# # # The Nim Compiler # (c) Copyright 2013 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # # This module implements the semantic checking pass. import ast, options, astalgo, trees, wordrecg, ropes, msgs, idents, renderer, types, platform, magicsys, nversion, nimsets, semfold, modulepaths, importer, procfind, lookups, pragmas, semdata, semtypinst, sigmatch, transf, vmdef, vm, aliases, cgmeth, lambdalifting, evaltempl, patterns, parampatterns, sempass2, linter, semmacrosanity, lowerings, plugins/active, lineinfos, int128, isolation_check, typeallowed, modulegraphs, enumtostr, concepts, astmsgs, extccomp import vtables import std/[strtabs, math, tables, intsets, strutils] when not defined(leanCompiler): import spawn when defined(nimPreviewSlimSystem): import std/[ formatfloat, assertions, ] # implementation proc semExpr(c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode proc semExprWithType(c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode proc semExprNoType(c: PContext, n: PNode): PNode proc semExprNoDeref(c: PContext, n: PNode, flags: TExprFlags = {}): PNode proc semProcBody(c: PContext, n: PNode; expectedType: PType = nil): PNode proc fitNode(c: PContext, formal: PType, arg: PNode; info: TLineInfo): PNode proc changeType(c: PContext; n: PNode, newType: PType, check: bool) proc semTypeNode(c: PContext, n: PNode, prev: PType): PType proc semStmt(c: PContext, n: PNode; flags: TExprFlags): PNode proc semOpAux(c: PContext, n: PNode) proc semParamList(c: PContext, n, genericParams: PNode, s: PSym) proc addParams(c: PContext, n: PNode, kind: TSymKind) proc maybeAddResult(c: PContext, s: PSym, n: PNode) proc tryExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode proc activate(c: PContext, n: PNode) proc semQuoteAst(c: PContext, n: PNode): PNode proc finishMethod(c: PContext, s: PSym) proc evalAtCompileTime(c: PContext, n: PNode): PNode proc indexTypesMatch(c: PContext, f, a: PType, arg: PNode): PNode proc semStaticExpr(c: PContext, n: PNode; expectedType: PType = nil): PNode proc semStaticType(c: PContext, childNode: PNode, prev: PType): PType proc semTypeOf(c: PContext; n: PNode): PNode proc computeRequiresInit(c: PContext, t: PType): bool proc defaultConstructionError(c: PContext, t: PType, info: TLineInfo) proc hasUnresolvedArgs(c: PContext, n: PNode): bool proc isArrayConstr(n: PNode): bool {.inline.} = result = n.kind == nkBracket and n.typ.skipTypes(abstractInst).kind == tyArray template semIdeForTemplateOrGenericCheck(conf, n, requiresCheck) = # we check quickly if the node is where the cursor is when defined(nimsuggest): if n.info.fileIndex == conf.m.trackPos.fileIndex and n.info.line == conf.m.trackPos.line: requiresCheck = true template semIdeForTemplateOrGeneric(c: PContext; n: PNode; requiresCheck: bool) = # use only for idetools support; this is pretty slow so generics and # templates perform some quick check whether the cursor is actually in # the generic or template. when defined(nimsuggest): if c.config.cmd == cmdIdeTools and requiresCheck: #if optIdeDebug in gGlobalOptions: # echo "passing to safeSemExpr: ", renderTree(n) discard safeSemExpr(c, n) proc fitNodePostMatch(c: PContext, formal: PType, arg: PNode): PNode = let x = arg.skipConv if (x.kind == nkCurly and formal.kind == tySet and formal.base.kind != tyGenericParam) or (x.kind in {nkPar, nkTupleConstr}) and formal.kind notin {tyUntyped, tyBuiltInTypeClass, tyAnything}: changeType(c, x, formal, check=true) result = arg result = skipHiddenSubConv(result, c.graph, c.idgen) proc fitNode(c: PContext, formal: PType, arg: PNode; info: TLineInfo): PNode = if arg.typ.isNil: localError(c.config, arg.info, "expression has no type: " & renderTree(arg, {renderNoComments})) # error correction: result = copyTree(arg) result.typ = formal elif arg.kind in nkSymChoices and formal.skipTypes(abstractInst).kind == tyEnum: # Pick the right 'sym' from the sym choice by looking at 'formal' type: result = nil for ch in arg: if sameType(ch.typ, formal): return getConstExpr(c.module, ch, c.idgen, c.graph) typeMismatch(c.config, info, formal, arg.typ, arg) else: result = indexTypesMatch(c, formal, arg.typ, arg) if result == nil: typeMismatch(c.config, info, formal, arg.typ, arg) # error correction: result = copyTree(arg) result.typ = formal else: result = fitNodePostMatch(c, formal, result) proc fitNodeConsiderViewType(c: PContext, formal: PType, arg: PNode; info: TLineInfo): PNode = let a = fitNode(c, formal, arg, info) if formal.kind in {tyVar, tyLent}: #classifyViewType(formal) != noView: result = newNodeIT(nkHiddenAddr, a.info, formal) result.add a formal.flags.incl tfVarIsPtr else: result = a proc inferWithMetatype(c: PContext, formal: PType, arg: PNode, coerceDistincts = false): PNode template commonTypeBegin*(): PType = PType(kind: tyUntyped) proc commonType*(c: PContext; x, y: PType): PType = # new type relation that is used for array constructors, # if expressions, etc.: if x == nil: return x if y == nil: return y var a = skipTypes(x, {tyGenericInst, tyAlias, tySink}) var b = skipTypes(y, {tyGenericInst, tyAlias, tySink}) result = x if a.kind in {tyUntyped, tyNil}: result = y elif b.kind in {tyUntyped, tyNil}: result = x elif a.kind == tyTyped: result = a elif b.kind == tyTyped: result = b elif a.kind == tyTypeDesc: # turn any concrete typedesc into the abstract typedesc type if a.len == 0: result = a else: result = newType(tyTypeDesc, c.idgen, a.owner) rawAddSon(result, newType(tyNone, c.idgen, a.owner)) elif b.kind in {tyArray, tySet, tySequence} and a.kind == b.kind: # check for seq[empty] vs. seq[int] let idx = ord(b.kind == tyArray) if a[idx].kind == tyEmpty: return y elif a.kind == tyTuple and b.kind == tyTuple and a.len == b.len: var nt: PType = nil for i in 0.. # ill-formed AST, no need for additional tyRef/tyPtr if k != tyNone and x.kind != tyGenericInst: let r = result result = newType(k, c.idgen, r.owner) result.addSonSkipIntLit(r, c.idgen) const shouldChckCovered = {tyInt..tyInt64, tyChar, tyEnum, tyUInt..tyUInt64, tyBool} proc shouldCheckCaseCovered(caseTyp: PType): bool = result = false case caseTyp.kind of shouldChckCovered: result = true of tyRange: if skipTypes(caseTyp[0], abstractInst).kind in shouldChckCovered: result = true else: discard proc endsInNoReturn(n: PNode): bool = ## check if expr ends the block like raising or call of noreturn procs do result = false # assume it does return template checkBranch(branch) = if not endsInNoReturn(branch): # proved a branch returns return false var it = n # skip these beforehand, no special handling needed while it.kind in {nkStmtList, nkStmtListExpr} and it.len > 0: it = it.lastSon case it.kind of nkIfStmt: var hasElse = false for branch in it: checkBranch: if branch.len == 2: branch[1] elif branch.len == 1: hasElse = true branch[0] else: raiseAssert "Malformed `if` statement during endsInNoReturn" # none of the branches returned result = hasElse # Only truly a no-return when it's exhaustive of nkCaseStmt: let caseTyp = skipTypes(it[0].typ, abstractVar-{tyTypeDesc}) # semCase should already have checked for exhaustiveness in this case # effectively the same as having an else var hasElse = caseTyp.shouldCheckCaseCovered() # actual noreturn checks for i in 1 ..< it.len: let branch = it[i] checkBranch: case branch.kind of nkOfBranch: branch[^1] of nkElifBranch: branch[1] of nkElse: hasElse = true branch[0] else: raiseAssert "Malformed `case` statement in endsInNoReturn" # Can only guarantee a noreturn if there is an else or it's exhaustive result = hasElse of nkTryStmt: checkBranch(it[0]) for i in 1 ..< it.len: let branch = it[i] checkBranch(branch[^1]) # none of the branches returned result = true else: result = it.kind in nkLastBlockStmts or it.kind in nkCallKinds and it[0].kind == nkSym and sfNoReturn in it[0].sym.flags proc commonType*(c: PContext; x: PType, y: PNode): PType = # ignore exception raising branches in case/if expressions if endsInNoReturn(y): return x commonType(c, x, y.typ) proc newSymS(kind: TSymKind, n: PNode, c: PContext): PSym = result = newSym(kind, considerQuotedIdent(c, n), c.idgen, getCurrOwner(c), n.info) when defined(nimsuggest): suggestDecl(c, n, result) proc newSymG*(kind: TSymKind, n: PNode, c: PContext): PSym = # like newSymS, but considers gensym'ed symbols if n.kind == nkSym: # and sfGenSym in n.sym.flags: result = n.sym if result.kind notin {kind, skTemp}: localError(c.config, n.info, "cannot use symbol of kind '$1' as a '$2'" % [result.kind.toHumanStr, kind.toHumanStr]) when false: if sfGenSym in result.flags and result.kind notin {skTemplate, skMacro, skParam}: # declarative context, so produce a fresh gensym: result = copySym(result) result.ast = n.sym.ast put(c.p, n.sym, result) # when there is a nested proc inside a template, semtmpl # will assign a wrong owner during the first pass over the # template; we must fix it here: see #909 result.owner = getCurrOwner(c) else: result = newSym(kind, considerQuotedIdent(c, n), c.idgen, getCurrOwner(c), n.info) #if kind in {skForVar, skLet, skVar} and result.owner.kind == skModule: # incl(result.flags, sfGlobal) when defined(nimsuggest): suggestDecl(c, n, result) proc semIdentVis(c: PContext, kind: TSymKind, n: PNode, allowed: TSymFlags): PSym # identifier with visibility proc semIdentWithPragma(c: PContext, kind: TSymKind, n: PNode, allowed: TSymFlags): PSym proc typeAllowedCheck(c: PContext; info: TLineInfo; typ: PType; kind: TSymKind; flags: TTypeAllowedFlags = {}) = let t = typeAllowed(typ, kind, c, flags) if t != nil: var err: string if t == typ: err = "invalid type: '$1' for $2" % [typeToString(typ), toHumanStr(kind)] if kind in {skVar, skLet, skConst} and taIsTemplateOrMacro in flags: err &= ". Did you mean to call the $1 with '()'?" % [toHumanStr(typ.owner.kind)] else: err = "invalid type: '$1' in this context: '$2' for $3" % [typeToString(t), typeToString(typ), toHumanStr(kind)] localError(c.config, info, err) proc paramsTypeCheck(c: PContext, typ: PType) {.inline.} = typeAllowedCheck(c, typ.n.info, typ, skProc) proc expectMacroOrTemplateCall(c: PContext, n: PNode): PSym proc semDirectOp(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode proc semWhen(c: PContext, n: PNode, semCheck: bool = true): PNode proc semTemplateExpr(c: PContext, n: PNode, s: PSym, flags: TExprFlags = {}; expectedType: PType = nil): PNode proc semMacroExpr(c: PContext, n, nOrig: PNode, sym: PSym, flags: TExprFlags = {}; expectedType: PType = nil): PNode when false: proc createEvalContext(c: PContext, mode: TEvalMode): PEvalContext = result = newEvalContext(c.module, mode) result.getType = proc (n: PNode): PNode = result = tryExpr(c, n) if result == nil: result = newSymNode(errorSym(c, n)) elif result.typ == nil: result = newSymNode(getSysSym"void") else: result.typ = makeTypeDesc(c, result.typ) result.handleIsOperator = proc (n: PNode): PNode = result = isOpImpl(c, n) proc hasCycle(n: PNode): bool = result = false incl n.flags, nfNone for i in 0.. evalTemplateLimit: globalError(c.config, s.info, "template instantiation too nested") c.friendModules.add(s.owner.getModule) result = macroResult resetSemFlag result if s.typ[0] == nil: result = semStmt(c, result, flags) else: var retType = s.typ[0] if retType.kind == tyTypeDesc and tfUnresolved in retType.flags and retType.len == 1: # bug #11941: template fails(T: type X, v: auto): T # does not mean we expect a tyTypeDesc. retType = retType[0] case retType.kind of tyUntyped, tyAnything: # Not expecting a type here allows templates like in ``tmodulealias.in``. result = semExpr(c, result, flags, expectedType) of tyTyped: # More restrictive version. result = semExprWithType(c, result, flags, expectedType) of tyTypeDesc: if result.kind == nkStmtList: result.transitionSonsKind(nkStmtListType) var typ = semTypeNode(c, result, nil) if typ == nil: localError(c.config, result.info, "expression has no type: " & renderTree(result, {renderNoComments})) result = newSymNode(errorSym(c, result)) else: result.typ = makeTypeDesc(c, typ) #result = symNodeFromType(c, typ, n.info) else: if s.ast[genericParamsPos] != nil and retType.isMetaType: # The return type may depend on the Macro arguments # e.g. template foo(T: typedesc): seq[T] # We will instantiate the return type here, because # we now know the supplied arguments var paramTypes = initIdTable() for param, value in genericParamsInMacroCall(s, call): var givenType = value.typ # the sym nodes used for the supplied generic arguments for # templates and macros leave type nil so regular sem can handle it # in this case, get the type directly from the sym if givenType == nil and value.kind == nkSym and value.sym.typ != nil: givenType = value.sym.typ idTablePut(paramTypes, param.typ, givenType) retType = generateTypeInstance(c, paramTypes, macroResult.info, retType) if retType.kind == tyVoid: result = semStmt(c, result, flags) else: result = semExpr(c, result, flags, expectedType) result = fitNode(c, retType, result, result.info) #globalError(s.info, errInvalidParamKindX, typeToString(s.typ[0])) dec(c.config.evalTemplateCounter) discard c.friendModules.pop() const errMissingGenericParamsForTemplate = "'$1' has unspecified generic parameters" errFloatToString = "cannot convert '$1' to '$2'" proc semMacroExpr(c: PContext, n, nOrig: PNode, sym: PSym, flags: TExprFlags = {}; expectedType: PType = nil): PNode = rememberExpansion(c, nOrig.info, sym) pushInfoContext(c.config, nOrig.info, sym.detailedInfo) let info = getCallLineInfo(n) markUsed(c, info, sym) onUse(info, sym) if sym == c.p.owner: globalError(c.config, info, "recursive dependency: '$1'" % sym.name.s) let genericParams = sym.ast[genericParamsPos].len let suppliedParams = max(n.safeLen - 1, 0) if suppliedParams < genericParams: globalError(c.config, info, errMissingGenericParamsForTemplate % n.renderTree) #if c.evalContext == nil: # c.evalContext = c.createEvalContext(emStatic) result = evalMacroCall(c.module, c.idgen, c.graph, c.templInstCounter, n, nOrig, sym) if efNoSemCheck notin flags: result = semAfterMacroCall(c, n, result, sym, flags, expectedType) if c.config.macrosToExpand.hasKey(sym.name.s): message(c.config, nOrig.info, hintExpandMacro, renderTree(result)) result = wrapInComesFrom(nOrig.info, sym, result) popInfoContext(c.config) proc forceBool(c: PContext, n: PNode): PNode = result = fitNode(c, getSysType(c.graph, n.info, tyBool), n, n.info) if result == nil: result = n proc semConstBoolExpr(c: PContext, n: PNode): PNode = result = forceBool(c, semConstExpr(c, n, getSysType(c.graph, n.info, tyBool))) if result.kind != nkIntLit: localError(c.config, n.info, errConstExprExpected) proc semConceptBody(c: PContext, n: PNode): PNode include semtypes proc setGenericParamsMisc(c: PContext; n: PNode) = ## used by call defs (procs, templates, macros, ...) to analyse their generic ## params, and store the originals in miscPos for better error reporting. let orig = n[genericParamsPos] doAssert orig.kind in {nkEmpty, nkGenericParams} if n[genericParamsPos].kind == nkEmpty: n[genericParamsPos] = newNodeI(nkGenericParams, n.info) else: # we keep the original params around for better error messages, see # issue https://github.com/nim-lang/Nim/issues/1713 n[genericParamsPos] = semGenericParamList(c, orig) if n[miscPos].kind == nkEmpty: n[miscPos] = newTree(nkBracket, c.graph.emptyNode, orig) else: n[miscPos][1] = orig proc caseBranchMatchesExpr(branch, matched: PNode): bool = result = false for i in 0 ..< branch.len-1: if branch[i].kind == nkRange: if overlap(branch[i], matched): return true elif exprStructuralEquivalent(branch[i], matched): return true proc pickCaseBranchIndex(caseExpr, matched: PNode): int = result = 0 let endsWithElse = caseExpr[^1].kind == nkElse for i in 1.. 0: var asgnExpr = newTree(nkObjConstr, newNodeIT(nkType, a.info, aTyp)) asgnExpr.typ = aTyp asgnExpr.sons.add child result = semExpr(c, asgnExpr) else: result = nil elif aTypSkip.kind == tyArray: let child = defaultNodeField(c, a, aTypSkip[1], checkDefault) if child != nil: let node = newNode(nkIntLit) node.intVal = toInt64(lengthOrd(c.graph.config, aTypSkip)) result = semExpr(c, newTree(nkCall, newSymNode(getSysSym(c.graph, a.info, "arrayWith"), a.info), semExprWithType(c, child), node )) result.typ = aTyp else: result = nil elif aTypSkip.kind == tyTuple: var hasDefault = false if aTypSkip.n != nil: let children = defaultFieldsForTuple(c, aTypSkip.n, hasDefault, checkDefault) if hasDefault and children.len > 0: result = newNodeI(nkTupleConstr, a.info) result.typ = aTyp result.sons.add children result = semExpr(c, result) else: result = nil else: result = nil else: result = nil proc defaultNodeField(c: PContext, a: PNode, checkDefault: bool): PNode = result = defaultNodeField(c, a, a.typ, checkDefault) include semtempl, semgnrc, semstmts, semexprs proc addCodeForGenerics(c: PContext, n: PNode) = for i in c.lastGenericIdx.. 0: # a generic has been added to `a`: if result.kind != nkEmpty: a.add result result = a result = hloStmt(c, result) if c.config.cmd == cmdInteractive and not isEmptyType(result.typ): result = buildEchoStmt(c, result) if c.config.cmd == cmdIdeTools: appendToModule(c.module, result) trackStmt(c, c.module, result, isTopLevel = true) if optMultiMethods notin c.config.globalOptions and c.config.selectedGC in {gcArc, gcOrc, gcAtomicArc} and Feature.vtables in c.config.features: sortVTableDispatchers(c.graph) if sfMainModule in c.module.flags: collectVTableDispatchers(c.graph) proc recoverContext(c: PContext) = # clean up in case of a semantic error: We clean up the stacks, etc. This is # faster than wrapping every stack operation in a 'try finally' block and # requires far less code. c.currentScope = c.topLevelScope while getCurrOwner(c).kind != skModule: popOwner(c) while c.p != nil and c.p.owner.kind != skModule: c.p = c.p.next proc semWithPContext*(c: PContext, n: PNode): PNode = # no need for an expensive 'try' if we stop after the first error anyway: if c.config.errorMax <= 1: result = semStmtAndGenerateGenerics(c, n) else: let oldContextLen = msgs.getInfoContextLen(c.config) let oldInGenericInst = c.inGenericInst try: result = semStmtAndGenerateGenerics(c, n) except ERecoverableError, ESuggestDone: recoverContext(c) c.inGenericInst = oldInGenericInst msgs.setInfoContextLen(c.config, oldContextLen) if getCurrentException() of ESuggestDone: c.suggestionsMade = true result = nil else: result = newNodeI(nkEmpty, n.info) #if c.config.cmd == cmdIdeTools: findSuggest(c, n) storeRodNode(c, result) proc reportUnusedModules(c: PContext) = if c.config.cmd == cmdM: return for i in 0..high(c.unusedImports): if sfUsed notin c.unusedImports[i][0].flags: message(c.config, c.unusedImports[i][1], warnUnusedImportX, c.unusedImports[i][0].name.s) proc closePContext*(graph: ModuleGraph; c: PContext, n: PNode): PNode = if c.config.cmd == cmdIdeTools and not c.suggestionsMade: suggestSentinel(c) closeScope(c) # close module's scope rawCloseScope(c) # imported symbols; don't check for unused ones! reportUnusedModules(c) result = newNode(nkStmtList) if n != nil: internalError(c.config, n.info, "n is not nil") #result := n; addCodeForGenerics(c, result) if c.module.ast != nil: result.add(c.module.ast) popOwner(c) popProcCon(c) sealRodFile(c)