# # # The Nimrod Compiler # (c) Copyright 2013 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This module implements semantic checking for calls. # included from sem.nim proc sameMethodDispatcher(a, b: PSym): bool = result = false if a.kind == skMethod and b.kind == skMethod: var aa = lastSon(a.ast) var bb = lastSon(b.ast) if aa.kind == nkSym and bb.kind == nkSym: if aa.sym == bb.sym: result = true else: nil # generics have no dispatcher yet, so we need to compare the method # names; however, the names are equal anyway because otherwise we # wouldn't even consider them to be overloaded. But even this does # not work reliably! See tmultim6 for an example: # method collide[T](a: TThing, b: TUnit[T]) is instantiated and not # method collide[T](a: TUnit[T], b: TThing)! This means we need to # *instantiate* every candidate! However, we don't keep more than 2-3 # candidated around so we cannot implement that for now. So in order # to avoid subtle problems, the call remains ambiguous and needs to # be disambiguated by the programmer; this way the right generic is # instantiated. proc resolveOverloads(c: PContext, n, orig: PNode, filter: TSymKinds): TCandidate = var initialBinding: PNode var f = n.sons[0] if f.kind == nkBracketExpr: # fill in the bindings: initialBinding = f f = f.sons[0] else: initialBinding = nil var o: TOverloadIter alt, z: TCandidate template best: expr = result #Message(n.info, warnUser, renderTree(n)) var sym = initOverloadIter(o, c, f) var symScope = o.lastOverloadScope if sym == nil: return initCandidate(best, sym, initialBinding, symScope) initCandidate(alt, sym, initialBinding, symScope) while sym != nil: if sym.kind in filter: initCandidate(z, sym, initialBinding, o.lastOverloadScope) z.calleeSym = sym matches(c, n, orig, z) if z.state == csMatch: # little hack so that iterators are preferred over everything else: if sym.kind == skIterator: inc(z.exactMatches, 200) case best.state of csEmpty, csNoMatch: best = z of csMatch: var cmp = cmpCandidates(best, z) if cmp < 0: best = z # x is better than the best so far elif cmp == 0: alt = z # x is as good as the best so far else: nil sym = nextOverloadIter(o, c, f) if best.state == csEmpty: # no overloaded proc found # do not generate an error yet; the semantic checking will check for # an overloaded () operator elif alt.state == csMatch and cmpCandidates(best, alt) == 0 and not sameMethodDispatcher(best.calleeSym, alt.calleeSym): if best.state != csMatch: InternalError(n.info, "x.state is not csMatch") #writeMatches(best) #writeMatches(alt) if c.inCompilesContext > 0: # quick error message for performance of 'compiles' built-in: GlobalError(n.Info, errGenerated, "ambiguous call") elif gErrorCounter == 0: # don't cascade errors var args = "(" for i in countup(1, sonsLen(n) - 1): if i > 1: add(args, ", ") add(args, typeToString(n.sons[i].typ)) add(args, ")") LocalError(n.Info, errGenerated, msgKindToString(errAmbiguousCallXYZ) % [ getProcHeader(best.calleeSym), getProcHeader(alt.calleeSym), args]) proc instGenericConvertersArg*(c: PContext, a: PNode, x: TCandidate) = if a.kind == nkHiddenCallConv and a.sons[0].kind == nkSym and isGenericRoutine(a.sons[0].sym): let finalCallee = generateInstance(c, a.sons[0].sym, x.bindings, a.info) a.sons[0].sym = finalCallee a.sons[0].typ = finalCallee.typ #a.typ = finalCallee.typ.sons[0] proc instGenericConvertersSons*(c: PContext, n: PNode, x: TCandidate) = assert n.kind in nkCallKinds if x.genericConverter: for i in 1 .. <n.len: instGenericConvertersArg(c, n.sons[i], x) proc IndexTypesMatch(c: PContext, f, a: PType, arg: PNode): PNode = var m: TCandidate initCandidate(m, f) result = paramTypesMatch(c, m, f, a, arg, nil) if m.genericConverter and result != nil: instGenericConvertersArg(c, result, m) proc ConvertTo*(c: PContext, f: PType, n: PNode): PNode = var m: TCandidate initCandidate(m, f) result = paramTypesMatch(c, m, f, n.typ, n, nil) if m.genericConverter and result != nil: instGenericConvertersArg(c, result, m) proc semResolvedCall(c: PContext, n: PNode, x: TCandidate): PNode = assert x.state == csMatch var finalCallee = x.calleeSym markUsed(n.sons[0], finalCallee) if finalCallee.ast == nil: internalError(n.info, "calleeSym.ast is nil") # XXX: remove this check! if finalCallee.ast.sons[genericParamsPos].kind != nkEmpty: # a generic proc! if not x.proxyMatch: finalCallee = generateInstance(c, x.calleeSym, x.bindings, n.info) else: result = x.call result.sons[0] = newSymNode(finalCallee, result.sons[0].info) result.typ = finalCallee.typ.sons[0] if ContainsGenericType(result.typ): result.typ = errorType(c) return result = x.call instGenericConvertersSons(c, result, x) result.sons[0] = newSymNode(finalCallee, result.sons[0].info) result.typ = finalCallee.typ.sons[0] proc semOverloadedCall(c: PContext, n, nOrig: PNode, filter: TSymKinds): PNode = var r = resolveOverloads(c, n, nOrig, filter) if r.state == csMatch: result = semResolvedCall(c, n, r) proc explicitGenericInstError(n: PNode): PNode = LocalError(n.info, errCannotInstantiateX, renderTree(n)) result = n proc explicitGenericSym(c: PContext, n: PNode, s: PSym): PNode = var x: TCandidate initCandidate(x, s, n) var newInst = generateInstance(c, s, x.bindings, n.info) markUsed(n, s) result = newSymNode(newInst, n.info) proc explicitGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode = assert n.kind == nkBracketExpr for i in 1..sonsLen(n)-1: n.sons[i].typ = semTypeNode(c, n.sons[i], nil) var s = s var a = n.sons[0] if a.kind == nkSym: # common case; check the only candidate has the right # number of generic type parameters: if safeLen(s.ast.sons[genericParamsPos]) != n.len-1: return explicitGenericInstError(n) result = explicitGenericSym(c, n, s) elif a.kind in {nkClosedSymChoice, nkOpenSymChoice}: # choose the generic proc with the proper number of type parameters. # XXX I think this could be improved by reusing sigmatch.ParamTypesMatch. # It's good enough for now. result = newNodeI(a.kind, n.info) for i in countup(0, len(a)-1): var candidate = a.sons[i].sym if candidate.kind in {skProc, skMethod, skConverter, skIterator}: # if suffices that the candidate has the proper number of generic # type parameters: if safeLen(candidate.ast.sons[genericParamsPos]) == n.len-1: result.add(explicitGenericSym(c, n, candidate)) # get rid of nkClosedSymChoice if not ambiguous: if result.len == 1 and a.kind == nkClosedSymChoice: result = result[0] # candidateCount != 1: return explicitGenericInstError(n) else: result = explicitGenericInstError(n) proc SearchForBorrowProc(c: PContext, fn: PSym, tos: int): PSym = # Searchs for the fn in the symbol table. If the parameter lists are suitable # for borrowing the sym in the symbol table is returned, else nil. # New approach: generate fn(x, y, z) where x, y, z have the proper types # and use the overloading resolution mechanism: var call = newNode(nkCall) call.add(newIdentNode(fn.name, fn.info)) for i in 1.. <fn.typ.n.len: let param = fn.typ.n.sons[i] let t = skipTypes(param.typ, abstractVar-{tyTypeDesc}) call.add(newNodeIT(nkEmpty, fn.info, t.baseOfDistinct)) var resolved = semOverloadedCall(c, call, call, {fn.kind}) if resolved != nil: result = resolved.sons[0].sym