# # # The Nim Compiler # (c) Copyright 2017 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## Injects destructor calls into Nim code as well as ## an optimizer that optimizes copies to moves. This is implemented as an ## AST to AST transformation so that every backend benefits from it. ## See doc/destructors.rst for a spec of the implemented rewrite rules import intsets, strtabs, ast, astalgo, msgs, renderer, magicsys, types, idents, strutils, options, dfa, lowerings, tables, modulegraphs, msgs, lineinfos, parampatterns, sighashes, liftdestructors, optimizer, varpartitions from trees import exprStructuralEquivalent, getRoot type Con = object owner: PSym g: ControlFlowGraph graph: ModuleGraph inLoop, inSpawn, inLoopCond: int uninit: IntSet # set of uninit'ed vars uninitComputed: bool idgen: IdGenerator Scope = object # we do scope-based memory management. # a scope is comparable to an nkStmtListExpr like # (try: statements; dest = y(); finally: destructors(); dest) vars: seq[PSym] wasMoved: seq[PNode] final: seq[PNode] # finally section needsTry: bool parent: ptr Scope ProcessMode = enum normal consumed sinkArg const toDebug {.strdefine.} = "" proc hasDestructor(c: Con; t: PType): bool {.inline.} = result = ast.hasDestructor(t) when toDebug.len > 0: # for more effective debugging if not result and c.graph.config.selectedGC in {gcArc, gcOrc}: assert(not containsGarbageCollectedRef(t)) template dbg(body) = when toDebug.len > 0: if c.owner.name.s == toDebug or toDebug == "always": body proc getTemp(c: var Con; s: var Scope; typ: PType; info: TLineInfo): PNode = let sym = newSym(skTemp, getIdent(c.graph.cache, ":tmpD"), nextSymId c.idgen, c.owner, info) sym.typ = typ s.vars.add(sym) result = newSymNode(sym) proc nestedScope(parent: var Scope): Scope = Scope(vars: @[], wasMoved: @[], final: @[], needsTry: false, parent: addr(parent)) proc p(n: PNode; c: var Con; s: var Scope; mode: ProcessMode): PNode proc moveOrCopy(dest, ri: PNode; c: var Con; s: var Scope; isDecl = false): PNode import sets, hashes, tables proc hash(n: PNode): Hash = hash(cast[pointer](n)) type AliasCache = Table[(PNode, PNode), AliasKind] proc aliasesCached(cache: var AliasCache, obj, field: PNode): AliasKind = let key = (obj, field) if not cache.hasKey(key): cache[key] = aliases(obj, field) cache[key] proc collectLastReads(cfg: ControlFlowGraph; cache: var AliasCache, lastReads, potLastReads: var IntSet; pc: var int, until: int) = template aliasesCached(obj, field: PNode): untyped = aliasesCached(cache, obj, field) while pc < until: case cfg[pc].kind of def: let potLastReadsCopy = potLastReads for r in potLastReadsCopy: if cfg[pc].n.aliasesCached(cfg[r].n) == yes: # the path leads to a redefinition of 's' --> sink 's'. lastReads.incl r potLastReads.excl r elif cfg[r].n.aliasesCached(cfg[pc].n) != no: # only partially writes to 's' --> can't sink 's', so this def reads 's' # or maybe writes to 's' --> can't sink 's' cfg[r].n.comment = '\n' & $pc potLastReads.excl r inc pc of use: let potLastReadsCopy = potLastReads for r in potLastReadsCopy: if cfg[pc].n.aliasesCached(cfg[r].n) != no or cfg[r].n.aliasesCached(cfg[pc].n) != no: cfg[r].n.comment = '\n' & $pc potLastReads.excl r potLastReads.incl pc inc pc of goto: pc += cfg[pc].dest of fork: var variantA = pc + 1 var variantB = pc + cfg[pc].dest var potLastReadsA, potLastReadsB = potLastReads var lastReadsA, lastReadsB: IntSet while variantA != variantB and max(variantA, variantB) < cfg.len and min(variantA, variantB) < until: if variantA < variantB: collectLastReads(cfg, cache, lastReadsA, potLastReadsA, variantA, min(variantB, until)) else: collectLastReads(cfg, cache, lastReadsB, potLastReadsB, variantB, min(variantA, until)) # Add those last reads that were turned into last reads on both branches lastReads.incl lastReadsA * lastReadsB # Add those last reads that were turned into last reads on only one branch, # but where the read operation itself also belongs to only that branch lastReads.incl (lastReadsA + lastReadsB) - potLastReads let oldPotLastReads = potLastReads potLastReads = initIntSet() potLastReads.incl potLastReadsA + potLastReadsB # Remove potential last reads that were invalidated in a branch, # but don't remove those which were turned into last reads on that branch potLastReads.excl ((oldPotLastReads - potLastReadsA) - lastReadsA) potLastReads.excl ((oldPotLastReads - potLastReadsB) - lastReadsB) pc = min(variantA, variantB) proc collectFirstWrites(cfg: ControlFlowGraph; alreadySeen: var HashSet[PNode]; pc: var int, until: int) = while pc < until: case cfg[pc].kind of def: var alreadySeenThisNode = false for s in alreadySeen: if cfg[pc].n.aliases(s) != no or s.aliases(cfg[pc].n) != no: alreadySeenThisNode = true; break if alreadySeenThisNode: cfg[pc].n.flags.excl nfFirstWrite else: cfg[pc].n.flags.incl nfFirstWrite alreadySeen.incl cfg[pc].n inc pc of use: alreadySeen.incl cfg[pc].n inc pc of goto: pc += cfg[pc].dest of fork: var variantA = pc + 1 var variantB = pc + cfg[pc].dest var alreadySeenA, alreadySeenB = alreadySeen while variantA != variantB and max(variantA, variantB) < cfg.len and min(variantA, variantB) < until: if variantA < variantB: collectFirstWrites(cfg, alreadySeenA, variantA, min(variantB, until)) else: collectFirstWrites(cfg, alreadySeenB, variantB, min(variantA, until)) alreadySeen.incl alreadySeenA + alreadySeenB pc = min(variantA, variantB) proc isLastRead(n: PNode; c: var Con): bool = let m = dfa.skipConvDfa(n) (m.kind == nkSym and sfSingleUsedTemp in m.sym.flags) or nfLastRead in m.flags proc isFirstWrite(n: PNode; c: var Con): bool = let m = dfa.skipConvDfa(n) nfFirstWrite in m.flags proc initialized(code: ControlFlowGraph; pc: int, init, uninit: var IntSet; until: int): int = ## Computes the set of definitely initialized variables across all code paths ## as an IntSet of IDs. var pc = pc while pc < code.len: case code[pc].kind of goto: pc += code[pc].dest of fork: var initA = initIntSet() var initB = initIntSet() var variantA = pc + 1 var variantB = pc + code[pc].dest while variantA != variantB: if max(variantA, variantB) > until: break if variantA < variantB: variantA = initialized(code, variantA, initA, uninit, min(variantB, until)) else: variantB = initialized(code, variantB, initB, uninit, min(variantA, until)) pc = min(variantA, variantB) # we add vars if they are in both branches: for v in initA: if v in initB: init.incl v of use: let v = code[pc].n.sym if v.kind != skParam and v.id notin init: # attempt to read an uninit'ed variable uninit.incl v.id inc pc of def: let v = code[pc].n.sym init.incl v.id inc pc return pc proc isCursor(n: PNode): bool = case n.kind of nkSym: sfCursor in n.sym.flags of nkDotExpr: isCursor(n[1]) of nkCheckedFieldExpr: isCursor(n[0]) else: false template isUnpackedTuple(n: PNode): bool = ## we move out all elements of unpacked tuples, ## hence unpacked tuples themselves don't need to be destroyed (n.kind == nkSym and n.sym.kind == skTemp and n.sym.typ.kind == tyTuple) from strutils import parseInt proc checkForErrorPragma(c: Con; t: PType; ri: PNode; opname: string) = var m = "'" & opname & "' is not available for type <" & typeToString(t) & ">" if (opname == "=" or opname == "=copy") and ri != nil: m.add "; requires a copy because it's not the last read of '" m.add renderTree(ri) m.add '\'' if ri.comment.startsWith('\n'): m.add "; another read is done here: " m.add c.graph.config $ c.g[parseInt(ri.comment[1..^1])].n.info elif ri.kind == nkSym and ri.sym.kind == skParam and not isSinkType(ri.sym.typ): m.add "; try to make " m.add renderTree(ri) m.add " a 'sink' parameter" m.add "; routine: " m.add c.owner.name.s localError(c.graph.config, ri.info, errGenerated, m) proc makePtrType(c: var Con, baseType: PType): PType = result = newType(tyPtr, nextTypeId c.idgen, c.owner) addSonSkipIntLit(result, baseType, c.idgen) proc genOp(c: var Con; op: PSym; dest: PNode): PNode = let addrExp = newNodeIT(nkHiddenAddr, dest.info, makePtrType(c, dest.typ)) addrExp.add(dest) result = newTree(nkCall, newSymNode(op), addrExp) proc genOp(c: var Con; t: PType; kind: TTypeAttachedOp; dest, ri: PNode): PNode = var op = getAttachedOp(c.graph, t, kind) if op == nil or op.ast.isGenericRoutine: # give up and find the canonical type instead: let h = sighashes.hashType(t, {CoType, CoConsiderOwned, CoDistinct}) let canon = c.graph.canonTypes.getOrDefault(h) if canon != nil: op = getAttachedOp(c.graph, canon, kind) if op == nil: #echo dest.typ.id globalError(c.graph.config, dest.info, "internal error: '" & AttachedOpToStr[kind] & "' operator not found for type " & typeToString(t)) elif op.ast.isGenericRoutine: globalError(c.graph.config, dest.info, "internal error: '" & AttachedOpToStr[kind] & "' operator is generic") dbg: if kind == attachedDestructor: echo "destructor is ", op.id, " ", op.ast if sfError in op.flags: checkForErrorPragma(c, t, ri, AttachedOpToStr[kind]) c.genOp(op, dest) proc genDestroy(c: var Con; dest: PNode): PNode = let t = dest.typ.skipTypes({tyGenericInst, tyAlias, tySink}) result = c.genOp(t, attachedDestructor, dest, nil) proc canBeMoved(c: Con; t: PType): bool {.inline.} = let t = t.skipTypes({tyGenericInst, tyAlias, tySink}) if optOwnedRefs in c.graph.config.globalOptions: result = t.kind != tyRef and getAttachedOp(c.graph, t, attachedSink) != nil else: result = getAttachedOp(c.graph, t, attachedSink) != nil proc isNoInit(dest: PNode): bool {.inline.} = result = dest.kind == nkSym and sfNoInit in dest.sym.flags proc genSink(c: var Con; dest, ri: PNode, isDecl = false): PNode = if (c.inLoopCond == 0 and (isUnpackedTuple(dest) or isDecl or (isAnalysableFieldAccess(dest, c.owner) and isFirstWrite(dest, c)))) or isNoInit(dest): # optimize sink call into a bitwise memcopy result = newTree(nkFastAsgn, dest, ri) else: let t = dest.typ.skipTypes({tyGenericInst, tyAlias, tySink}) if getAttachedOp(c.graph, t, attachedSink) != nil: result = c.genOp(t, attachedSink, dest, ri) result.add ri else: # the default is to use combination of `=destroy(dest)` and # and copyMem(dest, source). This is efficient. result = newTree(nkStmtList, c.genDestroy(dest), newTree(nkFastAsgn, dest, ri)) proc isCriticalLink(dest: PNode): bool {.inline.} = #[ Lins's idea that only "critical" links can introduce a cycle. This is critical for the performance gurantees that we strive for: If you traverse a data structure, no tracing will be performed at all. ORC is about this promise: The GC only touches the memory that the mutator touches too. These constructs cannot possibly create cycles:: local = ... new(x) dest = ObjectConstructor(field: noalias(dest)) But since 'ObjectConstructor' is already moved into 'dest' all we really have to look for is assignments to local variables. ]# result = dest.kind != nkSym proc finishCopy(c: var Con; result, dest: PNode; isFromSink: bool) = if c.graph.config.selectedGC == gcOrc: let t = dest.typ.skipTypes({tyGenericInst, tyAlias, tySink, tyDistinct}) if cyclicType(t): result.add boolLit(c.graph, result.info, isFromSink or isCriticalLink(dest)) proc genMarkCyclic(c: var Con; result, dest: PNode) = if c.graph.config.selectedGC == gcOrc: let t = dest.typ.skipTypes({tyGenericInst, tyAlias, tySink, tyDistinct}) if cyclicType(t): if t.kind == tyRef: result.add callCodegenProc(c.graph, "nimMarkCyclic", dest.info, dest) else: let xenv = genBuiltin(c.graph, c.idgen, mAccessEnv, "accessEnv", dest) xenv.typ = getSysType(c.graph, dest.info, tyPointer) result.add callCodegenProc(c.graph, "nimMarkCyclic", dest.info, xenv) proc genCopyNoCheck(c: var Con; dest, ri: PNode): PNode = let t = dest.typ.skipTypes({tyGenericInst, tyAlias, tySink}) result = c.genOp(t, attachedAsgn, dest, ri) proc genCopy(c: var Con; dest, ri: PNode): PNode = let t = dest.typ if tfHasOwned in t.flags and ri.kind != nkNilLit: # try to improve the error message here: c.checkForErrorPragma(t, ri, "=copy") result = c.genCopyNoCheck(dest, ri) proc genDiscriminantAsgn(c: var Con; s: var Scope; n: PNode): PNode = # discriminator is ordinal value that doesn't need sink destroy # but fields within active case branch might need destruction # tmp to support self assignments let tmp = c.getTemp(s, n[1].typ, n.info) result = newTree(nkStmtList) result.add newTree(nkFastAsgn, tmp, p(n[1], c, s, consumed)) result.add p(n[0], c, s, normal) let le = p(n[0], c, s, normal) let leDotExpr = if le.kind == nkCheckedFieldExpr: le[0] else: le let objType = leDotExpr[0].typ if hasDestructor(c, objType): if getAttachedOp(c.graph, objType, attachedDestructor) != nil and sfOverriden in getAttachedOp(c.graph, objType, attachedDestructor).flags: localError(c.graph.config, n.info, errGenerated, """Assignment to discriminant for objects with user defined destructor is not supported, object must have default destructor. It is best to factor out piece of object that needs custom destructor into separate object or not use discriminator assignment""") result.add newTree(nkFastAsgn, le, tmp) return # generate: if le != tmp: `=destroy`(le) let branchDestructor = produceDestructorForDiscriminator(c.graph, objType, leDotExpr[1].sym, n.info, c.idgen) let cond = newNodeIT(nkInfix, n.info, getSysType(c.graph, unknownLineInfo, tyBool)) cond.add newSymNode(getMagicEqSymForType(c.graph, le.typ, n.info)) cond.add le cond.add tmp let notExpr = newNodeIT(nkPrefix, n.info, getSysType(c.graph, unknownLineInfo, tyBool)) notExpr.add newSymNode(createMagic(c.graph, c.idgen, "not", mNot)) notExpr.add cond result.add newTree(nkIfStmt, newTree(nkElifBranch, notExpr, c.genOp(branchDestructor, le))) result.add newTree(nkFastAsgn, le, tmp) proc genWasMoved(c: var Con, n: PNode): PNode = result = newNodeI(nkCall, n.info) result.add(newSymNode(createMagic(c.graph, c.idgen, "wasMoved", mWasMoved))) result.add copyTree(n) #mWasMoved does not take the address #if n.kind != nkSym: # message(c.graph.config, n.info, warnUser, "wasMoved(" & $n & ")") proc genDefaultCall(t: PType; c: Con; info: TLineInfo): PNode = result = newNodeI(nkCall, info) result.add(newSymNode(createMagic(c.graph, c.idgen, "default", mDefault))) result.typ = t proc destructiveMoveVar(n: PNode; c: var Con; s: var Scope): PNode = # generate: (let tmp = v; reset(v); tmp) if not hasDestructor(c, n.typ): assert n.kind != nkSym or not hasDestructor(c, n.sym.typ) result = copyTree(n) else: result = newNodeIT(nkStmtListExpr, n.info, n.typ) var temp = newSym(skLet, getIdent(c.graph.cache, "blitTmp"), nextSymId c.idgen, c.owner, n.info) temp.typ = n.typ var v = newNodeI(nkLetSection, n.info) let tempAsNode = newSymNode(temp) var vpart = newNodeI(nkIdentDefs, tempAsNode.info, 3) vpart[0] = tempAsNode vpart[1] = newNodeI(nkEmpty, tempAsNode.info) vpart[2] = n v.add(vpart) result.add v let nn = skipConv(n) c.genMarkCyclic(result, nn) let wasMovedCall = c.genWasMoved(nn) result.add wasMovedCall result.add tempAsNode proc isCapturedVar(n: PNode): bool = let root = getRoot(n) if root != nil: result = root.name.s[0] == ':' proc passCopyToSink(n: PNode; c: var Con; s: var Scope): PNode = result = newNodeIT(nkStmtListExpr, n.info, n.typ) let tmp = c.getTemp(s, n.typ, n.info) if hasDestructor(c, n.typ): result.add c.genWasMoved(tmp) var m = c.genCopy(tmp, n) m.add p(n, c, s, normal) c.finishCopy(m, n, isFromSink = true) result.add m if isLValue(n) and not isCapturedVar(n) and n.typ.skipTypes(abstractInst).kind != tyRef and c.inSpawn == 0: message(c.graph.config, n.info, hintPerformance, ("passing '$1' to a sink parameter introduces an implicit copy; " & "if possible, rearrange your program's control flow to prevent it") % $n) else: if c.graph.config.selectedGC in {gcArc, gcOrc}: assert(not containsManagedMemory(n.typ)) if n.typ.skipTypes(abstractInst).kind in {tyOpenArray, tyVarargs}: localError(c.graph.config, n.info, "cannot create an implicit openArray copy to be passed to a sink parameter") result.add newTree(nkAsgn, tmp, p(n, c, s, normal)) # Since we know somebody will take over the produced copy, there is # no need to destroy it. result.add tmp proc isDangerousSeq(t: PType): bool {.inline.} = let t = t.skipTypes(abstractInst) result = t.kind == tySequence and tfHasOwned notin t[0].flags proc containsConstSeq(n: PNode): bool = if n.kind == nkBracket and n.len > 0 and n.typ != nil and isDangerousSeq(n.typ): return true result = false case n.kind of nkExprEqExpr, nkExprColonExpr, nkHiddenStdConv, nkHiddenSubConv: result = containsConstSeq(n[1]) of nkObjConstr, nkClosure: for i in 1.. 0: # unpacked tuple needs reset at every loop iteration res.add newTree(nkFastAsgn, v, genDefaultCall(v.typ, c, v.info)) elif sfThread notin v.sym.flags and sfCursor notin v.sym.flags: # do not destroy thread vars for now at all for consistency. if sfGlobal in v.sym.flags and s.parent == nil: #XXX: Rethink this logic (see tarcmisc.test2) c.graph.globalDestructors.add c.genDestroy(v) else: s.final.add c.genDestroy(v) proc processScope(c: var Con; s: var Scope; ret: PNode): PNode = result = newNodeI(nkStmtList, ret.info) if s.vars.len > 0: let varSection = newNodeI(nkVarSection, ret.info) for tmp in s.vars: varSection.add newTree(nkIdentDefs, newSymNode(tmp), newNodeI(nkEmpty, ret.info), newNodeI(nkEmpty, ret.info)) result.add varSection if s.wasMoved.len > 0 or s.final.len > 0: let finSection = newNodeI(nkStmtList, ret.info) for m in s.wasMoved: finSection.add m for i in countdown(s.final.high, 0): finSection.add s.final[i] if s.needsTry: result.add newTryFinally(ret, finSection) else: result.add ret result.add finSection else: result.add ret if s.parent != nil: s.parent[].needsTry = s.parent[].needsTry or s.needsTry template processScopeExpr(c: var Con; s: var Scope; ret: PNode, processCall: untyped): PNode = assert not ret.typ.isEmptyType var result = newNodeI(nkStmtListExpr, ret.info) # There is a possibility to do this check: s.wasMoved.len > 0 or s.final.len > 0 # later and use it to eliminate the temporary when theres no need for it, but its # tricky because you would have to intercept moveOrCopy at a certain point let tmp = c.getTemp(s.parent[], ret.typ, ret.info) tmp.sym.flags.incl sfSingleUsedTemp let cpy = if hasDestructor(c, ret.typ): s.parent[].final.add c.genDestroy(tmp) moveOrCopy(tmp, ret, c, s, isDecl = true) else: newTree(nkFastAsgn, tmp, p(ret, c, s, normal)) if s.vars.len > 0: let varSection = newNodeI(nkVarSection, ret.info) for tmp in s.vars: varSection.add newTree(nkIdentDefs, newSymNode(tmp), newNodeI(nkEmpty, ret.info), newNodeI(nkEmpty, ret.info)) result.add varSection let finSection = newNodeI(nkStmtList, ret.info) for m in s.wasMoved: finSection.add m for i in countdown(s.final.high, 0): finSection.add s.final[i] if s.needsTry: result.add newTryFinally(newTree(nkStmtListExpr, cpy, processCall(tmp, s.parent[])), finSection) else: result.add cpy result.add finSection result.add processCall(tmp, s.parent[]) if s.parent != nil: s.parent[].needsTry = s.parent[].needsTry or s.needsTry result template handleNestedTempl(n, processCall: untyped, willProduceStmt = false) = template maybeVoid(child, s): untyped = if isEmptyType(child.typ): p(child, c, s, normal) else: processCall(child, s) case n.kind of nkStmtList, nkStmtListExpr: # a statement list does not open a new scope if n.len == 0: return n result = copyNode(n) for i in 0.. 0: c.inSpawn.dec let parameters = n[0].typ let L = if parameters != nil: parameters.len else: 0 when false: var isDangerous = false if n[0].kind == nkSym and n[0].sym.magic in {mOr, mAnd}: inc c.inDangerousBranch isDangerous = true result = shallowCopy(n) for i in 1.. 0): result[i] = p(n[i], c, s, sinkArg) else: result[i] = p(n[i], c, s, normal) when false: if isDangerous: dec c.inDangerousBranch if n[0].kind == nkSym and n[0].sym.magic in {mNew, mNewFinalize}: result[0] = copyTree(n[0]) if c.graph.config.selectedGC in {gcHooks, gcArc, gcOrc}: let destroyOld = c.genDestroy(result[1]) result = newTree(nkStmtList, destroyOld, result) else: result[0] = p(n[0], c, s, normal) if canRaise(n[0]): s.needsTry = true if mode == normal: result = ensureDestruction(result, n, c, s) of nkDiscardStmt: # Small optimization result = shallowCopy(n) if n[0].kind != nkEmpty: result[0] = p(n[0], c, s, normal) else: result[0] = copyNode(n[0]) of nkVarSection, nkLetSection: # transform; var x = y to var x; x op y where op is a move or copy result = newNodeI(nkStmtList, n.info) for it in n: var ri = it[^1] if it.kind == nkVarTuple and hasDestructor(c, ri.typ): let x = lowerTupleUnpacking(c.graph, it, c.idgen, c.owner) result.add p(x, c, s, consumed) elif it.kind == nkIdentDefs and hasDestructor(c, it[0].typ): for j in 0.. 0: result.add moveOrCopy(v, genDefaultCall(v.typ, c, v.info), c, s, isDecl = v.kind == nkSym) else: # keep the var but transform 'ri': var v = copyNode(n) var itCopy = copyNode(it) for j in 0.. 0 and isDangerousSeq(ri.typ): result = c.genCopy(dest, ri) result.add p(ri, c, s, consumed) c.finishCopy(result, dest, isFromSink = false) else: result = c.genSink(dest, p(ri, c, s, consumed), isDecl) of nkObjConstr, nkTupleConstr, nkClosure, nkCharLit..nkNilLit: result = c.genSink(dest, p(ri, c, s, consumed), isDecl) of nkSym: if isSinkParam(ri.sym) and isLastRead(ri, c): # Rule 3: `=sink`(x, z); wasMoved(z) let snk = c.genSink(dest, ri, isDecl) result = newTree(nkStmtList, snk, c.genWasMoved(ri)) elif ri.sym.kind != skParam and ri.sym.owner == c.owner and isLastRead(ri, c) and canBeMoved(c, dest.typ) and not isCursor(ri): # Rule 3: `=sink`(x, z); wasMoved(z) let snk = c.genSink(dest, ri, isDecl) result = newTree(nkStmtList, snk, c.genWasMoved(ri)) else: result = c.genCopy(dest, ri) result.add p(ri, c, s, consumed) c.finishCopy(result, dest, isFromSink = false) of nkHiddenSubConv, nkHiddenStdConv, nkConv, nkObjDownConv, nkObjUpConv: result = c.genSink(dest, p(ri, c, s, sinkArg), isDecl) of nkStmtListExpr, nkBlockExpr, nkIfExpr, nkCaseStmt, nkTryStmt: template process(child, s): untyped = moveOrCopy(dest, child, c, s, isDecl) # We know the result will be a stmt so we use that fact to optimize handleNestedTempl(ri, process, willProduceStmt = true) of nkRaiseStmt: result = pRaiseStmt(ri, c, s) else: if isAnalysableFieldAccess(ri, c.owner) and isLastRead(ri, c) and canBeMoved(c, dest.typ): # Rule 3: `=sink`(x, z); wasMoved(z) let snk = c.genSink(dest, ri, isDecl) result = newTree(nkStmtList, snk, c.genWasMoved(ri)) else: result = c.genCopy(dest, ri) result.add p(ri, c, s, consumed) c.finishCopy(result, dest, isFromSink = false) proc computeUninit(c: var Con) = if not c.uninitComputed: c.uninitComputed = true c.uninit = initIntSet() var init = initIntSet() discard initialized(c.g, pc = 0, init, c.uninit, int.high) proc injectDefaultCalls(n: PNode, c: var Con) = case n.kind of nkVarSection, nkLetSection: for it in n: if it.kind == nkIdentDefs and it[^1].kind == nkEmpty: computeUninit(c) for j in 0..---------transformed-to--------->" echo renderTree(result, {renderIds}) if g.config.arcToExpand.hasKey(owner.name.s): echo "--expandArc: ", owner.name.s echo renderTree(result, {renderIr, renderNoComments}) echo "-- end of expandArc ------------------------"