# # # The Nim Compiler # (c) Copyright 2015 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # # This include file implements lambda lifting for the transformator. import intsets, strutils, lists, options, ast, astalgo, trees, treetab, msgs, os, idents, renderer, types, magicsys, rodread, lowerings discard """ The basic approach is that captured vars need to be put on the heap and that the calling chain needs to be explicitly modelled. Things to consider: proc a = var v = 0 proc b = var w = 2 for x in 0..3: proc c = capture v, w, x c() b() for x in 0..4: proc d = capture x d() Needs to be translated into: proc a = var cl: * new cl cl.v = 0 proc b(cl) = var bcl: * new bcl bcl.w = 2 bcl.up = cl for x in 0..3: var bcl2: * new bcl2 bcl2.up = bcl bcl2.up2 = cl bcl2.x = x proc c(cl) = capture cl.up2.v, cl.up.w, cl.x c(bcl2) c(bcl) b(cl) for x in 0..4: var acl2: * new acl2 acl2.x = x proc d(cl) = capture cl.x d(acl2) Closures as interfaces: proc outer: T = var captureMe: TObject # value type required for efficiency proc getter(): int = result = captureMe.x proc setter(x: int) = captureMe.x = x result = (getter, setter) Is translated to: proc outer: T = var cl: * new cl proc getter(cl): int = result = cl.captureMe.x proc setter(cl: *, x: int) = cl.captureMe.x = x result = ((cl, getter), (cl, setter)) For 'byref' capture, the outer proc needs to access the captured var through the indirection too. For 'bycopy' capture, the outer proc accesses the var not through the indirection. Possible optimizations: 1) If the closure contains a single 'ref' and this reference is not re-assigned (check ``sfAddrTaken`` flag) make this the closure. This is an important optimization if closures are used as interfaces. 2) If the closure does not escape, put it onto the stack, not on the heap. 3) Dataflow analysis would help to eliminate the 'up' indirections. 4) If the captured var is not actually used in the outer proc (common?), put it into an inner proc. """ # Important things to keep in mind: # * Don't base the analysis on nkProcDef et al. This doesn't work for # instantiated (formerly generic) procs. The analysis has to look at nkSym. # This also means we need to prevent the same proc is processed multiple # times via the 'processed' set. # * Keep in mind that the owner of some temporaries used to be unreliable. # * For closure iterators we merge the "real" potential closure with the # local storage requirements for efficiency. This means closure iterators # have slightly different semantics from ordinary closures. const upName* = ":up" # field name for the 'up' reference paramName* = ":envP" envName* = ":env" type POuterContext = ref TOuterContext TIter = object fn, closureParam, state, resultSym: PSym # most are only valid if # fn.kind == skClosureIterator obj: PType PEnv = ref TEnv TEnv {.final.} = object of RootObj attachedNode, replacementNode: PNode createdVar: PNode # if != nil it is a used environment; for closure # iterators this can be 'envParam.env' createdVarComesFromIter: bool capturedVars: seq[PSym] # captured variables in this environment up, next: PEnv # outer scope and next to keep all in a list upField: PSym # if != nil the dependency to the outer scope is used obj: PType fn: PSym # function that belongs to this scope; # if up.fn != fn then we cross function boundaries. # This is an important case to consider. vars: IntSet # variables belonging to this environment TOuterContext = object fn: PSym # may also be a module! head: PEnv capturedVars, processed: IntSet localsToAccess: TIdNodeTable lambdasToEnv: TIdTable # PSym->PEnv mapping proc getStateType(iter: PSym): PType = var n = newNodeI(nkRange, iter.info) addSon(n, newIntNode(nkIntLit, -1)) addSon(n, newIntNode(nkIntLit, 0)) result = newType(tyRange, iter) result.n = n var intType = nilOrSysInt() if intType.isNil: intType = newType(tyInt, iter) rawAddSon(result, intType) proc createStateField(iter: PSym): PSym = result = newSym(skField, getIdent(":state"), iter, iter.info) result.typ = getStateType(iter) proc createEnvObj(owner: PSym): PType = # YYY meh, just add the state field for every closure for now, it's too # hard to figure out if it comes from a closure iterator: result = createObj(owner, owner.info) rawAddField(result, createStateField(owner)) proc newIterResult(iter: PSym): PSym = if resultPos < iter.ast.len: result = iter.ast.sons[resultPos].sym else: # XXX a bit hacky: result = newSym(skResult, getIdent":result", iter, iter.info) result.typ = iter.typ.sons[0] incl(result.flags, sfUsed) iter.ast.add newSymNode(result) proc addHiddenParam(routine: PSym, param: PSym) = assert param.kind == skParam var params = routine.ast.sons[paramsPos] # -1 is correct here as param.position is 0 based but we have at position 0 # some nkEffect node: param.position = params.len-1 addSon(params, newSymNode(param)) incl(routine.typ.flags, tfCapturesEnv) assert sfFromGeneric in param.flags #echo "produced environment: ", param.id, " for ", routine.name.s proc getHiddenParam(routine: PSym): PSym = let params = routine.ast.sons[paramsPos] let hidden = lastSon(params) internalAssert hidden.kind == nkSym and hidden.sym.kind == skParam result = hidden.sym assert sfFromGeneric in result.flags proc getEnvParam(routine: PSym): PSym = let params = routine.ast.sons[paramsPos] let hidden = lastSon(params) if hidden.kind == nkSym and hidden.sym.name.s == paramName: result = hidden.sym assert sfFromGeneric in result.flags proc initIter(iter: PSym): TIter = result.fn = iter if iter.kind == skClosureIterator: var cp = getEnvParam(iter) if cp == nil: result.obj = createEnvObj(iter) cp = newSym(skParam, getIdent(paramName), iter, iter.info) incl(cp.flags, sfFromGeneric) cp.typ = newType(tyRef, iter) rawAddSon(cp.typ, result.obj) addHiddenParam(iter, cp) else: result.obj = cp.typ.sons[0] assert result.obj.kind == tyObject internalAssert result.obj.n.len > 0 result.state = result.obj.n[0].sym result.closureParam = cp if iter.typ.sons[0] != nil: result.resultSym = newIterResult(iter) #iter.ast.add(newSymNode(c.resultSym)) proc newOuterContext(fn: PSym): POuterContext = new(result) result.fn = fn result.capturedVars = initIntSet() result.processed = initIntSet() initIdNodeTable(result.localsToAccess) initIdTable(result.lambdasToEnv) proc newEnv(o: POuterContext; up: PEnv, n: PNode; owner: PSym): PEnv = new(result) result.capturedVars = @[] result.up = up result.attachedNode = n result.fn = owner result.vars = initIntSet() result.next = o.head o.head = result if owner.kind != skModule and (up == nil or up.fn != owner): let param = getEnvParam(owner) if param != nil: result.obj = param.typ.sons[0] assert result.obj.kind == tyObject if result.obj.isNil: result.obj = createEnvObj(owner) proc addCapturedVar(e: PEnv, v: PSym) = for x in e.capturedVars: if x == v: return e.capturedVars.add(v) addField(e.obj, v) proc newCall(a: PSym, b: PNode): PNode = result = newNodeI(nkCall, a.info) result.add newSymNode(a) result.add b proc isInnerProc(s, outerProc: PSym): bool = if s.kind in {skProc, skMethod, skConverter, skClosureIterator}: var owner = s.skipGenericOwner while true: if owner.isNil: return false if owner == outerProc: return true owner = owner.owner #s.typ.callConv == ccClosure proc addClosureParam(fn: PSym; e: PEnv) = var cp = getEnvParam(fn) if cp == nil: cp = newSym(skParam, getIdent(paramName), fn, fn.info) incl(cp.flags, sfFromGeneric) cp.typ = newType(tyRef, fn) rawAddSon(cp.typ, e.obj) addHiddenParam(fn, cp) #else: #cp.typ.sons[0] = e.obj #assert e.obj.kind == tyObject proc illegalCapture(s: PSym): bool {.inline.} = result = skipTypes(s.typ, abstractInst).kind in {tyVar, tyOpenArray, tyVarargs} or s.kind == skResult proc interestingVar(s: PSym): bool {.inline.} = result = s.kind in {skVar, skLet, skTemp, skForVar, skParam, skResult} and sfGlobal notin s.flags proc nestedAccess(top: PEnv; local: PSym): PNode = # Parts after the transformation are in []: # # proc main = # var [:env.]foo = 23 # proc outer(:paramO) = # [var :envO; createClosure(:envO); :envO.up = paramO] # proc inner(:paramI) = # echo [:paramI.up.]foo # inner([:envO]) # outer([:env]) if not interestingVar(local) or top.fn == local.owner: return nil # check it's in fact a captured variable: var it = top while it != nil: if it.vars.contains(local.id): break it = it.up if it == nil: return nil let envParam = top.fn.getEnvParam internalAssert(not envParam.isNil) var access = newSymNode(envParam) it = top.up while it != nil: if it.vars.contains(local.id): access = indirectAccess(access, local, local.info) return access internalAssert it.upField != nil access = indirectAccess(access, it.upField, local.info) it = it.up when false: # Type based expression construction works too, but turned out to hide # other bugs: while true: let obj = access.typ.sons[0] let field = getFieldFromObj(obj, local) if field != nil: return rawIndirectAccess(access, field, local.info) let upField = lookupInRecord(obj.n, getIdent(upName)) if upField == nil: break access = rawIndirectAccess(access, upField, local.info) return nil proc createUpField(obj, fieldType: PType): PSym = let pos = obj.n.len result = newSym(skField, getIdent(upName), obj.owner, obj.owner.info) result.typ = newType(tyRef, obj.owner) result.position = pos rawAddSon(result.typ, fieldType) #rawAddField(obj, result) addField(obj, result) proc captureVar(o: POuterContext; top: PEnv; local: PSym; info: TLineInfo): bool = # first check if we should be concerned at all: var it = top while it != nil: if it.vars.contains(local.id): break it = it.up if it == nil: return false # yes, so mark every 'up' pointer as taken: if illegalCapture(local) or top.fn.typ.callConv notin {ccClosure, ccDefault}: localError(info, errIllegalCaptureX, local.name.s) it = top while it != nil: if it.vars.contains(local.id): break # keep in mind that the first element of the chain belong to top.fn itself # and these don't need any upFields if it.upField == nil and it.up != nil and it.fn != top.fn: it.upField = createUpField(it.obj, it.up.obj) if it.fn != local.owner: it.fn.typ.callConv = ccClosure incl(it.fn.typ.flags, tfCapturesEnv) var u = it.up while u != nil and u.fn == it.fn: u = u.up addClosureParam(it.fn, u) if idTableGet(o.lambdasToEnv, it.fn) == nil: if u != nil: idTablePut(o.lambdasToEnv, it.fn, u) it = it.up # don't do this: 'top' might not require a closure: #if idTableGet(o.lambdasToEnv, it.fn) == nil: # idTablePut(o.lambdasToEnv, it.fn, top) # mark as captured: #if top.iter != nil: # if not containsOrIncl(o.capturedVars, local.id): # #addField(top.iter.obj, local) # addCapturedVar(it, local) #else: incl(o.capturedVars, local.id) addCapturedVar(it, local) result = true proc semCaptureSym*(s, owner: PSym) = if interestingVar(s) and owner.id != s.owner.id and s.kind != skResult: if owner.typ != nil and not isGenericRoutine(owner): # XXX: is this really safe? # if we capture a var from another generic routine, # it won't be consider captured. owner.typ.callConv = ccClosure #echo "semCaptureSym ", owner.name.s, owner.id, " ", s.name.s, s.id # since the analysis is not entirely correct, we don't set 'tfCapturesEnv' # here proc gatherVars(o: POuterContext; e: PEnv; n: PNode): int = # gather used vars for closure generation; returns number of captured vars if n == nil: return 0 case n.kind of nkSym: var s = n.sym if interestingVar(s) and e.fn != s.owner: if captureVar(o, e, s, n.info): result = 1 of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit, nkClosure, nkProcDef, nkMethodDef, nkConverterDef, nkMacroDef, nkTemplateDef, nkTypeSection: discard else: for k in countup(0, sonsLen(n) - 1): result += gatherVars(o, e, n.sons[k]) proc generateThunk(prc: PNode, dest: PType): PNode = ## Converts 'prc' into '(thunk, nil)' so that it's compatible with ## a closure. # we cannot generate a proper thunk here for GC-safety reasons (see internal # documentation): if gCmd == cmdCompileToJS: return prc result = newNodeIT(nkClosure, prc.info, dest) var conv = newNodeIT(nkHiddenStdConv, prc.info, dest) conv.add(emptyNode) conv.add(prc) result.add(conv) result.add(newNodeIT(nkNilLit, prc.info, getSysType(tyNil))) proc transformOuterConv(n: PNode): PNode = # numeric types need range checks: var dest = skipTypes(n.typ, abstractVarRange) var source = skipTypes(n.sons[1].typ, abstractVarRange) if dest.kind == tyProc: if dest.callConv == ccClosure and source.callConv == ccDefault: result = generateThunk(n.sons[1], dest) proc makeClosure(prc: PSym; env: PNode; info: TLineInfo): PNode = result = newNodeIT(nkClosure, info, prc.typ) result.add(newSymNode(prc)) if env == nil: result.add(newNodeIT(nkNilLit, info, getSysType(tyNil))) else: result.add(env) proc newClosureCreationVar(e: PEnv): PNode = var v = newSym(skVar, getIdent(envName), e.fn, e.attachedNode.info) incl(v.flags, sfShadowed) v.typ = newType(tyRef, e.fn) v.typ.rawAddSon(e.obj) if e.fn.kind == skClosureIterator: let it = initIter(e.fn) addUniqueField(it.obj, v) result = indirectAccess(newSymNode(it.closureParam), v, v.info) else: result = newSymNode(v) proc getClosureVar(e: PEnv): PNode = if e.createdVar == nil: result = newClosureCreationVar(e) e.createdVar = result else: result = e.createdVar proc findEnv(o: POuterContext; s: PSym): PEnv = var env = o.head while env != nil: if env.fn == s: break env = env.next internalAssert env != nil and env.up != nil result = env.up while result.fn == s: result = result.up proc transformInnerProc(o: POuterContext; e: PEnv, n: PNode): PNode = case n.kind of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit: discard of nkSym: let s = n.sym if s == e.fn: # recursive calls go through (lambda, hiddenParam): result = makeClosure(s, getEnvParam(s).newSymNode, n.info) elif isInnerProc(s, o.fn) and s.typ.callConv == ccClosure: # ugh: call to some other inner proc; result = makeClosure(s, findEnv(o, s).getClosureVar, n.info) else: # captured symbol? result = nestedAccess(e, n.sym) #result = idNodeTableGet(i.localsToAccess, n.sym) #of nkLambdaKinds, nkIteratorDef: # if n.typ != nil: # result = transformInnerProc(o, e, n.sons[namePos]) #of nkClosure: # let x = transformInnerProc(o, e, n.sons[0]) # if x != nil: n.sons[0] = x of nkProcDef, nkMethodDef, nkConverterDef, nkMacroDef, nkTemplateDef, nkLambdaKinds, nkIteratorDef, nkClosure: # don't recurse here: discard else: for j in countup(0, sonsLen(n) - 1): let x = transformInnerProc(o, e, n.sons[j]) if x != nil: n.sons[j] = x proc closureCreationPoint(n: PNode): PNode = if n.kind == nkStmtList and n.len >= 1 and n[0].kind == nkEmpty: # we already have a free slot result = n else: result = newNodeI(nkStmtList, n.info) result.add(emptyNode) result.add(n) #result.flags.incl nfLL proc addParamsToEnv(fn: PSym; env: PEnv) = let params = fn.typ.n for i in 1.. declaredBlock. Note: The definition # counts, not the block where it is captured! for i in countup(0, sonsLen(n) - 1): var it = n.sons[i] if it.kind == nkCommentStmt: discard elif it.kind == nkIdentDefs: var L = sonsLen(it) if it.sons[0].kind == nkSym: # this can be false for recursive invocations that already # transformed it into 'env.varName': env.vars.incl(it.sons[0].sym.id) searchForInnerProcs(o, it.sons[L-1], env) elif it.kind == nkVarTuple: var L = sonsLen(it) for j in countup(0, L-3): #echo "set: ", it.sons[j].sym.name.s, " ", o.currentBlock == nil if it.sons[j].kind == nkSym: env.vars.incl(it.sons[j].sym.id) searchForInnerProcs(o, it.sons[L-1], env) else: internalError(it.info, "searchForInnerProcs") of nkClosure: searchForInnerProcs(o, n.sons[0], env) of nkProcDef, nkMethodDef, nkConverterDef, nkMacroDef, nkTemplateDef, nkTypeSection: # don't recurse here: discard else: for i in countup(0, sonsLen(n) - 1): searchForInnerProcs(o, n.sons[i], env) proc newAsgnStmt(le, ri: PNode, info: TLineInfo): PNode = # Bugfix: unfortunately we cannot use 'nkFastAsgn' here as that would # mean to be able to capture string literals which have no GC header. # However this can only happen if the capture happens through a parameter, # which is however the only case when we generate an assignment in the first # place. result = newNodeI(nkAsgn, info, 2) result.sons[0] = le result.sons[1] = ri proc rawClosureCreation(o: POuterContext, scope: PEnv; env: PNode): PNode = result = newNodeI(nkStmtList, env.info) if env.kind == nkSym: var v = newNodeI(nkVarSection, env.info) addVar(v, env) result.add(v) # add 'new' statement: result.add(newCall(getSysSym"internalNew", env)) # add assignment statements: for local in scope.capturedVars: let fieldAccess = indirectAccess(env, local, env.info) if local.kind == skParam: # maybe later: (sfByCopy in local.flags) # add ``env.param = param`` result.add(newAsgnStmt(fieldAccess, newSymNode(local), env.info)) # it can happen that we already captured 'local' in some other environment # then we capture by copy for now. This is not entirely correct but better # than nothing: let existing = idNodeTableGet(o.localsToAccess, local) if existing.isNil: idNodeTablePut(o.localsToAccess, local, fieldAccess) else: result.add(newAsgnStmt(fieldAccess, existing, env.info)) if scope.upField != nil: # "up" chain has been used: if scope.up.fn != scope.fn: # crosses function boundary: result.add(newAsgnStmt(indirectAccess(env, scope.upField, env.info), newSymNode(getEnvParam(scope.fn)), env.info)) else: result.add(newAsgnStmt(indirectAccess(env, scope.upField, env.info), getClosureVar(scope.up), env.info)) proc generateClosureCreation(o: POuterContext, scope: PEnv): PNode = var env = getClosureVar(scope) result = rawClosureCreation(o, scope, env) proc generateIterClosureCreation(o: POuterContext; env: PEnv; scope: PNode): PNode = if env.createdVarComesFromIter or env.createdVar.isNil: # we have to create a new closure: result = newClosureCreationVar(env) let cc = rawClosureCreation(o, env, result) var insertPoint = scope.sons[0] if insertPoint.kind == nkEmpty: scope.sons[0] = cc else: assert cc.kind == nkStmtList and insertPoint.kind == nkStmtList for x in cc: insertPoint.add(x) if env.createdVar == nil: env.createdVar = result else: result = env.createdVar env.createdVarComesFromIter = true proc interestingIterVar(s: PSym): bool {.inline.} = result = s.kind in {skVar, skLet, skTemp, skForVar} and sfGlobal notin s.flags proc transformOuterProc(o: POuterContext, n: PNode, it: TIter): PNode proc transformYield(c: POuterContext, n: PNode, it: TIter): PNode = assert it.state != nil assert it.state.typ != nil assert it.state.typ.n != nil inc it.state.typ.n.sons[1].intVal let stateNo = it.state.typ.n.sons[1].intVal var stateAsgnStmt = newNodeI(nkAsgn, n.info) stateAsgnStmt.add(rawIndirectAccess(newSymNode(it.closureParam), it.state, n.info)) stateAsgnStmt.add(newIntTypeNode(nkIntLit, stateNo, getSysType(tyInt))) var retStmt = newNodeI(nkReturnStmt, n.info) if n.sons[0].kind != nkEmpty: var a = newNodeI(nkAsgn, n.sons[0].info) var retVal = transformOuterProc(c, n.sons[0], it) addSon(a, newSymNode(it.resultSym)) addSon(a, if retVal.isNil: n.sons[0] else: retVal) retStmt.add(a) else: retStmt.add(emptyNode) var stateLabelStmt = newNodeI(nkState, n.info) stateLabelStmt.add(newIntTypeNode(nkIntLit, stateNo, getSysType(tyInt))) result = newNodeI(nkStmtList, n.info) result.add(stateAsgnStmt) result.add(retStmt) result.add(stateLabelStmt) proc transformReturn(c: POuterContext, n: PNode, it: TIter): PNode = result = newNodeI(nkStmtList, n.info) var stateAsgnStmt = newNodeI(nkAsgn, n.info) stateAsgnStmt.add(rawIndirectAccess(newSymNode(it.closureParam), it.state, n.info)) stateAsgnStmt.add(newIntTypeNode(nkIntLit, -1, getSysType(tyInt))) result.add(stateAsgnStmt) result.add(n) proc outerProcSons(o: POuterContext, n: PNode, it: TIter) = for i in countup(0, sonsLen(n) - 1): let x = transformOuterProc(o, n.sons[i], it) if x != nil: n.sons[i] = x proc liftIterSym(n: PNode; owner: PSym): PNode = # transforms (iter) to (let env = newClosure[iter](); (iter, env)) let iter = n.sym assert iter.kind == skClosureIterator result = newNodeIT(nkStmtListExpr, n.info, n.typ) let hp = getHiddenParam(iter) let env = newSym(skLet, iter.name, owner, n.info) env.typ = hp.typ env.flags = hp.flags var v = newNodeI(nkVarSection, n.info) addVar(v, newSymNode(env)) result.add(v) # add 'new' statement: let envAsNode = env.newSymNode result.add newCall(getSysSym"internalNew", envAsNode) result.add makeClosure(iter, envAsNode, n.info) when false: proc transformRemainingLocals(n: PNode; it: TIter): PNode = assert it.fn.kind == skClosureIterator result = n case n.kind of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit: discard of nkSym: let local = n.sym if interestingIterVar(local) and it.fn == local.owner: addUniqueField(it.obj, local) result = indirectAccess(newSymNode(it.closureParam), local, n.info) else: result = newNodeI(n.kind, n.info, n.len) for i in 0.. 0 or env.upField != nil) # We have to split up environment creation in 2 steps: # 1. Generate it and store it in env.replacementNode # 2. Insert replacementNode into its forseen slot. # This split is necessary so that assignments belonging to closure # creation like 'env.param = param' are not transformed # into 'env.param = env.param'. proc createEnvironments(o: POuterContext) = var env = o.head while env != nil: if envActive(env): var scope = env.attachedNode assert scope.kind == nkStmtList if scope.sons[0].kind == nkEmpty: # prepare for closure construction: env.replacementNode = generateClosureCreation(o, env) env = env.next proc finishEnvironments(o: POuterContext) = var env = o.head while env != nil: if env.replacementNode != nil: var scope = env.attachedNode assert scope.kind == nkStmtList if scope.sons[0].kind == nkEmpty: # change the empty node to contain the closure construction: scope.sons[0] = env.replacementNode when false: if env.fn.kind == skClosureIterator: scope.sons[0] = transformRemainingLocals(env.replacementNode, initIter(env.fn)) else: scope.sons[0] = env.replacementNode env = env.next proc transformOuterProcBody(o: POuterContext, n: PNode; it: TIter): PNode = if nfLL in n.flags: result = nil elif it.fn.kind == skClosureIterator: # unfortunately control flow is still convoluted and we can end up # multiple times here for the very same iterator. We shield against this # with some rather primitive check for now: if n.kind == nkStmtList and n.len > 0: if n.sons[0].kind == nkGotoState: return nil if n.len > 1 and n[1].kind == nkStmtList and n[1].len > 0 and n[1][0].kind == nkGotoState: return nil result = newNodeI(nkStmtList, it.fn.info) var gs = newNodeI(nkGotoState, it.fn.info) assert it.closureParam != nil assert it.state != nil gs.add(rawIndirectAccess(newSymNode(it.closureParam), it.state, it.fn.info)) result.add(gs) var state0 = newNodeI(nkState, it.fn.info) state0.add(newIntNode(nkIntLit, 0)) result.add(state0) let newBody = transformOuterProc(o, n, it) if newBody != nil: result.add(newBody) else: result.add(n) var stateAsgnStmt = newNodeI(nkAsgn, it.fn.info) stateAsgnStmt.add(rawIndirectAccess(newSymNode(it.closureParam), it.state, it.fn.info)) stateAsgnStmt.add(newIntTypeNode(nkIntLit, -1, getSysType(tyInt))) result.add(stateAsgnStmt) result.flags.incl nfLL else: result = transformOuterProc(o, n, it) if result != nil: result.flags.incl nfLL proc transformOuterProc(o: POuterContext, n: PNode; it: TIter): PNode = if n == nil or nfLL in n.flags: return nil case n.kind of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit: discard of nkSym: var local = n.sym if isInnerProc(local, o.fn) and o.processed.contains(local.id): o.processed.excl(local.id) let body = local.getBody let newBody = transformOuterProcBody(o, body, initIter(local)) if newBody != nil: local.ast.sons[bodyPos] = newBody if it.fn.kind == skClosureIterator and interestingIterVar(local) and it.fn == local.owner: # every local goes through the closure: #if not containsOrIncl(o.capturedVars, local.id): # addField(it.obj, local) if contains(o.capturedVars, local.id): # change 'local' to 'closure.local', unless it's a 'byCopy' variable: # if sfByCopy notin local.flags: result = idNodeTableGet(o.localsToAccess, local) assert result != nil, "cannot find: " & local.name.s return result else: addUniqueField(it.obj, local) return indirectAccess(newSymNode(it.closureParam), local, n.info) if local.kind == skClosureIterator: # consider: [i1, i2, i1] Since we merged the iterator's closure # with the captured owning variables, we need to generate the # closure generation code again: if local == o.fn or local == it.fn: message(n.info, errRecursiveDependencyX, local.name.s) # XXX why doesn't this work? var closure = PEnv(idTableGet(o.lambdasToEnv, local)) if closure.isNil: return liftIterSym(n, o.fn) else: let createdVar = generateIterClosureCreation(o, closure, closure.attachedNode) let lpt = getHiddenParam(local).typ if lpt != createdVar.typ: assert lpt.kind == tyRef and createdVar.typ.kind == tyRef # fix bug 'tshallowcopy_closures' but report if this gets any weirder: if createdVar.typ.sons[0].len == 1 and lpt.sons[0].len >= 1: createdVar.typ = lpt if createdVar.kind == nkSym: createdVar.sym.typ = lpt closure.obj = lpt.sons[0] else: internalError(n.info, "environment computation failed") return makeClosure(local, createdVar, n.info) var closure = PEnv(idTableGet(o.lambdasToEnv, local)) if closure != nil: # we need to replace the lambda with '(lambda, env)': let a = closure.createdVar if a != nil: return makeClosure(local, a, n.info) else: # can happen for dummy closures: var scope = closure.attachedNode assert scope.kind == nkStmtList if scope.sons[0].kind == nkEmpty: # change the empty node to contain the closure construction: scope.sons[0] = generateClosureCreation(o, closure) let x = closure.createdVar assert x != nil return makeClosure(local, x, n.info) if not contains(o.capturedVars, local.id): return # change 'local' to 'closure.local', unless it's a 'byCopy' variable: # if sfByCopy notin local.flags: result = idNodeTableGet(o.localsToAccess, local) assert result != nil, "cannot find: " & local.name.s # else it is captured by copy and this means that 'outer' should continue # to access the local as a local. of nkLambdaKinds, nkIteratorDef: if n.typ != nil: result = transformOuterProc(o, n.sons[namePos], it) of nkProcDef, nkMethodDef, nkConverterDef, nkMacroDef, nkTemplateDef: # don't recurse here: discard of nkClosure: if n.sons[0].kind == nkSym: var local = n.sons[0].sym if isInnerProc(local, o.fn) and o.processed.contains(local.id): o.processed.excl(local.id) let body = local.getBody let newBody = transformOuterProcBody(o, body, initIter(local)) if newBody != nil: local.ast.sons[bodyPos] = newBody when false: if n.sons[1].kind == nkSym: var local = n.sons[1].sym if it.fn.kind == skClosureIterator and interestingIterVar(local) and it.fn == local.owner: # every local goes through the closure: addUniqueField(it.obj, local) n.sons[1] = indirectAccess(newSymNode(it.closureParam), local, n.info) of nkHiddenStdConv, nkHiddenSubConv, nkConv: let x = transformOuterProc(o, n.sons[1], it) if x != nil: n.sons[1] = x result = transformOuterConv(n) of nkYieldStmt: if it.fn.kind == skClosureIterator: result = transformYield(o, n, it) else: outerProcSons(o, n, it) of nkReturnStmt: if it.fn.kind == skClosureIterator: result = transformReturn(o, n, it) else: outerProcSons(o, n, it) else: outerProcSons(o, n, it) proc liftLambdas*(fn: PSym, body: PNode): PNode = # XXX gCmd == cmdCompileToJS does not suffice! The compiletime stuff needs # the transformation even when compiling to JS ... if body.kind == nkEmpty or gCmd == cmdCompileToJS or fn.skipGenericOwner.kind != skModule: # ignore forward declaration: result = body else: #if fn.name.s == "sort": # echo rendertree(fn.ast, {renderIds}) var o = newOuterContext(fn) let ex = closureCreationPoint(body) let env = newEnv(o, nil, ex, fn) addParamsToEnv(fn, env) searchForInnerProcs(o, body, env) createEnvironments(o) if fn.kind == skClosureIterator: result = transformOuterProcBody(o, body, initIter(fn)) else: discard transformOuterProcBody(o, body, initIter(fn)) result = ex finishEnvironments(o) #if fn.name.s == "parseLong": # echo rendertree(result, {renderIds}) proc liftLambdasForTopLevel*(module: PSym, body: PNode): PNode = if body.kind == nkEmpty or gCmd == cmdCompileToJS: result = body else: var o = newOuterContext(module) let ex = closureCreationPoint(body) let env = newEnv(o, nil, ex, module) searchForInnerProcs(o, body, env) createEnvironments(o) discard transformOuterProc(o, body, initIter(module)) finishEnvironments(o) result = ex # ------------------- iterator transformation -------------------------------- proc liftForLoop*(body: PNode): PNode = # problem ahead: the iterator could be invoked indirectly, but then # we don't know what environment to create here: # # iterator count(): int = # yield 0 # # iterator count2(): int = # var x = 3 # yield x # inc x # yield x # # proc invoke(iter: iterator(): int) = # for x in iter(): echo x # # --> When to create the closure? --> for the (count) occurrence! discard """ for i in foo(): ... Is transformed to: cl = createClosure() while true: let i = foo(cl) nkBreakState(cl.state) ... """ var L = body.len internalAssert body.kind == nkForStmt and body[L-2].kind in nkCallKinds var call = body[L-2] result = newNodeI(nkStmtList, body.info) # static binding? var env: PSym if call[0].kind == nkSym and call[0].sym.kind == skClosureIterator: # createClosure() let iter = call[0].sym assert iter.kind == skClosureIterator env = copySym(getHiddenParam(iter)) var v = newNodeI(nkVarSection, body.info) addVar(v, newSymNode(env)) result.add(v) # add 'new' statement: result.add(newCall(getSysSym"internalNew", env.newSymNode)) var loopBody = newNodeI(nkStmtList, body.info, 3) var whileLoop = newNodeI(nkWhileStmt, body.info, 2) whileLoop.sons[0] = newIntTypeNode(nkIntLit, 1, getSysType(tyBool)) whileLoop.sons[1] = loopBody result.add whileLoop # setup loopBody: # gather vars in a tuple: var v2 = newNodeI(nkLetSection, body.info) var vpart = newNodeI(if L == 3: nkIdentDefs else: nkVarTuple, body.info) for i in 0 .. L-3: assert body[i].kind == nkSym body[i].sym.kind = skLet addSon(vpart, body[i]) addSon(vpart, ast.emptyNode) # no explicit type if not env.isNil: call.sons[0] = makeClosure(call.sons[0].sym, env.newSymNode, body.info) addSon(vpart, call) addSon(v2, vpart) loopBody.sons[0] = v2 var bs = newNodeI(nkBreakState, body.info) bs.addSon(call.sons[0]) loopBody.sons[1] = bs loopBody.sons[2] = body[L-1]