# # # The Nim Compiler # (c) Copyright 2013 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This module implements semantic checking for calls. # included from sem.nim proc sameMethodDispatcher(a, b: PSym): bool = result = false if a.kind == skMethod and b.kind == skMethod: var aa = lastSon(a.ast) var bb = lastSon(b.ast) if aa.kind == nkSym and bb.kind == nkSym: if aa.sym == bb.sym: result = true else: discard # generics have no dispatcher yet, so we need to compare the method # names; however, the names are equal anyway because otherwise we # wouldn't even consider them to be overloaded. But even this does # not work reliably! See tmultim6 for an example: # method collide[T](a: TThing, b: TUnit[T]) is instantiated and not # method collide[T](a: TUnit[T], b: TThing)! This means we need to # *instantiate* every candidate! However, we don't keep more than 2-3 # candidated around so we cannot implement that for now. So in order # to avoid subtle problems, the call remains ambiguous and needs to # be disambiguated by the programmer; this way the right generic is # instantiated. proc determineType(c: PContext, s: PSym) proc pickBestCandidate(c: PContext, headSymbol: PNode, n, orig: PNode, initialBinding: PNode, filter: TSymKinds, best, alt: var TCandidate, errors: var CandidateErrors) = var o: TOverloadIter # thanks to the lazy semchecking for operands, we need to iterate over the # symbol table *before* any call to 'initCandidate' which might invoke # semExpr which might modify the symbol table in cases like # 'init(a, 1, (var b = new(Type2); b))'. var symx = initOverloadIter(o, c, headSymbol) let symScope = o.lastOverloadScope var syms: seq[tuple[a: PSym, b: int]] = @[] while symx != nil: if symx.kind in filter: syms.add((symx, o.lastOverloadScope)) symx = nextOverloadIter(o, c, headSymbol) if syms.len == 0: return var z: TCandidate initCandidate(c, best, syms[0][0], initialBinding, symScope) initCandidate(c, alt, syms[0][0], initialBinding, symScope) best.state = csNoMatch for i in 0 .. 0: # fail fast: globalError(n.info, errTypeMismatch, "") if errors.isNil or errors.len == 0: localError(n.info, errExprXCannotBeCalled, n[0].renderTree) return # to avoid confusing errors like: # got (SslPtr, SocketHandle) # but expected one of: # openssl.SSL_set_fd(ssl: SslPtr, fd: SocketHandle): cint # we do a pre-analysis. If all types produce the same string, we will add # module information. let proto = describeArgs(c, n, 1, preferName) var prefer = preferName for err in errors: var errProto = "" let n = err.typ.n for i in countup(1, n.len - 1): var p = n.sons[i] if p.kind == nkSym: add(errProto, typeToString(p.sym.typ, preferName)) if i != n.len-1: add(errProto, ", ") # else: ignore internal error as we're already in error handling mode if errProto == proto: prefer = preferModuleInfo break # now use the information stored in 'prefer' to produce a nice error message: var result = msgKindToString(errTypeMismatch) add(result, describeArgs(c, n, 1, prefer)) add(result, ')') var candidates = "" for err in errors: add(candidates, err.getProcHeader(prefer)) add(candidates, "\n") if candidates != "": add(result, "\n" & msgKindToString(errButExpected) & "\n" & candidates) localError(n.info, errGenerated, result) proc gatherUsedSyms(c: PContext, usedSyms: var seq[PNode]) = for scope in walkScopes(c.currentScope): if scope.usingSyms != nil: for s in scope.usingSyms: usedSyms.safeAdd(s) proc resolveOverloads(c: PContext, n, orig: PNode, filter: TSymKinds; errors: var CandidateErrors): TCandidate = var initialBinding: PNode var alt: TCandidate var f = n.sons[0] if f.kind == nkBracketExpr: # fill in the bindings: initialBinding = f f = f.sons[0] else: initialBinding = nil var usedSyms: seq[PNode] template pickBest(headSymbol: expr) = pickBestCandidate(c, headSymbol, n, orig, initialBinding, filter, result, alt, errors) gatherUsedSyms(c, usedSyms) if usedSyms != nil: var hiddenArg = if usedSyms.len > 1: newNode(nkClosedSymChoice, n.info, usedSyms) else: usedSyms[0] n.sons.insert(hiddenArg, 1) orig.sons.insert(hiddenArg, 1) pickBest(f) if result.state != csMatch: n.sons.delete(1) orig.sons.delete(1) else: return pickBest(f) let overloadsState = result.state if overloadsState != csMatch: if nfDotField in n.flags: internalAssert f.kind == nkIdent and n.sonsLen >= 2 let calleeName = newStrNode(nkStrLit, f.ident.s).withInfo(n.info) # leave the op head symbol empty, # we are going to try multiple variants n.sons[0..1] = [nil, n[1], calleeName] orig.sons[0..1] = [nil, orig[1], calleeName] template tryOp(x) = let op = newIdentNode(getIdent(x), n.info) n.sons[0] = op orig.sons[0] = op pickBest(op) if nfExplicitCall in n.flags: tryOp ".()" if result.state in {csEmpty, csNoMatch}: tryOp "." elif nfDotSetter in n.flags: internalAssert f.kind == nkIdent and n.sonsLen == 3 let calleeName = newStrNode(nkStrLit, f.ident.s[0..f.ident.s.len-2]).withInfo(n.info) let callOp = newIdentNode(getIdent".=", n.info) n.sons[0..1] = [callOp, n[1], calleeName] orig.sons[0..1] = [callOp, orig[1], calleeName] pickBest(callOp) if overloadsState == csEmpty and result.state == csEmpty: localError(n.info, errUndeclaredIdentifier, considerQuotedIdent(f).s) return elif result.state != csMatch: if nfExprCall in n.flags: localError(n.info, errExprXCannotBeCalled, renderTree(n, {renderNoComments})) else: if {nfDotField, nfDotSetter} * n.flags != {}: # clean up the inserted ops n.sons.delete(2) n.sons[0] = f errors = @[] pickBest(f) #notFoundError(c, n, errors) return if alt.state == csMatch and cmpCandidates(result, alt) == 0 and not sameMethodDispatcher(result.calleeSym, alt.calleeSym): internalAssert result.state == csMatch #writeMatches(result) #writeMatches(alt) if c.inCompilesContext > 0: # quick error message for performance of 'compiles' built-in: globalError(n.info, errGenerated, "ambiguous call") elif gErrorCounter == 0: # don't cascade errors var args = "(" for i in countup(1, sonsLen(n) - 1): if i > 1: add(args, ", ") add(args, typeToString(n.sons[i].typ)) add(args, ")") localError(n.info, errGenerated, msgKindToString(errAmbiguousCallXYZ) % [ getProcHeader(result.calleeSym), getProcHeader(alt.calleeSym), args]) proc instGenericConvertersArg*(c: PContext, a: PNode, x: TCandidate) = if a.kind == nkHiddenCallConv and a.sons[0].kind == nkSym and isGenericRoutine(a.sons[0].sym): let finalCallee = generateInstance(c, a.sons[0].sym, x.bindings, a.info) a.sons[0].sym = finalCallee a.sons[0].typ = finalCallee.typ #a.typ = finalCallee.typ.sons[0] proc instGenericConvertersSons*(c: PContext, n: PNode, x: TCandidate) = assert n.kind in nkCallKinds if x.genericConverter: for i in 1 .. = 2 and (let t = n[1].typ; t != nil and t.skipTypes({tyGenericInst}).kind in {tyPtr, tyRef}) proc tryDeref(n: PNode): PNode = result = newNodeI(nkHiddenDeref, n.info) result.typ = n.typ.skipTypes(abstractInst).sons[0] result.addSon(n) proc semOverloadedCall(c: PContext, n, nOrig: PNode, filter: TSymKinds): PNode = var errors: CandidateErrors var r = resolveOverloads(c, n, nOrig, filter, errors) if r.state == csMatch: result = semResolvedCall(c, n, r) elif experimentalMode(c) and canDeref(n): # try to deref the first argument and then try overloading resolution again: n.sons[1] = n.sons[1].tryDeref var r = resolveOverloads(c, n, nOrig, filter, errors) if r.state == csMatch: result = semResolvedCall(c, n, r) else: # get rid of the deref again for a better error message: n.sons[1] = n.sons[1].sons[0] notFoundError(c, n, errors) else: notFoundError(c, n, errors) # else: result = errorNode(c, n) proc explicitGenericInstError(n: PNode): PNode = localError(n.info, errCannotInstantiateX, renderTree(n)) result = n proc explicitGenericSym(c: PContext, n: PNode, s: PSym): PNode = var m: TCandidate initCandidate(c, m, s, n) var newInst = generateInstance(c, s, m.bindings, n.info) markUsed(n.info, s) styleCheckUse(n.info, s) result = newSymNode(newInst, n.info) proc explicitGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode = assert n.kind == nkBracketExpr for i in 1..sonsLen(n)-1: n.sons[i].typ = semTypeNode(c, n.sons[i], nil) var s = s var a = n.sons[0] if a.kind == nkSym: # common case; check the only candidate has the right # number of generic type parameters: if safeLen(s.ast.sons[genericParamsPos]) != n.len-1: let expected = safeLen(s.ast.sons[genericParamsPos]) localError(n.info, errGenerated, "cannot instantiate: " & renderTree(n) & "; got " & $(n.len-1) & " type(s) but expected " & $expected) return n result = explicitGenericSym(c, n, s) elif a.kind in {nkClosedSymChoice, nkOpenSymChoice}: # choose the generic proc with the proper number of type parameters. # XXX I think this could be improved by reusing sigmatch.paramTypesMatch. # It's good enough for now. result = newNodeI(a.kind, n.info) for i in countup(0, len(a)-1): var candidate = a.sons[i].sym if candidate.kind in {skProc, skMethod, skConverter, skIterator, skClosureIterator}: # it suffices that the candidate has the proper number of generic # type parameters: if safeLen(candidate.ast.sons[genericParamsPos]) == n.len-1: result.add(explicitGenericSym(c, n, candidate)) # get rid of nkClosedSymChoice if not ambiguous: if result.len == 1 and a.kind == nkClosedSymChoice: result = result[0] # candidateCount != 1: return explicitGenericInstError(n) else: result = explicitGenericInstError(n) proc searchForBorrowProc(c: PContext, startScope: PScope, fn: PSym): PSym = # Searchs for the fn in the symbol table. If the parameter lists are suitable # for borrowing the sym in the symbol table is returned, else nil. # New approach: generate fn(x, y, z) where x, y, z have the proper types # and use the overloading resolution mechanism: var call = newNodeI(nkCall, fn.info) var hasDistinct = false call.add(newIdentNode(fn.name, fn.info)) for i in 1..