# # # The Nim Compiler # (c) Copyright 2013 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This module implements semantic checking for calls. # included from sem.nim from std/algorithm import sort proc sameMethodDispatcher(a, b: PSym): bool = result = false if a.kind == skMethod and b.kind == skMethod: var aa = lastSon(a.ast) var bb = lastSon(b.ast) if aa.kind == nkSym and bb.kind == nkSym: if aa.sym == bb.sym: result = true else: discard # generics have no dispatcher yet, so we need to compare the method # names; however, the names are equal anyway because otherwise we # wouldn't even consider them to be overloaded. But even this does # not work reliably! See tmultim6 for an example: # method collide[T](a: TThing, b: TUnit[T]) is instantiated and not # method collide[T](a: TUnit[T], b: TThing)! This means we need to # *instantiate* every candidate! However, we don't keep more than 2-3 # candidates around so we cannot implement that for now. So in order # to avoid subtle problems, the call remains ambiguous and needs to # be disambiguated by the programmer; this way the right generic is # instantiated. proc determineType(c: PContext, s: PSym) proc initCandidateSymbols(c: PContext, headSymbol: PNode, initialBinding: PNode, filter: TSymKinds, best, alt: var TCandidate, o: var TOverloadIter, diagnostics: bool): seq[tuple[s: PSym, scope: int]] = ## puts all overloads into a seq and prepares best+alt result = @[] var symx = initOverloadIter(o, c, headSymbol) while symx != nil: if symx.kind in filter: result.add((symx, o.lastOverloadScope)) elif symx.kind == skGenericParam: #[ This code handles looking up a generic parameter when it's a static callable. For instance: proc name[T: static proc()]() = T() name[proc() = echo"hello"]() ]# for paramSym in searchInScopesAllCandidatesFilterBy(c, symx.name, {skConst}): let paramTyp = paramSym.typ if paramTyp.n.kind == nkSym and paramTyp.n.sym.kind in filter: result.add((paramTyp.n.sym, o.lastOverloadScope)) symx = nextOverloadIter(o, c, headSymbol) if result.len > 0: best = initCandidate(c, result[0].s, initialBinding, result[0].scope, diagnostics) alt = initCandidate(c, result[0].s, initialBinding, result[0].scope, diagnostics) best.state = csNoMatch proc pickBestCandidate(c: PContext, headSymbol: PNode, n, orig: PNode, initialBinding: PNode, filter: TSymKinds, best, alt: var TCandidate, errors: var CandidateErrors, diagnosticsFlag: bool, errorsEnabled: bool, flags: TExprFlags) = # `matches` may find new symbols, so keep track of count var symCount = c.currentScope.symbols.counter var o: TOverloadIter = default(TOverloadIter) # https://github.com/nim-lang/Nim/issues/21272 # prevent mutation during iteration by storing them in a seq # luckily `initCandidateSymbols` does just that var syms = initCandidateSymbols(c, headSymbol, initialBinding, filter, best, alt, o, diagnosticsFlag) if len(syms) == 0: return # current overload being considered var sym = syms[0].s var scope = syms[0].scope # starts at 1 because 0 is already done with setup, only needs checking var nextSymIndex = 1 var z: TCandidate # current candidate while true: determineType(c, sym) z = initCandidate(c, sym, initialBinding, scope, diagnosticsFlag) # this is kinda backwards as without a check here the described # problems in recalc would not happen, but instead it 100% # does check forever in some cases if c.currentScope.symbols.counter == symCount: # may introduce new symbols with caveats described in recalc branch matches(c, n, orig, z) if z.state == csMatch: # little hack so that iterators are preferred over everything else: if sym.kind == skIterator: if not (efWantIterator notin flags and efWantIterable in flags): inc(z.exactMatches, 200) else: dec(z.exactMatches, 200) case best.state of csEmpty, csNoMatch: best = z of csMatch: var cmp = cmpCandidates(best, z) if cmp < 0: best = z # x is better than the best so far elif cmp == 0: alt = z # x is as good as the best so far elif errorsEnabled or z.diagnosticsEnabled: errors.add(CandidateError( sym: sym, firstMismatch: z.firstMismatch, diagnostics: z.diagnostics)) else: # this branch feels like a ticking timebomb # one of two bad things could happen # 1) new symbols are discovered but the loop ends before we recalc # 2) new symbols are discovered and resemmed forever # not 100% sure if these are possible though as they would rely # on somehow introducing a new overload during overload resolution # Symbol table has been modified. Restart and pre-calculate all syms # before any further candidate init and compare. SLOW, but rare case. syms = initCandidateSymbols(c, headSymbol, initialBinding, filter, best, alt, o, diagnosticsFlag) # reset counter because syms may be in a new order symCount = c.currentScope.symbols.counter nextSymIndex = 0 # just in case, should be impossible though if syms.len == 0: break if nextSymIndex > high(syms): # we have reached the end break # advance to next sym sym = syms[nextSymIndex].s scope = syms[nextSymIndex].scope inc(nextSymIndex) proc effectProblem(f, a: PType; result: var string; c: PContext) = if f.kind == tyProc and a.kind == tyProc: if tfThread in f.flags and tfThread notin a.flags: result.add "\n This expression is not GC-safe. Annotate the " & "proc with {.gcsafe.} to get extended error information." elif tfNoSideEffect in f.flags and tfNoSideEffect notin a.flags: result.add "\n This expression can have side effects. Annotate the " & "proc with {.noSideEffect.} to get extended error information." else: case compatibleEffects(f, a) of efCompat: discard of efRaisesDiffer: result.add "\n The `.raises` requirements differ." of efRaisesUnknown: result.add "\n The `.raises` requirements differ. Annotate the " & "proc with {.raises: [].} to get extended error information." of efTagsDiffer: result.add "\n The `.tags` requirements differ." of efTagsUnknown: result.add "\n The `.tags` requirements differ. Annotate the " & "proc with {.tags: [].} to get extended error information." of efEffectsDelayed: result.add "\n The `.effectsOf` annotations differ." of efTagsIllegal: result.add "\n The `.forbids` requirements caught an illegal tag." when defined(drnim): if not c.graph.compatibleProps(c.graph, f, a): result.add "\n The `.requires` or `.ensures` properties are incompatible." proc renderNotLValue(n: PNode): string = result = $n let n = if n.kind == nkHiddenDeref: n[0] else: n if n.kind == nkHiddenCallConv and n.len > 1: result = $n[0] & "(" & result & ")" elif n.kind in {nkHiddenStdConv, nkHiddenSubConv} and n.len == 2: result = typeToString(n.typ.skipTypes(abstractVar)) & "(" & result & ")" proc presentFailedCandidates(c: PContext, n: PNode, errors: CandidateErrors): (TPreferedDesc, string) = var prefer = preferName # to avoid confusing errors like: # got (SslPtr, SocketHandle) # but expected one of: # openssl.SSL_set_fd(ssl: SslPtr, fd: SocketHandle): cint # we do a pre-analysis. If all types produce the same string, we will add # module information. let proto = describeArgs(c, n, 1, preferName) for err in errors: var errProto = "" let n = err.sym.typ.n for i in 1.. 1: filterOnlyFirst = true break var maybeWrongSpace = false var candidatesAll: seq[string] = @[] var candidates = "" var skipped = 0 for err in errors: candidates.setLen 0 if filterOnlyFirst and err.firstMismatch.arg == 1: inc skipped continue if verboseTypeMismatch notin c.config.legacyFeatures: candidates.add "[" & $err.firstMismatch.arg & "] " if err.sym.kind in routineKinds and err.sym.ast != nil: candidates.add(renderTree(err.sym.ast, {renderNoBody, renderNoComments, renderNoPragmas})) else: candidates.add(getProcHeader(c.config, err.sym, prefer)) candidates.addDeclaredLocMaybe(c.config, err.sym) candidates.add("\n") const genericParamMismatches = {kGenericParamTypeMismatch, kExtraGenericParam, kMissingGenericParam} let isGenericMismatch = err.firstMismatch.kind in genericParamMismatches var argList = n if isGenericMismatch and n[0].kind == nkBracketExpr: argList = n[0] let nArg = if err.firstMismatch.arg < argList.len: argList[err.firstMismatch.arg] else: nil let nameParam = if err.firstMismatch.formal != nil: err.firstMismatch.formal.name.s else: "" if n.len > 1: if verboseTypeMismatch notin c.config.legacyFeatures: case err.firstMismatch.kind of kUnknownNamedParam: if nArg == nil: candidates.add(" unknown named parameter") else: candidates.add(" unknown named parameter: " & $nArg[0]) candidates.add "\n" of kAlreadyGiven: candidates.add(" named param already provided: " & $nArg[0]) candidates.add "\n" of kPositionalAlreadyGiven: candidates.add(" positional param was already given as named param") candidates.add "\n" of kExtraArg: candidates.add(" extra argument given") candidates.add "\n" of kMissingParam: candidates.add(" missing parameter: " & nameParam) candidates.add "\n" of kExtraGenericParam: candidates.add(" extra generic param given") candidates.add "\n" of kMissingGenericParam: candidates.add(" missing generic parameter: " & nameParam) candidates.add "\n" of kVarNeeded: doAssert nArg != nil doAssert err.firstMismatch.formal != nil candidates.add " expression '" candidates.add renderNotLValue(nArg) candidates.add "' is immutable, not 'var'" candidates.add "\n" of kTypeMismatch: doAssert nArg != nil if nArg.kind in nkSymChoices: candidates.add ambiguousIdentifierMsg(nArg, indent = 2) let wanted = err.firstMismatch.formal.typ doAssert err.firstMismatch.formal != nil doAssert wanted != nil let got = nArg.typ if got != nil and got.kind == tyProc and wanted.kind == tyProc: # These are proc mismatches so, # add the extra explict detail of the mismatch candidates.add " expression '" candidates.add renderTree(nArg) candidates.add "' is of type: " candidates.addTypeDeclVerboseMaybe(c.config, got) candidates.addPragmaAndCallConvMismatch(wanted, got, c.config) effectProblem(wanted, got, candidates, c) candidates.add "\n" of kGenericParamTypeMismatch: let pos = err.firstMismatch.arg doAssert n[0].kind == nkBracketExpr and pos < n[0].len let arg = n[0][pos] doAssert arg != nil var wanted = err.firstMismatch.formal.typ if wanted.kind == tyGenericParam and wanted.genericParamHasConstraints: wanted = wanted.genericConstraint let got = arg.typ.skipTypes({tyTypeDesc}) doAssert err.firstMismatch.formal != nil doAssert wanted != nil doAssert got != nil candidates.add " generic parameter mismatch, expected " candidates.addTypeDeclVerboseMaybe(c.config, wanted) candidates.add " but got '" candidates.add renderTree(arg) candidates.add "' of type: " candidates.addTypeDeclVerboseMaybe(c.config, got) if nArg.kind in nkSymChoices: candidates.add "\n" candidates.add ambiguousIdentifierMsg(nArg, indent = 2) if got != nil and got.kind == tyProc and wanted.kind == tyProc: # These are proc mismatches so, # add the extra explict detail of the mismatch candidates.addPragmaAndCallConvMismatch(wanted, got, c.config) if got != nil: effectProblem(wanted, got, candidates, c) candidates.add "\n" of kUnknown: discard "do not break 'nim check'" else: candidates.add(" first type mismatch at position: " & $err.firstMismatch.arg) if err.firstMismatch.kind in genericParamMismatches: candidates.add(" in generic parameters") # candidates.add "\n reason: " & $err.firstMismatch.kind # for debugging case err.firstMismatch.kind of kUnknownNamedParam: if nArg == nil: candidates.add("\n unknown named parameter") else: candidates.add("\n unknown named parameter: " & $nArg[0]) of kAlreadyGiven: candidates.add("\n named param already provided: " & $nArg[0]) of kPositionalAlreadyGiven: candidates.add("\n positional param was already given as named param") of kExtraArg: candidates.add("\n extra argument given") of kMissingParam: candidates.add("\n missing parameter: " & nameParam) of kExtraGenericParam: candidates.add("\n extra generic param given") of kMissingGenericParam: candidates.add("\n missing generic parameter: " & nameParam) of kTypeMismatch, kGenericParamTypeMismatch, kVarNeeded: doAssert nArg != nil var wanted = err.firstMismatch.formal.typ if isGenericMismatch and wanted.kind == tyGenericParam and wanted.genericParamHasConstraints: wanted = wanted.genericConstraint doAssert err.firstMismatch.formal != nil candidates.add("\n required type for " & nameParam & ": ") candidates.addTypeDeclVerboseMaybe(c.config, wanted) candidates.add "\n but expression '" if err.firstMismatch.kind == kVarNeeded: candidates.add renderNotLValue(nArg) candidates.add "' is immutable, not 'var'" else: candidates.add renderTree(nArg) candidates.add "' is of type: " var got = nArg.typ if isGenericMismatch: got = got.skipTypes({tyTypeDesc}) candidates.addTypeDeclVerboseMaybe(c.config, got) if nArg.kind in nkSymChoices: candidates.add "\n" candidates.add ambiguousIdentifierMsg(nArg, indent = 2) doAssert wanted != nil if got != nil: if got.kind == tyProc and wanted.kind == tyProc: # These are proc mismatches so, # add the extra explict detail of the mismatch candidates.addPragmaAndCallConvMismatch(wanted, got, c.config) effectProblem(wanted, got, candidates, c) of kUnknown: discard "do not break 'nim check'" candidates.add "\n" if err.firstMismatch.arg == 1 and nArg != nil and nArg.kind == nkTupleConstr and n.kind == nkCommand: maybeWrongSpace = true for diag in err.diagnostics: candidates.add(diag & "\n") candidatesAll.add candidates candidatesAll.sort # fix #13538 candidates = join(candidatesAll) if skipped > 0: candidates.add($skipped & " other mismatching symbols have been " & "suppressed; compile with --showAllMismatches:on to see them\n") if maybeWrongSpace: candidates.add("maybe misplaced space between " & renderTree(n[0]) & " and '(' \n") result = (prefer, candidates) const errTypeMismatch = "type mismatch: got <" errButExpected = "but expected one of:" errExpectedPosition = "Expected one of (first mismatch at [position]):" errUndeclaredField = "undeclared field: '$1'" errUndeclaredRoutine = "attempting to call undeclared routine: '$1'" errBadRoutine = "attempting to call routine: '$1'$2" errAmbiguousCallXYZ = "ambiguous call; both $1 and $2 match for: $3" proc describeParamList(c: PContext, n: PNode, startIdx = 1; prefer = preferName): string = result = "Expression: " & $n for i in startIdx..') if candidates != "": result.add("\n" & errButExpected & "\n" & candidates) localError(c.config, n.info, result & "\nexpression: " & $n) proc notFoundError*(c: PContext, n: PNode, errors: CandidateErrors) = # Gives a detailed error message; this is separated from semOverloadedCall, # as semOverloadedCall is already pretty slow (and we need this information # only in case of an error). if c.config.m.errorOutputs == {}: # fail fast: globalError(c.config, n.info, "type mismatch") return # see getMsgDiagnostic: if nfExplicitCall notin n.flags and {nfDotField, nfDotSetter} * n.flags != {}: let ident = considerQuotedIdent(c, n[0], n).s let sym = n[1].typ.typSym var typeHint = "" if sym == nil: discard else: typeHint = " for type " & getProcHeader(c.config, sym) localError(c.config, n.info, errUndeclaredField % ident & typeHint) return if errors.len == 0: if n[0].kind in nkIdentKinds: let ident = considerQuotedIdent(c, n[0], n).s localError(c.config, n.info, errUndeclaredRoutine % ident) else: localError(c.config, n.info, "expression '$1' cannot be called" % n[0].renderTree) return if verboseTypeMismatch in c.config.legacyFeatures: legacynotFoundError(c, n, errors) else: let (prefer, candidates) = presentFailedCandidates(c, n, errors) var result = "type mismatch\n" result.add describeParamList(c, n, 1, prefer) if candidates != "": result.add("\n" & errExpectedPosition & "\n" & candidates) localError(c.config, n.info, result) proc getMsgDiagnostic(c: PContext, flags: TExprFlags, n, f: PNode): string = result = "" if c.compilesContextId > 0: # we avoid running more diagnostic when inside a `compiles(expr)`, to # errors while running diagnostic (see test D20180828T234921), and # also avoid slowdowns in evaluating `compiles(expr)`. discard else: var o: TOverloadIter = default(TOverloadIter) var sym = initOverloadIter(o, c, f) while sym != nil: result &= "\n found $1" % [getSymRepr(c.config, sym)] sym = nextOverloadIter(o, c, f) let ident = considerQuotedIdent(c, f, n).s if nfExplicitCall notin n.flags and {nfDotField, nfDotSetter} * n.flags != {}: let sym = n[1].typ.typSym var typeHint = "" if sym == nil: # Perhaps we're in a `compiles(foo.bar)` expression, or # in a concept, e.g.: # ExplainedConcept {.explain.} = concept x # x.foo is int # We could use: `(c.config $ n[1].info)` to get more context. discard else: typeHint = " for type " & getProcHeader(c.config, sym) let suffix = if result.len > 0: " " & result else: "" result = errUndeclaredField % ident & typeHint & suffix else: if result.len == 0: result = errUndeclaredRoutine % ident else: result = errBadRoutine % [ident, result] proc resolveOverloads(c: PContext, n, orig: PNode, filter: TSymKinds, flags: TExprFlags, errors: var CandidateErrors, errorsEnabled: bool): TCandidate = result = default(TCandidate) var initialBinding: PNode var alt: TCandidate = default(TCandidate) var f = n[0] if f.kind == nkBracketExpr: # fill in the bindings: semOpAux(c, f) initialBinding = f f = f[0] else: initialBinding = nil pickBestCandidate(c, f, n, orig, initialBinding, filter, result, alt, errors, efExplain in flags, errorsEnabled, flags) var dummyErrors: CandidateErrors = @[] template pickSpecialOp(headSymbol) = pickBestCandidate(c, headSymbol, n, orig, initialBinding, filter, result, alt, dummyErrors, efExplain in flags, false, flags) let overloadsState = result.state if overloadsState != csMatch: if nfDotField in n.flags: internalAssert c.config, f.kind == nkIdent and n.len >= 2 # leave the op head symbol empty, # we are going to try multiple variants n.sons[0..1] = [nil, n[1], f] orig.sons[0..1] = [nil, orig[1], f] template tryOp(x) = let op = newIdentNode(getIdent(c.cache, x), n.info) n[0] = op orig[0] = op pickSpecialOp(op) if nfExplicitCall in n.flags: tryOp ".()" if result.state in {csEmpty, csNoMatch}: tryOp "." elif nfDotSetter in n.flags and f.kind == nkIdent and n.len == 3: # we need to strip away the trailing '=' here: let calleeName = newIdentNode(getIdent(c.cache, f.ident.s[0..^2]), n.info) let callOp = newIdentNode(getIdent(c.cache, ".="), n.info) n.sons[0..1] = [callOp, n[1], calleeName] orig.sons[0..1] = [callOp, orig[1], calleeName] pickSpecialOp(callOp) if overloadsState == csEmpty and result.state == csEmpty: if efNoUndeclared notin flags: # for tests/pragmas/tcustom_pragma.nim result.state = csNoMatch if c.inGenericContext > 0 and nfExprCall in n.flags: # untyped expression calls end up here, see #24099 return # xxx adapt/use errorUndeclaredIdentifierHint(c, n, f.ident) localError(c.config, n.info, getMsgDiagnostic(c, flags, n, f)) return elif result.state != csMatch: if nfExprCall in n.flags: localError(c.config, n.info, "expression '$1' cannot be called" % renderTree(n, {renderNoComments})) else: if {nfDotField, nfDotSetter} * n.flags != {}: # clean up the inserted ops n.sons.delete(2) n[0] = f return if alt.state == csMatch and cmpCandidates(result, alt) == 0 and not sameMethodDispatcher(result.calleeSym, alt.calleeSym): internalAssert c.config, result.state == csMatch #writeMatches(result) #writeMatches(alt) if c.config.m.errorOutputs == {}: # quick error message for performance of 'compiles' built-in: globalError(c.config, n.info, errGenerated, "ambiguous call") elif c.config.errorCounter == 0: # don't cascade errors var args = "(" for i in 1.. 1: args.add(", ") args.add(typeToString(n[i].typ)) args.add(")") localError(c.config, n.info, errAmbiguousCallXYZ % [ getProcHeader(c.config, result.calleeSym), getProcHeader(c.config, alt.calleeSym), args]) proc bracketNotFoundError(c: PContext; n: PNode; flags: TExprFlags) = var errors: CandidateErrors = @[] let headSymbol = n[0] block: # we build a closed symchoice of all `[]` overloads for their errors, # except add a custom error for the magics which always match var choice = newNodeIT(nkClosedSymChoice, headSymbol.info, newTypeS(tyNone, c)) var o: TOverloadIter = default(TOverloadIter) var symx = initOverloadIter(o, c, headSymbol) while symx != nil: if symx.kind in routineKinds: if symx.magic in {mArrGet, mArrPut}: errors.add(CandidateError(sym: symx, firstMismatch: MismatchInfo(), diagnostics: @[], enabled: false)) else: choice.add newSymNode(symx, headSymbol.info) symx = nextOverloadIter(o, c, headSymbol) n[0] = choice # copied from semOverloadedCallAnalyzeEffects, might be overkill: const baseFilter = {skProc, skFunc, skMethod, skConverter, skMacro, skTemplate} let filter = if flags*{efInTypeof, efWantIterator, efWantIterable} != {}: baseFilter + {skIterator} else: baseFilter # this will add the errors: var r = resolveOverloads(c, n, n, filter, flags, errors, true) if errors.len == 0: localError(c.config, n.info, "could not resolve: " & $n) else: notFoundError(c, n, errors) proc instGenericConvertersArg*(c: PContext, a: PNode, x: TCandidate) = let a = if a.kind == nkHiddenDeref: a[0] else: a if a.kind == nkHiddenCallConv and a[0].kind == nkSym: let s = a[0].sym if s.isGenericRoutineStrict: let finalCallee = generateInstance(c, s, x.bindings, a.info) a[0].sym = finalCallee a[0].typ = finalCallee.typ #a.typ = finalCallee.typ.returnType proc instGenericConvertersSons*(c: PContext, n: PNode, x: TCandidate) = assert n.kind in nkCallKinds if x.genericConverter: for i in 1.. 0: return getCallLineInfo(n[0]) of nkDotExpr: if len(n) > 1: return getCallLineInfo(n[1]) else: discard result = n.info proc inheritBindings(c: PContext, x: var TCandidate, expectedType: PType) = ## Helper proc to inherit bound generic parameters from expectedType into x. ## Does nothing if 'inferGenericTypes' isn't in c.features. if inferGenericTypes notin c.features: return if expectedType == nil or x.callee.returnType == nil: return # required for inference var flatUnbound: seq[PType] = @[] flatBound: seq[PType] = @[] # seq[(result type, expected type)] var typeStack = newSeq[(PType, PType)]() template stackPut(a, b) = ## skips types and puts the skipped version on stack # It might make sense to skip here one by one. It's not part of the main # type reduction because the right side normally won't be skipped const toSkip = {tyVar, tyLent, tyStatic, tyCompositeTypeClass, tySink} let x = a.skipTypes(toSkip) y = if a.kind notin toSkip: b else: b.skipTypes(toSkip) typeStack.add((x, y)) stackPut(x.callee.returnType, expectedType) while typeStack.len() > 0: let (t, u) = typeStack.pop() if t == u or t == nil or u == nil or t.kind == tyAnything or u.kind == tyAnything: continue case t.kind of ConcreteTypes, tyGenericInvocation, tyUncheckedArray: # XXX This logic makes no sense for `tyUncheckedArray` # nested, add all the types to stack let startIdx = if u.kind in ConcreteTypes: 0 else: 1 endIdx = min(u.kidsLen() - startIdx, t.kidsLen()) for i in startIdx ..< endIdx: # early exit with current impl if t[i] == nil or u[i] == nil: return stackPut(t[i], u[i]) of tyGenericParam: let prebound = x.bindings.idTableGet(t) if prebound != nil: continue # Skip param, already bound # fully reduced generic param, bind it if t notin flatUnbound: flatUnbound.add(t) flatBound.add(u) else: discard # update bindings for i in 0 ..< flatUnbound.len(): x.bindings.idTablePut(flatUnbound[i], flatBound[i]) proc semResolvedCall(c: PContext, x: var TCandidate, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode = assert x.state == csMatch var finalCallee = x.calleeSym let info = getCallLineInfo(n) markUsed(c, info, finalCallee) onUse(info, finalCallee) assert finalCallee.ast != nil if x.matchedErrorType: result = x.call result[0] = newSymNode(finalCallee, getCallLineInfo(result[0])) if containsGenericType(result.typ): result.typ = newTypeS(tyError, c) incl result.typ.flags, tfCheckedForDestructor return let gp = finalCallee.ast[genericParamsPos] if gp.isGenericParams: if x.calleeSym.kind notin {skMacro, skTemplate}: if x.calleeSym.magic in {mArrGet, mArrPut}: finalCallee = x.calleeSym else: c.inheritBindings(x, expectedType) finalCallee = generateInstance(c, x.calleeSym, x.bindings, n.info) else: # For macros and templates, the resolved generic params # are added as normal params. c.inheritBindings(x, expectedType) for s in instantiateGenericParamList(c, gp, x.bindings): case s.kind of skConst: if not s.astdef.isNil: x.call.add s.astdef else: x.call.add c.graph.emptyNode of skType: var tn = newSymNode(s, n.info) # this node will be used in template substitution, # pretend this is an untyped node and let regular sem handle the type # to prevent problems where a generic parameter is treated as a value tn.typ = nil x.call.add tn else: internalAssert c.config, false result = x.call instGenericConvertersSons(c, result, x) result[0] = newSymNode(finalCallee, getCallLineInfo(result[0])) if finalCallee.magic notin {mArrGet, mArrPut}: result.typ = finalCallee.typ.returnType updateDefaultParams(c, result) proc canDeref(n: PNode): bool {.inline.} = result = n.len >= 2 and (let t = n[1].typ; t != nil and t.skipTypes({tyGenericInst, tyAlias, tySink}).kind in {tyPtr, tyRef}) proc tryDeref(n: PNode): PNode = result = newNodeI(nkHiddenDeref, n.info) result.typ = n.typ.skipTypes(abstractInst)[0] result.add n proc semOverloadedCall(c: PContext, n, nOrig: PNode, filter: TSymKinds, flags: TExprFlags; expectedType: PType = nil): PNode = var errors: CandidateErrors = @[] # if efExplain in flags: @[] else: nil var r = resolveOverloads(c, n, nOrig, filter, flags, errors, efExplain in flags) if r.state == csMatch: # this may be triggered, when the explain pragma is used if errors.len > 0: let (_, candidates) = presentFailedCandidates(c, n, errors) message(c.config, n.info, hintUserRaw, "Non-matching candidates for " & renderTree(n) & "\n" & candidates) result = semResolvedCall(c, r, n, flags, expectedType) else: if c.inGenericContext > 0 and c.matchedConcept == nil: result = semGenericStmt(c, n) result.typ = makeTypeFromExpr(c, result.copyTree) elif efExplain notin flags: # repeat the overload resolution, # this time enabling all the diagnostic output (this should fail again) result = semOverloadedCall(c, n, nOrig, filter, flags + {efExplain}) elif efNoUndeclared notin flags: result = nil notFoundError(c, n, errors) else: result = nil proc explicitGenericInstError(c: PContext; n: PNode): PNode = localError(c.config, getCallLineInfo(n), errCannotInstantiateX % renderTree(n)) result = n proc explicitGenericSym(c: PContext, n: PNode, s: PSym): PNode = if s.kind in {skTemplate, skMacro}: internalError c.config, n.info, "cannot get explicitly instantiated symbol of " & (if s.kind == skTemplate: "template" else: "macro") # binding has to stay 'nil' for this to work! var m = newCandidate(c, s, nil) matchGenericParams(m, n, s) if m.state != csMatch: # state is csMatch only if *all* generic params were matched, # including implicit parameters return nil var newInst = generateInstance(c, s, m.bindings, n.info) newInst.typ.flags.excl tfUnresolved let info = getCallLineInfo(n) markUsed(c, info, s) onUse(info, s) result = newSymNode(newInst, info) proc setGenericParams(c: PContext, n, expectedParams: PNode) = ## sems generic params in subscript expression for i in 1..