# # # The Nim Compiler # (c) Copyright 2012 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This module implements the pattern matching features for term rewriting ## macro support. import strutils, ast, astalgo, types, msgs, idents, renderer, wordrecg, trees # we precompile the pattern here for efficiency into some internal # stack based VM :-) Why? Because it's fun; I did no benchmarks to see if that # actually improves performance. type TAliasRequest* = enum # first byte of the bytecode determines alias checking aqNone = 1, # no alias analysis requested aqShouldAlias, # with some other param aqNoAlias # request noalias TOpcode = enum ppEof = 1, # end of compiled pattern ppOr, # we could short-cut the evaluation for 'and' and 'or', ppAnd, # but currently we don't ppNot, ppSym, ppAtom, ppLit, ppIdent, ppCall, ppSymKind, ppNodeKind, ppLValue, ppLocal, ppSideEffect, ppNoSideEffect TPatternCode = string const MaxStackSize* = 64 ## max required stack size by the VM proc patternError(n: PNode) = localError(n.info, errIllFormedAstX, renderTree(n, {renderNoComments})) proc add(code: var TPatternCode, op: TOpcode) {.inline.} = add(code, chr(ord(op))) proc whichAlias*(p: PSym): TAliasRequest = if p.constraint != nil: result = TAliasRequest(p.constraint.strVal[0].ord) else: result = aqNone proc compileConstraints(p: PNode, result: var TPatternCode) = case p.kind of nkCallKinds: if p.sons[0].kind != nkIdent: patternError(p.sons[0]) return let op = p.sons[0].ident if p.len == 3: if op.s == "|" or op.id == ord(wOr): compileConstraints(p.sons[1], result) compileConstraints(p.sons[2], result) result.add(ppOr) elif op.s == "&" or op.id == ord(wAnd): compileConstraints(p.sons[1], result) compileConstraints(p.sons[2], result) result.add(ppAnd) else: patternError(p) elif p.len == 2 and (op.s == "~" or op.id == ord(wNot)): compileConstraints(p.sons[1], result) result.add(ppNot) else: patternError(p) of nkAccQuoted, nkPar: if p.len == 1: compileConstraints(p.sons[0], result) else: patternError(p) of nkIdent: let spec = p.ident.s.normalize case spec of "atom": result.add(ppAtom) of "lit": result.add(ppLit) of "sym": result.add(ppSym) of "ident": result.add(ppIdent) of "call": result.add(ppCall) of "alias": result[0] = chr(aqShouldAlias.ord) of "noalias": result[0] = chr(aqNoAlias.ord) of "lvalue": result.add(ppLValue) of "local": result.add(ppLocal) of "sideeffect": result.add(ppSideEffect) of "nosideeffect": result.add(ppNoSideEffect) else: # check all symkinds: internalAssert int(high(TSymKind)) < 255 for i in low(TSymKind)..high(TSymKind): if cmpIgnoreStyle(($i).substr(2), spec) == 0: result.add(ppSymKind) result.add(chr(i.ord)) return # check all nodekinds: internalAssert int(high(TNodeKind)) < 255 for i in low(TNodeKind)..high(TNodeKind): if cmpIgnoreStyle($i, spec) == 0: result.add(ppNodeKind) result.add(chr(i.ord)) return patternError(p) else: patternError(p) proc semNodeKindConstraints*(p: PNode): PNode = ## does semantic checking for a node kind pattern and compiles it into an ## efficient internal format. assert p.kind == nkCurlyExpr result = newNodeI(nkStrLit, p.info) result.strVal = newStringOfCap(10) result.strVal.add(chr(aqNone.ord)) if p.len >= 2: for i in 1.. MaxStackSize-1: internalError(p.info, "parameter pattern too complex") else: patternError(p) result.strVal.add(ppEof) type TSideEffectAnalysis* = enum seUnknown, seSideEffect, seNoSideEffect proc checkForSideEffects*(n: PNode): TSideEffectAnalysis = case n.kind of nkCallKinds: # only calls can produce side effects: let op = n.sons[0] if op.kind == nkSym and isRoutine(op.sym): let s = op.sym if sfSideEffect in s.flags: return seSideEffect # assume no side effect: result = seNoSideEffect elif tfNoSideEffect in op.typ.flags: # indirect call without side effects: result = seNoSideEffect else: # indirect call: assume side effect: return seSideEffect # we need to check n[0] too: (FwithSideEffectButReturnsProcWithout)(args) for i in 0 ..< n.len: let ret = checkForSideEffects(n.sons[i]) if ret == seSideEffect: return ret elif ret == seUnknown and result == seNoSideEffect: result = seUnknown of nkNone..nkNilLit: # an atom cannot produce a side effect: result = seNoSideEffect else: # assume no side effect: result = seNoSideEffect for i in 0 ..< n.len: let ret = checkForSideEffects(n.sons[i]) if ret == seSideEffect: return ret elif ret == seUnknown and result == seNoSideEffect: result = seUnknown type TAssignableResult* = enum arNone, # no l-value and no discriminant arLValue, # is an l-value arLocalLValue, # is an l-value, but local var; must not escape # its stack frame! arDiscriminant, # is a discriminant arStrange # it is a strange beast like 'typedesc[var T]' proc isAssignable*(owner: PSym, n: PNode; isUnsafeAddr=false): TAssignableResult = ## 'owner' can be nil! result = arNone case n.kind of nkEmpty: if n.typ != nil and n.typ.kind == tyVar: result = arLValue of nkSym: let kinds = if isUnsafeAddr: {skVar, skResult, skTemp, skParam, skLet} else: {skVar, skResult, skTemp} if n.sym.kind in kinds: if owner != nil and owner.id == n.sym.owner.id and sfGlobal notin n.sym.flags: result = arLocalLValue else: result = arLValue elif n.sym.kind == skParam and n.sym.typ.kind == tyVar: result = arLValue elif n.sym.kind == skType: let t = n.sym.typ.skipTypes({tyTypeDesc}) if t.kind == tyVar: result = arStrange of nkDotExpr: if skipTypes(n.sons[0].typ, abstractInst-{tyTypeDesc}).kind in {tyVar, tyPtr, tyRef}: result = arLValue else: result = isAssignable(owner, n.sons[0], isUnsafeAddr) if result != arNone and sfDiscriminant in n.sons[1].sym.flags: result = arDiscriminant of nkBracketExpr: if skipTypes(n.sons[0].typ, abstractInst-{tyTypeDesc}).kind in {tyVar, tyPtr, tyRef}: result = arLValue else: result = isAssignable(owner, n.sons[0], isUnsafeAddr) of nkHiddenStdConv, nkHiddenSubConv, nkConv: # Object and tuple conversions are still addressable, so we skip them # XXX why is 'tyOpenArray' allowed here? if skipTypes(n.typ, abstractPtrs-{tyTypeDesc}).kind in {tyOpenArray, tyTuple, tyObject}: result = isAssignable(owner, n.sons[1], isUnsafeAddr) elif compareTypes(n.typ, n.sons[1].typ, dcEqIgnoreDistinct): # types that are equal modulo distinction preserve l-value: result = isAssignable(owner, n.sons[1], isUnsafeAddr) of nkHiddenDeref, nkDerefExpr, nkHiddenAddr: result = arLValue of nkObjUpConv, nkObjDownConv, nkCheckedFieldExpr: result = isAssignable(owner, n.sons[0], isUnsafeAddr) of nkCallKinds: # builtin slice keeps lvalue-ness: if getMagic(n) in {mArrGet, mSlice}: result = isAssignable(owner, n.sons[1], isUnsafeAddr) elif n.typ != nil and n.typ.kind == tyVar: result = arLValue of nkStmtList, nkStmtListExpr: if n.typ != nil: result = isAssignable(owner, n.lastSon, isUnsafeAddr) of nkVarTy: # XXX: The fact that this is here is a bit of a hack. # The goal is to allow the use of checks such as "foo(var T)" # within concepts. Semantically, it's not correct to say that # nkVarTy denotes an lvalue, but the example above is the only # possible code which will get us here result = arLValue else: discard proc isLValue*(n: PNode): bool = isAssignable(nil, n) in {arLValue, arLocalLValue, arStrange} proc matchNodeKinds*(p, n: PNode): bool = # matches the parameter constraint 'p' against the concrete AST 'n'. # Efficiency matters here. var stack {.noinit.}: array[0..MaxStackSize, bool] # empty patterns are true: stack[0] = true var sp = 1 template push(x: bool) = stack[sp] = x inc sp let code = p.strVal var pc = 1 while true: case TOpcode(code[pc]) of ppEof: break of ppOr: stack[sp-2] = stack[sp-1] or stack[sp-2] dec sp of ppAnd: stack[sp-2] = stack[sp-1] and stack[sp-2] dec sp of ppNot: stack[sp-1] = not stack[sp-1] of ppSym: push n.kind == nkSym of ppAtom: push isAtom(n) of ppLit: push n.kind in {nkCharLit..nkNilLit} of ppIdent: push n.kind == nkIdent of ppCall: push n.kind in nkCallKinds of ppSymKind: let kind = TSymKind(code[pc+1]) push n.kind == nkSym and n.sym.kind == kind inc pc of ppNodeKind: let kind = TNodeKind(code[pc+1]) push n.kind == kind inc pc of ppLValue: push isAssignable(nil, n) in {arLValue, arLocalLValue} of ppLocal: push isAssignable(nil, n) == arLocalLValue of ppSideEffect: push checkForSideEffects(n) == seSideEffect of ppNoSideEffect: push checkForSideEffects(n) != seSideEffect inc pc result = stack[sp-1]