# # # The Nim Compiler # (c) Copyright 2012 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # # this unit handles Nim sets; it implements symbolic sets import ast, astalgo, trees, nversion, msgs, platform, bitsets, types, renderer proc toBitSet*(s: PNode, b: var TBitSet) # this function is used for case statement checking: proc overlap*(a, b: PNode): bool proc inSet*(s: PNode, elem: PNode): bool proc someInSet*(s: PNode, a, b: PNode): bool proc emptyRange*(a, b: PNode): bool proc setHasRange*(s: PNode): bool # returns true if set contains a range (needed by the code generator) # these are used for constant folding: proc unionSets*(a, b: PNode): PNode proc diffSets*(a, b: PNode): PNode proc intersectSets*(a, b: PNode): PNode proc symdiffSets*(a, b: PNode): PNode proc containsSets*(a, b: PNode): bool proc equalSets*(a, b: PNode): bool proc cardSet*(s: PNode): BiggestInt # implementation proc inSet(s: PNode, elem: PNode): bool = if s.kind != nkCurly: internalError(s.info, "inSet") return false for i in countup(0, sonsLen(s) - 1): if s.sons[i].kind == nkRange: if leValue(s.sons[i].sons[0], elem) and leValue(elem, s.sons[i].sons[1]): return true else: if sameValue(s.sons[i], elem): return true result = false proc overlap(a, b: PNode): bool = if a.kind == nkRange: if b.kind == nkRange: # X..Y and C..D overlap iff (X <= D and C <= Y) result = leValue(a.sons[0], b.sons[1]) and leValue(b.sons[0], a.sons[1]) else: result = leValue(a.sons[0], b) and leValue(b, a.sons[1]) else: if b.kind == nkRange: result = leValue(b.sons[0], a) and leValue(a, b.sons[1]) else: result = sameValue(a, b) proc someInSet(s: PNode, a, b: PNode): bool = # checks if some element of a..b is in the set s if s.kind != nkCurly: internalError(s.info, "SomeInSet") return false for i in countup(0, sonsLen(s) - 1): if s.sons[i].kind == nkRange: if leValue(s.sons[i].sons[0], b) and leValue(b, s.sons[i].sons[1]) or leValue(s.sons[i].sons[0], a) and leValue(a, s.sons[i].sons[1]): return true else: # a <= elem <= b if leValue(a, s.sons[i]) and leValue(s.sons[i], b): return true result = false proc toBitSet(s: PNode, b: var TBitSet) = var first, j: BiggestInt first = firstOrd(s.typ.sons[0]) bitSetInit(b, int(getSize(s.typ))) for i in countup(0, sonsLen(s) - 1): if s.sons[i].kind == nkRange: j = getOrdValue(s.sons[i].sons[0]) while j <= getOrdValue(s.sons[i].sons[1]): bitSetIncl(b, j - first) inc(j) else: bitSetIncl(b, getOrdValue(s.sons[i]) - first) proc toTreeSet(s: TBitSet, settype: PType, info: TLineInfo): PNode = var a, b, e, first: BiggestInt # a, b are interval borders elemType: PType n: PNode elemType = settype.sons[0] first = firstOrd(elemType) result = newNodeI(nkCurly, info) result.typ = settype result.info = info e = 0 while e < len(s) * ElemSize: if bitSetIn(s, e): a = e b = e while true: inc(b) if (b >= len(s) * ElemSize) or not bitSetIn(s, b): break dec(b) let aa = newIntTypeNode(nkIntLit, a + first, elemType) aa.info = info if a == b: addSon(result, aa) else: n = newNodeI(nkRange, info) n.typ = elemType addSon(n, aa) let bb = newIntTypeNode(nkIntLit, b + first, elemType) bb.info = info addSon(n, bb) addSon(result, n) e = b inc(e) template nodeSetOp(a, b: PNode, op: untyped) {.dirty.} = var x, y: TBitSet toBitSet(a, x) toBitSet(b, y) op(x, y) result = toTreeSet(x, a.typ, a.info) proc unionSets(a, b: PNode): PNode = nodeSetOp(a, b, bitSetUnion) proc diffSets(a, b: PNode): PNode = nodeSetOp(a, b, bitSetDiff) proc intersectSets(a, b: PNode): PNode = nodeSetOp(a, b, bitSetIntersect) proc symdiffSets(a, b: PNode): PNode = nodeSetOp(a, b, bitSetSymDiff) proc containsSets(a, b: PNode): bool = var x, y: TBitSet toBitSet(a, x) toBitSet(b, y) result = bitSetContains(x, y) proc equalSets(a, b: PNode): bool = var x, y: TBitSet toBitSet(a, x) toBitSet(b, y) result = bitSetEquals(x, y) proc complement*(a: PNode): PNode = var x: TBitSet toBitSet(a, x) for i in countup(0, high(x)): x[i] = not x[i] result = toTreeSet(x, a.typ, a.info) proc cardSet(s: PNode): BiggestInt = # here we can do better than converting it into a compact set # we just count the elements directly result = 0 for i in countup(0, sonsLen(s) - 1): if s.sons[i].kind == nkRange: result = result + getOrdValue(s.sons[i].sons[1]) - getOrdValue(s.sons[i].sons[0]) + 1 else: inc(result) proc setHasRange(s: PNode): bool = if s.kind != nkCurly: internalError(s.info, "SetHasRange") return false for i in countup(0, sonsLen(s) - 1): if s.sons[i].kind == nkRange: return true result = false proc emptyRange(a, b: PNode): bool = result = not leValue(a, b) # a > b iff not (a <= b)