!$3) break;}$n", "for ($1 = 0; $1 < $2; $1++) { $n" &
" $3 = (($4[$1] & ~ $5[$1]) == 0);$n" & " if (!$3) break;}$n" &
"if ($3) $3 = (memcmp($4, $5, $2) != 0);$n",
"&", "|", "& ~", "^"]
var a, b, i: TLoc
var setType = skipTypes(e.sons[1].typ, abstractVar)
var size = int(getSize(setType))
case size
of 1, 2, 4, 8:
case op
of mIncl:
var ts = "NU" & $(size * 8)
binaryStmtInExcl(p, e, d,
"$1 |= ((" & ts & ")1)<<(($2)%(sizeof(" & ts & ")*8));$n")
of mExcl:
var ts = "NU" & $(size * 8)
binaryStmtInExcl(p, e, d, "$1 &= ~(((" & ts & ")1) << (($2) % (sizeof(" &
ts & ")*8)));$n")
of mCard:
if size <= 4: unaryExprChar(p, e, d, "#countBits32($1)")
else: unaryExprChar(p, e, d, "#countBits64($1)")
of mLtSet: binaryExprChar(p, e, d, "(($1 & ~ $2 ==0)&&($1 != $2))")
of mLeSet: binaryExprChar(p, e, d, "(($1 & ~ $2)==0)")
of mEqSet: binaryExpr(p, e, d, "($1 == $2)")
of mMulSet: binaryExpr(p, e, d, "($1 & $2)")
of mPlusSet: binaryExpr(p, e, d, "($1 | $2)")
of mMinusSet: binaryExpr(p, e, d, "($1 & ~ $2)")
of mSymDiffSet: binaryExpr(p, e, d, "($1 ^ $2)")
of mInSet:
genInOp(p, e, d)
else: internalError(e.info, "genSetOp()")
else:
case op
of mIncl: binaryStmtInExcl(p, e, d, "$1[(NU)($2)>>3] |=(1U<<($2&7U));$n")
of mExcl: binaryStmtInExcl(p, e, d, "$1[(NU)($2)>>3] &= ~(1U<<($2&7U));$n")
of mCard: unaryExprChar(p, e, d, "#cardSet($1, " & $size & ')')
of mLtSet, mLeSet:
getTemp(p, getSysType(tyInt), i) # our counter
initLocExpr(p, e.sons[1], a)
initLocExpr(p, e.sons[2], b)
if d.k == locNone: getTemp(p, getSysType(tyBool), d)
lineF(p, cpsStmts, lookupOpr[op],
[rdLoc(i), rope(size), rdLoc(d), rdLoc(a), rdLoc(b)])
of mEqSet:
useStringh(p.module)
binaryExprChar(p, e, d, "(memcmp($1, $2, " & $(size) & ")==0)")
of mMulSet, mPlusSet, mMinusSet, mSymDiffSet:
# we inline the simple for loop for better code generation:
getTemp(p, getSysType(tyInt), i) # our counter
initLocExpr(p, e.sons[1], a)
initLocExpr(p, e.sons[2], b)
if d.k == locNone: getTemp(p, a.t, d)
lineF(p, cpsStmts,
"for ($1 = 0; $1 < $2; $1++) $n" &
" $3[$1] = $4[$1] $6 $5[$1];$n", [
rdLoc(i), rope(size), rdLoc(d), rdLoc(a), rdLoc(b),
rope(lookupOpr[op])])
of mInSet: genInOp(p, e, d)
else: internalError(e.info, "genSetOp")
proc genOrd(p: BProc, e: PNode, d: var TLoc) =
unaryExprChar(p, e, d, "$1")
proc genSomeCast(p: BProc, e: PNode, d: var TLoc) =
const
ValueTypes = {tyTuple, tyObject, tyArray, tyOpenArray, tyVarargs}
# we use whatever C gives us. Except if we have a value-type, we need to go
# through its address:
var a: TLoc
initLocExpr(p, e.sons[1], a)
let etyp = skipTypes(e.typ, abstractRange)
if etyp.kind in ValueTypes and lfIndirect notin a.flags:
putIntoDest(p, d, e, "(*($1*) ($2))" %
[getTypeDesc(p.module, e.typ), addrLoc(a)], a.storage)
elif etyp.kind == tyProc and etyp.callConv == ccClosure:
putIntoDest(p, d, e, "(($1) ($2))" %
[getClosureType(p.module, etyp, clHalfWithEnv), rdCharLoc(a)], a.storage)
else:
putIntoDest(p, d, e, "(($1) ($2))" %
[getTypeDesc(p.module, e.typ), rdCharLoc(a)], a.storage)
proc genCast(p: BProc, e: PNode, d: var TLoc) =
const ValueTypes = {tyFloat..tyFloat128, tyTuple, tyObject, tyArray}
let
destt = skipTypes(e.typ, abstractRange)
srct = skipTypes(e.sons[1].typ, abstractRange)
if destt.kind in ValueTypes or srct.kind in ValueTypes:
# 'cast' and some float type involved? --> use a union.
inc(p.labels)
var lbl = p.labels.rope
var tmp: TLoc
tmp.r = "LOC$1.source" % [lbl]
linefmt(p, cpsLocals, "union { $1 source; $2 dest; } LOC$3;$n",
getTypeDesc(p.module, e.sons[1].typ), getTypeDesc(p.module, e.typ), lbl)
tmp.k = locExpr
tmp.lode = lodeTyp srct
tmp.storage = OnStack
tmp.flags = {}
expr(p, e.sons[1], tmp)
putIntoDest(p, d, e, "LOC$#.dest" % [lbl], tmp.storage)
else:
# I prefer the shorter cast version for pointer types -> generate less
# C code; plus it's the right thing to do for closures:
genSomeCast(p, e, d)
proc genRangeChck(p: BProc, n: PNode, d: var TLoc, magic: string) =
var a: TLoc
var dest = skipTypes(n.typ, abstractVar)
# range checks for unsigned turned out to be buggy and annoying:
if optRangeCheck notin p.options or dest.skipTypes({tyRange}).kind in
{tyUInt..tyUInt64}:
initLocExpr(p, n.sons[0], a)
putIntoDest(p, d, n, "(($1) ($2))" %
[getTypeDesc(p.module, dest), rdCharLoc(a)], a.storage)
else:
initLocExpr(p, n.sons[0], a)
putIntoDest(p, d, lodeTyp dest, ropecg(p.module, "(($1)#$5($2, $3, $4))", [
getTypeDesc(p.module, dest), rdCharLoc(a),
genLiteral(p, n.sons[1], dest), genLiteral(p, n.sons[2], dest),
rope(magic)]), a.storage)
proc genConv(p: BProc, e: PNode, d: var TLoc) =
let destType = e.typ.skipTypes({tyVar, tyGenericInst, tyAlias})
if compareTypes(destType, e.sons[1].typ, dcEqIgnoreDistinct):
expr(p, e.sons[1], d)
else:
genSomeCast(p, e, d)
proc convStrToCStr(p: BProc, n: PNode, d: var TLoc) =
var a: TLoc
initLocExpr(p, n.sons[0], a)
putIntoDest(p, d, n, "$1->data" % [rdLoc(a)],
a.storage)
proc convCStrToStr(p: BProc, n: PNode, d: var TLoc) =
var a: TLoc
initLocExpr(p, n.sons[0], a)
putIntoDest(p, d, n,
ropecg(p.module, "#cstrToNimstr($1)", [rdLoc(a)]),
a.storage)
gcUsage(n)
proc genStrEquals(p: BProc, e: PNode, d: var TLoc) =
var x: TLoc
var a = e.sons[1]
var b = e.sons[2]
if (a.kind == nkNilLit) or (b.kind == nkNilLit):
binaryExpr(p, e, d, "($1 == $2)")
elif (a.kind in {nkStrLit..nkTripleStrLit}) and (a.strVal == ""):
initLocExpr(p, e.sons[2], x)
putIntoDest(p, d, e,
rfmt(nil, "(($1) && ($1)->$2 == 0)", rdLoc(x), lenField(p)))
elif (b.kind in {nkStrLit..nkTripleStrLit}) and (b.strVal == ""):
initLocExpr(p, e.sons[1], x)
putIntoDest(p, d, e,
rfmt(nil, "(($1) && ($1)->$2 == 0)", rdLoc(x), lenField(p)))
else:
binaryExpr(p, e, d, "#eqStrings($1, $2)")
proc binaryFloatArith(p: BProc, e: PNode, d: var TLoc, m: TMagic) =
if {optNaNCheck, optInfCheck} * p.options != {}:
const opr: array[mAddF64..mDivF64, string] = ["+", "-", "*", "/"]
var a, b: TLoc
assert(e.sons[1].typ != nil)
assert(e.sons[2].typ != nil)
initLocExpr(p, e.sons[1], a)
initLocExpr(p, e.sons[2], b)
putIntoDest(p, d, e, rfmt(nil, "(($4)($2) $1 ($4)($3))",
rope(opr[m]), rdLoc(a), rdLoc(b),
getSimpleTypeDesc(p.module, e[1].typ)))
if optNaNCheck in p.options:
linefmt(p, cpsStmts, "#nanCheck($1);$n", rdLoc(d))
if optInfCheck in p.options:
linefmt(p, cpsStmts, "#infCheck($1);$n", rdLoc(d))
else:
binaryArith(p, e, d, m)
proc genMagicExpr(p: BProc, e: PNode, d: var TLoc, op: TMagic) =
case op
of mOr, mAnd: genAndOr(p, e, d, op)
of mNot..mToBiggestInt: unaryArith(p, e, d, op)
of mUnaryMinusI..mAbsI: unaryArithOverflow(p, e, d, op)
of mAddF64..mDivF64: binaryFloatArith(p, e, d, op)
of mShrI..mXor: binaryArith(p, e, d, op)
of mEqProc: genEqProc(p, e, d)
of mAddI..mPred: binaryArithOverflow(p, e, d, op)
of mRepr: genRepr(p, e, d)
of mGetTypeInfo: genGetTypeInfo(p, e, d)
of mSwap: genSwap(p, e, d)
of mUnaryLt:
if optOverflowCheck notin p.options: unaryExpr(p, e, d, "($1 - 1)")
else: unaryExpr(p, e, d, "#subInt($1, 1)")
of mInc, mDec:
const opr: array[mInc..mDec, string] = ["$1 += $2;$n", "$1 -= $2;$n"]
const fun64: array[mInc..mDec, string] = ["$# = #addInt64($#, $#);$n",
"$# = #subInt64($#, $#);$n"]
const fun: array[mInc..mDec, string] = ["$# = #addInt($#, $#);$n",
"$# = #subInt($#, $#);$n"]
let underlying = skipTypes(e.sons[1].typ, {tyGenericInst, tyAlias, tyVar, tyRange})
if optOverflowCheck notin p.options or underlying.kind in {tyUInt..tyUInt64}:
binaryStmt(p, e, d, opr[op])
else:
var a, b: TLoc
assert(e.sons[1].typ != nil)
assert(e.sons[2].typ != nil)
initLocExpr(p, e.sons[1], a)
initLocExpr(p, e.sons[2], b)
let ranged = skipTypes(e.sons[1].typ, {tyGenericInst, tyAlias, tyVar})
let res = binaryArithOverflowRaw(p, ranged, a, b,
if underlying.kind == tyInt64: fun64[op] else: fun[op])
putIntoDest(p, a, e.sons[1], "($#)($#)" % [
getTypeDesc(p.module, ranged), res])
of mConStrStr: genStrConcat(p, e, d)
of mAppendStrCh: binaryStmt(p, e, d, "$1 = #addChar($1, $2);$n")
of mAppendStrStr: genStrAppend(p, e, d)
of mAppendSeqElem: genSeqElemAppend(p, e, d)
of mEqStr: genStrEquals(p, e, d)
of mLeStr: binaryExpr(p, e, d, "(#cmpStrings($1, $2) <= 0)")
of mLtStr: binaryExpr(p, e, d, "(#cmpStrings($1, $2) < 0)")
of mIsNil: genIsNil(p, e, d)
of mIntToStr: genDollar(p, e, d, "#nimIntToStr($1)")
of mInt64ToStr: genDollar(p, e, d, "#nimInt64ToStr($1)")
of mBoolToStr: genDollar(p, e, d, "#nimBoolToStr($1)")
of mCharToStr: genDollar(p, e, d, "#nimCharToStr($1)")
of mFloatToStr: genDollar(p, e, d, "#nimFloatToStr($1)")
of mCStrToStr: genDollar(p, e, d, "#cstrToNimstr($1)")
of mStrToStr: expr(p, e.sons[1], d)
of mEnumToStr: genRepr(p, e, d)
of mOf: genOf(p, e, d)
of mNew: genNew(p, e)
of mNewFinalize: genNewFinalize(p, e)
of mNewSeq: genNewSeq(p, e)
of mNewSeqOfCap: genNewSeqOfCap(p, e, d)
of mSizeOf:
let t = e.sons[1].typ.skipTypes({tyTypeDesc})
putIntoDest(p, d, e, "((NI)sizeof($1))" % [getTypeDesc(p.module, t)])
of mChr: genSomeCast(p, e, d)
of mOrd: genOrd(p, e, d)
of mLengthArray, mHigh, mLengthStr, mLengthSeq, mLengthOpenArray:
genArrayLen(p, e, d, op)
of mXLenStr:
if not p.module.compileToCpp:
unaryExpr(p, e, d, "($1->Sup.len)")
else:
unaryExpr(p, e, d, "$1->len")
of mXLenSeq:
# see 'taddhigh.nim' for why we need to use a temporary here:
var a, tmp: TLoc
initLocExpr(p, e[1], a)
getIntTemp(p, tmp)
var frmt: FormatStr
if not p.module.compileToCpp:
frmt = "$1 = $2->Sup.len;$n"
else:
frmt = "$1 = $2->len;$n"
lineCg(p, cpsStmts, frmt, tmp.r, rdLoc(a))
putIntoDest(p, d, e, tmp.r)
of mGCref: unaryStmt(p, e, d, "#nimGCref($1);$n")
of mGCunref: unaryStmt(p, e, d, "#nimGCunref($1);$n")
of mSetLengthStr: genSetLengthStr(p, e, d)
of mSetLengthSeq: genSetLengthSeq(p, e, d)
of mIncl, mExcl, mCard, mLtSet, mLeSet, mEqSet, mMulSet, mPlusSet, mMinusSet,
mInSet:
genSetOp(p, e, d, op)
of mNewString, mNewStringOfCap, mCopyStr, mCopyStrLast, mExit,
mParseBiggestFloat:
var opr = e.sons[0].sym
if lfNoDecl notin opr.loc.flags:
discard cgsym(p.module, $opr.loc.r)
genCall(p, e, d)
of mReset: genReset(p, e)
of mEcho: genEcho(p, e[1].skipConv)
of mArrToSeq: genArrToSeq(p, e, d)
of mNLen..mNError, mSlurp..mQuoteAst:
localError(e.info, errXMustBeCompileTime, e.sons[0].sym.name.s)
of mSpawn:
let n = lowerings.wrapProcForSpawn(p.module.module, e, e.typ, nil, nil)
expr(p, n, d)
of mParallel:
let n = semparallel.liftParallel(p.module.module, e)
expr(p, n, d)
of mDeepCopy:
var a, b: TLoc
let x = if e[1].kind in {nkAddr, nkHiddenAddr}: e[1][0] else: e[1]
initLocExpr(p, x, a)
initLocExpr(p, e.sons[2], b)
genDeepCopy(p, a, b)
of mDotDot, mEqCString: genCall(p, e, d)
else: internalError(e.info, "genMagicExpr: " & $op)
proc genSetConstr(p: BProc, e: PNode, d: var TLoc) =
# example: { a..b, c, d, e, f..g }
# we have to emit an expression of the form:
# memset(tmp, 0, sizeof(tmp)); inclRange(tmp, a, b); incl(tmp, c);
# incl(tmp, d); incl(tmp, e); inclRange(tmp, f, g);
var
a, b, idx: TLoc
if nfAllConst in e.flags:
putIntoDest(p, d, e, genSetNode(p, e))
else:
if d.k == locNone: getTemp(p, e.typ, d)
if getSize(e.typ) > 8:
# big set:
useStringh(p.module)
lineF(p, cpsStmts, "memset($1, 0, sizeof($1));$n", [rdLoc(d)])
for i in countup(0, sonsLen(e) - 1):
if e.sons[i].kind == nkRange:
getTemp(p, getSysType(tyInt), idx) # our counter
initLocExpr(p, e.sons[i].sons[0], a)
initLocExpr(p, e.sons[i].sons[1], b)
lineF(p, cpsStmts, "for ($1 = $3; $1 <= $4; $1++) $n" &
"$2[(NU)($1)>>3] |=(1U<<((NU)($1)&7U));$n", [rdLoc(idx), rdLoc(d),
rdSetElemLoc(a, e.typ), rdSetElemLoc(b, e.typ)])
else:
initLocExpr(p, e.sons[i], a)
lineF(p, cpsStmts, "$1[(NU)($2)>>3] |=(1U<<((NU)($2)&7U));$n",
[rdLoc(d), rdSetElemLoc(a, e.typ)])
else:
# small set
var ts = "NU" & $(getSize(e.typ) * 8)
lineF(p, cpsStmts, "$1 = 0;$n", [rdLoc(d)])
for i in countup(0, sonsLen(e) - 1):
if e.sons[i].kind == nkRange:
getTemp(p, getSysType(tyInt), idx) # our counter
initLocExpr(p, e.sons[i].sons[0], a)
initLocExpr(p, e.sons[i].sons[1], b)
lineF(p, cpsStmts, "for ($1 = $3; $1 <= $4; $1++) $n" &
"$2 |=((" & ts & ")(1)<<(($1)%(sizeof(" & ts & ")*8)));$n", [
rdLoc(idx), rdLoc(d), rdSetElemLoc(a, e.typ),
rdSetElemLoc(b, e.typ)])
else:
initLocExpr(p, e.sons[i], a)
lineF(p, cpsStmts,
"$1 |=((" & ts & ")(1)<<(($2)%(sizeof(" & ts & ")*8)));$n",
[rdLoc(d), rdSetElemLoc(a, e.typ)])
proc genTupleConstr(p: BProc, n: PNode, d: var TLoc) =
var rec: TLoc
if not handleConstExpr(p, n, d):
let t = n.typ
discard getTypeDesc(p.module, t) # so that any fields are initialized
if d.k == locNone: getTemp(p, t, d)
for i in countup(0, sonsLen(n) - 1):
var it = n.sons[i]
if it.kind == nkExprColonExpr: it = it.sons[1]
initLoc(rec, locExpr, it, d.storage)
rec.r = "$1.Field$2" % [rdLoc(d), rope(i)]
expr(p, it, rec)
proc isConstClosure(n: PNode): bool {.inline.} =
result = n.sons[0].kind == nkSym and isRoutine(n.sons[0].sym) and
n.sons[1].kind == nkNilLit
proc genClosure(p: BProc, n: PNode, d: var TLoc) =
assert n.kind == nkClosure
if isConstClosure(n):
inc(p.module.labels)
var tmp = "CNSTCLOSURE" & rope(p.module.labels)
addf(p.module.s[cfsData], "static NIM_CONST $1 $2 = $3;$n",
[getTypeDesc(p.module, n.typ), tmp, genConstExpr(p, n)])
putIntoDest(p, d, n, tmp, OnStatic)
else:
var tmp, a, b: TLoc
initLocExpr(p, n.sons[0], a)
initLocExpr(p, n.sons[1], b)
if n.sons[0].skipConv.kind == nkClosure:
internalError(n.info, "closure to closure created")
# tasyncawait.nim breaks with this optimization:
when false:
if d.k != locNone:
linefmt(p, cpsStmts, "$1.ClP_0 = $2; $1.ClE_0 = $3;$n",
d.rdLoc, a.rdLoc, b.rdLoc)
else:
getTemp(p, n.typ, tmp)
linefmt(p, cpsStmts, "$1.ClP_0 = $2; $1.ClE_0 = $3;$n",
tmp.rdLoc, a.rdLoc, b.rdLoc)
putLocIntoDest(p, d, tmp)
proc genArrayConstr(p: BProc, n: PNode, d: var TLoc) =
var arr: TLoc
if not handleConstExpr(p, n, d):
if d.k == locNone: getTemp(p, n.typ, d)
for i in countup(0, sonsLen(n) - 1):
initLoc(arr, locExpr, lodeTyp elemType(skipTypes(n.typ, abstractInst)), d.storage)
arr.r = "$1[$2]" % [rdLoc(d), intLiteral(i)]
expr(p, n.sons[i], arr)
proc genComplexConst(p: BProc, sym: PSym, d: var TLoc) =
requestConstImpl(p, sym)
assert((sym.loc.r != nil) and (sym.loc.t != nil))
putLocIntoDest(p, d, sym.loc)
proc genStmtListExpr(p: BProc, n: PNode, d: var TLoc) =
var length = sonsLen(n)
for i in countup(0, length - 2): genStmts(p, n.sons[i])
if length > 0: expr(p, n.sons[length - 1], d)
proc upConv(p: BProc, n: PNode, d: var TLoc) =
var a: TLoc
initLocExpr(p, n.sons[0], a)
let dest = skipTypes(n.typ, abstractPtrs)
if optObjCheck in p.options and not isObjLackingTypeField(dest):
var r = rdLoc(a)
var nilCheck: Rope = nil
var t = skipTypes(a.t, abstractInst)
while t.kind in {tyVar, tyPtr, tyRef}:
if t.kind != tyVar: nilCheck = r
if t.kind != tyVar or not p.module.compileToCpp:
r = "(*$1)" % [r]
t = skipTypes(t.lastSon, abstractInst)
if not p.module.compileToCpp:
while t.kind == tyObject and t.sons[0] != nil:
add(r, ".Sup")
t = skipTypes(t.sons[0], skipPtrs)
if nilCheck != nil:
linefmt(p, cpsStmts, "if ($1) #chckObj($2.m_type, $3);$n",
nilCheck, r, genTypeInfo(p.module, dest, n.info))
else:
linefmt(p, cpsStmts, "#chckObj($1.m_type, $2);$n",
r, genTypeInfo(p.module, dest, n.info))
if n.sons[0].typ.kind != tyObject:
putIntoDest(p, d, n,
"(($1) ($2))" % [getTypeDesc(p.module, n.typ), rdLoc(a)], a.storage)
else:
putIntoDest(p, d, n, "(*($1*) ($2))" %
[getTypeDesc(p.module, dest), addrLoc(a)], a.storage)
proc downConv(p: BProc, n: PNode, d: var TLoc) =
if p.module.compileToCpp:
expr(p, n.sons[0], d) # downcast does C++ for us
else:
var dest = skipTypes(n.typ, abstractPtrs)
var arg = n.sons[0]
while arg.kind == nkObjDownConv: arg = arg.sons[0]
var src = skipTypes(arg.typ, abstractPtrs)
var a: TLoc
initLocExpr(p, arg, a)
var r = rdLoc(a)
let isRef = skipTypes(arg.typ, abstractInst).kind in {tyRef, tyPtr, tyVar}
if isRef:
add(r, "->Sup")
else:
add(r, ".Sup")
for i in countup(2, abs(inheritanceDiff(dest, src))): add(r, ".Sup")
if isRef:
# it can happen that we end up generating '&&x->Sup' here, so we pack
# the '&x->Sup' into a temporary and then those address is taken
# (see bug #837). However sometimes using a temporary is not correct:
# init(TFigure(my)) # where it is passed to a 'var TFigure'. We test
# this by ensuring the destination is also a pointer:
if d.k == locNone and skipTypes(n.typ, abstractInst).kind in {tyRef, tyPtr, tyVar}:
getTemp(p, n.typ, d)
linefmt(p, cpsStmts, "$1 = &$2;$n", rdLoc(d), r)
else:
r = "&" & r
putIntoDest(p, d, n, r, a.storage)
else:
putIntoDest(p, d, n, r, a.storage)
proc exprComplexConst(p: BProc, n: PNode, d: var TLoc) =
let t = n.typ
discard getTypeDesc(p.module, t) # so that any fields are initialized
let id = nodeTableTestOrSet(p.module.dataCache, n, p.module.labels)
let tmp = p.module.tmpBase & rope(id)
if id == p.module.labels:
# expression not found in the cache:
inc(p.module.labels)
addf(p.module.s[cfsData], "NIM_CONST $1 $2 = $3;$n",
[getTypeDesc(p.module, t), tmp, genConstExpr(p, n)])
if d.k == locNone:
fillLoc(d, locData, n, tmp, OnStatic)
else:
putDataIntoDest(p, d, n, tmp)
# This fixes bug #4551, but we really need better dataflow
# analysis to make this 100% safe.
if t.kind notin {tySequence, tyString}:
d.storage = OnStatic
proc expr(p: BProc, n: PNode, d: var TLoc) =
p.currLineInfo = n.info
case n.kind
of nkSym:
var sym = n.sym
case sym.kind
of skMethod:
if {sfDispatcher, sfForward} * sym.flags != {}:
# we cannot produce code for the dispatcher yet:
fillProcLoc(p.module, n)
genProcPrototype(p.module, sym)
else:
genProc(p.module, sym)
putLocIntoDest(p, d, sym.loc)
of skProc, skConverter, skIterator, skFunc:
#if sym.kind == skIterator:
# echo renderTree(sym.getBody, {renderIds})
if sfCompileTime in sym.flags:
localError(n.info, "request to generate code for .compileTime proc: " &
sym.name.s)
genProc(p.module, sym)
if sym.loc.r == nil or sym.loc.lode == nil:
internalError(n.info, "expr: proc not init " & sym.name.s)
putLocIntoDest(p, d, sym.loc)
of skConst:
if isSimpleConst(sym.typ):
putIntoDest(p, d, n, genLiteral(p, sym.ast, sym.typ), OnStatic)
else:
genComplexConst(p, sym, d)
of skEnumField:
putIntoDest(p, d, n, rope(sym.position))
of skVar, skForVar, skResult, skLet:
if {sfGlobal, sfThread} * sym.flags != {}:
genVarPrototype(p.module, n)
if sym.loc.r == nil or sym.loc.t == nil:
#echo "FAILED FOR PRCO ", p.prc.name.s
#echo renderTree(p.prc.ast, {renderIds})
internalError n.info, "expr: var not init " & sym.name.s & "_" & $sym.id
if sfThread in sym.flags:
accessThreadLocalVar(p, sym)
if emulatedThreadVars():
putIntoDest(p, d, sym.loc.lode, "NimTV_->" & sym.loc.r)
else:
putLocIntoDest(p, d, sym.loc)
else:
putLocIntoDest(p, d, sym.loc)
of skTemp:
if sym.loc.r == nil or sym.loc.t == nil:
#echo "FAILED FOR PRCO ", p.prc.name.s
#echo renderTree(p.prc.ast, {renderIds})
internalError(n.info, "expr: temp not init " & sym.name.s & "_" & $sym.id)
putLocIntoDest(p, d, sym.loc)
of skParam:
if sym.loc.r == nil or sym.loc.t == nil:
# echo "FAILED FOR PRCO ", p.prc.name.s
# debug p.prc.typ.n
# echo renderTree(p.prc.ast, {renderIds})
internalError(n.info, "expr: param not init " & sym.name.s & "_" & $sym.id)
putLocIntoDest(p, d, sym.loc)
else: internalError(n.info, "expr(" & $sym.kind & "); unknown symbol")
of nkNilLit:
if not isEmptyType(n.typ):
putIntoDest(p, d, n, genLiteral(p, n))
of nkStrLit..nkTripleStrLit:
putDataIntoDest(p, d, n, genLiteral(p, n))
of nkIntLit..nkUInt64Lit,
nkFloatLit..nkFloat128Lit, nkCharLit:
putIntoDest(p, d, n, genLiteral(p, n))
of nkCall, nkHiddenCallConv, nkInfix, nkPrefix, nkPostfix, nkCommand,
nkCallStrLit:
genLineDir(p, n)
let op = n.sons[0]
if n.typ.isNil:
# discard the value:
var a: TLoc
if op.kind == nkSym and op.sym.magic != mNone:
genMagicExpr(p, n, a, op.sym.magic)
else:
genCall(p, n, a)
else:
# load it into 'd':
if op.kind == nkSym and op.sym.magic != mNone:
genMagicExpr(p, n, d, op.sym.magic)
else:
genCall(p, n, d)
of nkCurly:
if isDeepConstExpr(n) and n.len != 0:
putIntoDest(p, d, n, genSetNode(p, n))
else:
genSetConstr(p, n, d)
of nkBracket:
if isDeepConstExpr(n) and n.len != 0:
exprComplexConst(p, n, d)
elif skipTypes(n.typ, abstractVarRange).kind == tySequence:
genSeqConstr(p, n, d)
else:
genArrayConstr(p, n, d)
of nkPar:
if isDeepConstExpr(n) and n.len != 0:
exprComplexConst(p, n, d)
else:
genTupleConstr(p, n, d)
of nkObjConstr: genObjConstr(p, n, d)
of nkCast: genCast(p, n, d)
of nkHiddenStdConv, nkHiddenSubConv, nkConv: genConv(p, n, d)
of nkHiddenAddr, nkAddr: genAddr(p, n, d)
of nkBracketExpr: genBracketExpr(p, n, d)
of nkDerefExpr, nkHiddenDeref: genDeref(p, n, d)
of nkDotExpr: genRecordField(p, n, d)
of nkCheckedFieldExpr: genCheckedRecordField(p, n, d)
of nkBlockExpr, nkBlockStmt: genBlock(p, n, d)
of nkStmtListExpr: genStmtListExpr(p, n, d)
of nkStmtList:
for i in countup(0, sonsLen(n) - 1): genStmts(p, n.sons[i])
of nkIfExpr, nkIfStmt: genIf(p, n, d)
of nkWhen:
# This should be a "when nimvm" node.
expr(p, n.sons[1].sons[0], d)
of nkObjDownConv: downConv(p, n, d)
of nkObjUpConv: upConv(p, n, d)
of nkChckRangeF: genRangeChck(p, n, d, "chckRangeF")
of nkChckRange64: genRangeChck(p, n, d, "chckRange64")
of nkChckRange: genRangeChck(p, n, d, "chckRange")
of nkStringToCString: convStrToCStr(p, n, d)
of nkCStringToString: convCStrToStr(p, n, d)
of nkLambdaKinds:
var sym = n.sons[namePos].sym
genProc(p.module, sym)
if sym.loc.r == nil or sym.loc.lode == nil:
internalError(n.info, "expr: proc not init " & sym.name.s)
putLocIntoDest(p, d, sym.loc)
of nkClosure: genClosure(p, n, d)
of nkEmpty: discard
of nkWhileStmt: genWhileStmt(p, n)
of nkVarSection, nkLetSection: genVarStmt(p, n)
of nkConstSection: genConstStmt(p, n)
of nkForStmt: internalError(n.info, "for statement not eliminated")
of nkCaseStmt: genCase(p, n, d)
of nkReturnStmt: genReturnStmt(p, n)
of nkBreakStmt: genBreakStmt(p, n)
of nkAsgn:
if nfPreventCg notin n.flags:
genAsgn(p, n, fastAsgn=false)
of nkFastAsgn:
if nfPreventCg notin n.flags:
# transf is overly aggressive with 'nkFastAsgn', so we work around here.
# See tests/run/tcnstseq3 for an example that would fail otherwise.
genAsgn(p, n, fastAsgn=p.prc != nil)
of nkDiscardStmt:
let ex = n[0]
if ex.kind != nkEmpty:
genLineDir(p, n)
var a: TLoc
if ex.kind in nkCallKinds and (ex[0].kind != nkSym or
ex[0].sym.magic == mNone):
# bug #6037: do not assign to a temp in C++ mode:
incl a.flags, lfSingleUse
genCall(p, ex, a)
if lfSingleUse notin a.flags:
line(p, cpsStmts, a.r & ";" & tnl)
else:
initLocExpr(p, ex, a)
of nkAsmStmt: genAsmStmt(p, n)
of nkTryStmt:
if p.module.compileToCpp and optNoCppExceptions notin gGlobalOptions:
genTryCpp(p, n, d)
else:
genTry(p, n, d)
of nkRaiseStmt: genRaiseStmt(p, n)
of nkTypeSection:
# we have to emit the type information for object types here to support
# separate compilation:
genTypeSection(p.module, n)
of nkCommentStmt, nkIteratorDef, nkIncludeStmt,
nkImportStmt, nkImportExceptStmt, nkExportStmt, nkExportExceptStmt,
nkFromStmt, nkTemplateDef, nkMacroDef:
discard
of nkPragma: genPragma(p, n)
of nkPragmaBlock: expr(p, n.lastSon, d)
of nkProcDef, nkFuncDef, nkMethodDef, nkConverterDef:
if n.sons[genericParamsPos].kind == nkEmpty:
var prc = n.sons[namePos].sym
# due to a bug/limitation in the lambda lifting, unused inner procs
# are not transformed correctly. We work around this issue (#411) here
# by ensuring it's no inner proc (owner is a module):
if prc.skipGenericOwner.kind == skModule and sfCompileTime notin prc.flags:
if (not emitLazily(prc)) or
({sfExportc, sfCompilerProc} * prc.flags == {sfExportc}) or
(sfExportc in prc.flags and lfExportLib in prc.loc.flags) or
(prc.kind == skMethod):
# we have not only the header:
if prc.getBody.kind != nkEmpty or lfDynamicLib in prc.loc.flags:
genProc(p.module, prc)
of nkParForStmt: genParForStmt(p, n)
of nkState: genState(p, n)
of nkGotoState: genGotoState(p, n)
of nkBreakState: genBreakState(p, n)
else: internalError(n.info, "expr(" & $n.kind & "); unknown node kind")
proc genNamedConstExpr(p: BProc, n: PNode): Rope =
if n.kind == nkExprColonExpr: result = genConstExpr(p, n.sons[1])
else: result = genConstExpr(p, n)
proc getDefaultValue(p: BProc; typ: PType; info: TLineInfo): Rope =
var t = skipTypes(typ, abstractRange-{tyTypeDesc})
case t.kind
of tyBool: result = rope"NIM_FALSE"
of tyEnum, tyChar, tyInt..tyInt64, tyUInt..tyUInt64: result = rope"0"
of tyFloat..tyFloat128: result = rope"0.0"
of tyCString, tyString, tyVar, tyPointer, tyPtr, tySequence, tyExpr,
tyStmt, tyTypeDesc, tyStatic, tyRef, tyNil:
result = rope"NIM_NIL"
of tyProc:
if t.callConv != ccClosure:
result = rope"NIM_NIL"
else:
result = rope"{NIM_NIL, NIM_NIL}"
of tyObject:
if not isObjLackingTypeField(t) and not p.module.compileToCpp:
result = "{{$1}}" % [genTypeInfo(p.module, t, info)]
else:
result = rope"{}"
of tyArray, tyTuple: result = rope"{}"
of tySet:
if mapType(t) == ctArray: result = rope"{}"
else: result = rope"0"
else:
globalError(info, "cannot create null element for: " & $t.kind)
proc getNullValueAux(p: BProc; t: PType; obj, cons: PNode, result: var Rope; count: var int) =
case obj.kind
of nkRecList:
for i in countup(0, sonsLen(obj) - 1):
getNullValueAux(p, t, obj.sons[i], cons, result, count)
of nkRecCase:
getNullValueAux(p, t, obj.sons[0], cons, result, count)
for i in countup(1, sonsLen(obj) - 1):
getNullValueAux(p, t, lastSon(obj.sons[i]), cons, result, count)
of nkSym:
if count > 0: result.add ", "
inc count
let field = obj.sym
for i in 1.. 0:
add(result, genNamedConstExpr(p, n.sons[length - 1]))
addf(result, "}$n", [])
proc genConstSeq(p: BProc, n: PNode, t: PType): Rope =
var data = "{{$1, $1}" % [n.len.rope]
if n.len > 0:
# array part needs extra curlies:
data.add(", {")
for i in countup(0, n.len - 1):
if i > 0: data.addf(",$n", [])
data.add genConstExpr(p, n.sons[i])
data.add("}")
data.add("}")
result = getTempName(p.module)
let base = t.skipTypes(abstractInst).sons[0]
appcg(p.module, cfsData,
"NIM_CONST struct {$n" &
" #TGenericSeq Sup;$n" &
" $1 data[$2];$n" &
"} $3 = $4;$n", [
getTypeDesc(p.module, base), n.len.rope, result, data])
result = "(($1)&$2)" % [getTypeDesc(p.module, t), result]
proc genConstExpr(p: BProc, n: PNode): Rope =
case n.kind
of nkHiddenStdConv, nkHiddenSubConv:
result = genConstExpr(p, n.sons[1])
of nkCurly:
var cs: TBitSet
toBitSet(n, cs)
result = genRawSetData(cs, int(getSize(n.typ)))
of nkBracket, nkPar, nkClosure:
var t = skipTypes(n.typ, abstractInst)
if t.kind == tySequence:
result = genConstSeq(p, n, n.typ)
elif t.kind == tyProc and t.callConv == ccClosure and not n.sons.isNil and
n.sons[0].kind == nkNilLit and n.sons[1].kind == nkNilLit:
# this hack fixes issue that nkNilLit is expanded to {NIM_NIL,NIM_NIL}
# this behaviour is needed since closure_var = nil must be
# expanded to {NIM_NIL,NIM_NIL}
# in VM closures are initialized with nkPar(nkNilLit, nkNilLit)
# leading to duplicate code like this:
# "{NIM_NIL,NIM_NIL}, {NIM_NIL,NIM_NIL}"
result = ~"{NIM_NIL,NIM_NIL}"
else:
result = genConstSimpleList(p, n)
of nkObjConstr:
result = genConstObjConstr(p, n)
else:
var d: TLoc
initLocExpr(p, n, d)
result = rdLoc(d)