# # # The Nim Compiler # (c) Copyright 2015 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # # This include file implements the semantic checking for magics. # included from sem.nim proc semAddrArg(c: PContext; n: PNode; isUnsafeAddr = false): PNode = let x = semExprWithType(c, n) if x.kind == nkSym: x.sym.flags.incl(sfAddrTaken) if isAssignable(c, x, isUnsafeAddr) notin {arLValue, arLocalLValue}: # Do not suggest the use of unsafeAddr if this expression already is a # unsafeAddr if isUnsafeAddr: localError(c.config, n.info, errExprHasNoAddress) else: localError(c.config, n.info, errExprHasNoAddress & "; maybe use 'unsafeAddr'") result = x proc semTypeOf(c: PContext; n: PNode): PNode = var m = BiggestInt 1 # typeOfIter if n.len == 3: let mode = semConstExpr(c, n[2]) if mode.kind != nkIntLit: localError(c.config, n.info, "typeof: cannot evaluate 'mode' parameter at compile-time") else: m = mode.intVal result = newNodeI(nkTypeOfExpr, n.info) let typExpr = semExprWithType(c, n[1], if m == 1: {efInTypeof} else: {}) result.add typExpr result.typ = makeTypeDesc(c, typExpr.typ) type SemAsgnMode = enum asgnNormal, noOverloadedSubscript, noOverloadedAsgn proc semAsgn(c: PContext, n: PNode; mode=asgnNormal): PNode proc semSubscript(c: PContext, n: PNode, flags: TExprFlags): PNode proc semArrGet(c: PContext; n: PNode; flags: TExprFlags): PNode = result = newNodeI(nkBracketExpr, n.info) for i in 1.. 2 and operand2.kind == tyGenericParam): return traitCall ## too early to evaluate let s = trait.sym.name.s case s of "or", "|": return typeWithSonsResult(tyOr, @[operand, operand2]) of "and": return typeWithSonsResult(tyAnd, @[operand, operand2]) of "not": return typeWithSonsResult(tyNot, @[operand]) of "typeToString": var prefer = preferTypeName if traitCall.len >= 2: let preferStr = traitCall[2].strVal prefer = parseEnum[TPreferedDesc](preferStr) result = newStrNode(nkStrLit, operand.typeToString(prefer)) result.typ = getSysType(c.graph, traitCall[1].info, tyString) result.info = traitCall.info of "name", "$": result = newStrNode(nkStrLit, operand.typeToString(preferTypeName)) result.typ = getSysType(c.graph, traitCall[1].info, tyString) result.info = traitCall.info of "arity": result = newIntNode(nkIntLit, operand.len - ord(operand.kind==tyProc)) result.typ = newType(tyInt, nextTypeId c.idgen, context) result.info = traitCall.info of "genericHead": var arg = operand case arg.kind of tyGenericInst: result = getTypeDescNode(c, arg.base, operand.owner, traitCall.info) # of tySequence: # this doesn't work # var resType = newType(tySequence, operand.owner) # result = toNode(resType, traitCall.info) # doesn't work yet else: localError(c.config, traitCall.info, "expected generic type, got: type $2 of kind $1" % [arg.kind.toHumanStr, typeToString(operand)]) result = newType(tyError, nextTypeId c.idgen, context).toNode(traitCall.info) of "stripGenericParams": result = uninstantiate(operand).toNode(traitCall.info) of "supportsCopyMem": let t = operand.skipTypes({tyVar, tyLent, tyGenericInst, tyAlias, tySink, tyInferred}) let complexObj = containsGarbageCollectedRef(t) or hasDestructor(t) result = newIntNodeT(toInt128(ord(not complexObj)), traitCall, c.idgen, c.graph) of "isNamedTuple": var operand = operand.skipTypes({tyGenericInst}) let cond = operand.kind == tyTuple and operand.n != nil result = newIntNodeT(toInt128(ord(cond)), traitCall, c.idgen, c.graph) of "tupleLen": var operand = operand.skipTypes({tyGenericInst}) assert operand.kind == tyTuple, $operand.kind result = newIntNodeT(toInt128(operand.len), traitCall, c.idgen, c.graph) of "distinctBase": var arg = operand.skipTypes({tyGenericInst}) let rec = semConstExpr(c, traitCall[2]).intVal != 0 while arg.kind == tyDistinct: arg = arg.base.skipTypes(skippedTypes + {tyGenericInst}) if not rec: break result = getTypeDescNode(c, arg, operand.owner, traitCall.info) else: localError(c.config, traitCall.info, "unknown trait: " & s) result = newNodeI(nkEmpty, traitCall.info) proc semTypeTraits(c: PContext, n: PNode): PNode = checkMinSonsLen(n, 2, c.config) let t = n[1].typ internalAssert c.config, t != nil and t.kind == tyTypeDesc if t.len > 0: # This is either a type known to sem or a typedesc # param to a regular proc (again, known at instantiation) result = evalTypeTrait(c, n, t, getCurrOwner(c)) else: # a typedesc variable, pass unmodified to evals result = n proc semOrd(c: PContext, n: PNode): PNode = result = n let parType = n[1].typ if isOrdinalType(parType, allowEnumWithHoles=true): discard else: localError(c.config, n.info, errOrdinalTypeExpected) result.typ = errorType(c) proc semBindSym(c: PContext, n: PNode): PNode = result = copyNode(n) result.add(n[0]) let sl = semConstExpr(c, n[1]) if sl.kind notin {nkStrLit, nkRStrLit, nkTripleStrLit}: return localErrorNode(c, n, n[1].info, errStringLiteralExpected) let isMixin = semConstExpr(c, n[2]) if isMixin.kind != nkIntLit or isMixin.intVal < 0 or isMixin.intVal > high(TSymChoiceRule).int: return localErrorNode(c, n, n[2].info, errConstExprExpected) let id = newIdentNode(getIdent(c.cache, sl.strVal), n.info) let s = qualifiedLookUp(c, id, {checkUndeclared}) if s != nil: # we need to mark all symbols: var sc = symChoice(c, id, s, TSymChoiceRule(isMixin.intVal)) if not (c.inStaticContext > 0 or getCurrOwner(c).isCompileTimeProc): # inside regular code, bindSym resolves to the sym-choice # nodes (see tinspectsymbol) return sc result.add(sc) else: errorUndeclaredIdentifier(c, n[1].info, sl.strVal) proc opBindSym(c: PContext, scope: PScope, n: PNode, isMixin: int, info: PNode): PNode = if n.kind notin {nkStrLit, nkRStrLit, nkTripleStrLit, nkIdent}: return localErrorNode(c, n, info.info, errStringOrIdentNodeExpected) if isMixin < 0 or isMixin > high(TSymChoiceRule).int: return localErrorNode(c, n, info.info, errConstExprExpected) let id = if n.kind == nkIdent: n else: newIdentNode(getIdent(c.cache, n.strVal), info.info) let tmpScope = c.currentScope c.currentScope = scope let s = qualifiedLookUp(c, id, {checkUndeclared}) if s != nil: # we need to mark all symbols: result = symChoice(c, id, s, TSymChoiceRule(isMixin)) else: errorUndeclaredIdentifier(c, info.info, if n.kind == nkIdent: n.ident.s else: n.strVal) c.currentScope = tmpScope proc semDynamicBindSym(c: PContext, n: PNode): PNode = # inside regular code, bindSym resolves to the sym-choice # nodes (see tinspectsymbol) if not (c.inStaticContext > 0 or getCurrOwner(c).isCompileTimeProc): return semBindSym(c, n) if c.graph.vm.isNil: setupGlobalCtx(c.module, c.graph, c.idgen) let vm = PCtx c.graph.vm # cache the current scope to # prevent it lost into oblivion scope = c.currentScope # cannot use this # vm.config.features.incl dynamicBindSym proc bindSymWrapper(a: VmArgs) = # capture PContext and currentScope # param description: # 0. ident, a string literal / computed string / or ident node # 1. bindSym rule # 2. info node a.setResult opBindSym(c, scope, a.getNode(0), a.getInt(1).int, a.getNode(2)) let # although we use VM callback here, it is not # executed like 'normal' VM callback idx = vm.registerCallback("bindSymImpl", bindSymWrapper) # dummy node to carry idx information to VM idxNode = newIntTypeNode(idx, c.graph.getSysType(TLineInfo(), tyInt)) result = copyNode(n) for x in n: result.add x result.add n # info node result.add idxNode proc semShallowCopy(c: PContext, n: PNode, flags: TExprFlags): PNode proc semOf(c: PContext, n: PNode): PNode = if n.len == 3: n[1] = semExprWithType(c, n[1]) n[2] = semExprWithType(c, n[2], {efDetermineType}) #restoreOldStyleType(n[1]) #restoreOldStyleType(n[2]) let a = skipTypes(n[1].typ, abstractPtrs) let b = skipTypes(n[2].typ, abstractPtrs) let x = skipTypes(n[1].typ, abstractPtrs-{tyTypeDesc}) let y = skipTypes(n[2].typ, abstractPtrs-{tyTypeDesc}) if x.kind == tyTypeDesc or y.kind != tyTypeDesc: localError(c.config, n.info, "'of' takes object types") elif b.kind != tyObject or a.kind != tyObject: localError(c.config, n.info, "'of' takes object types") else: let diff = inheritanceDiff(a, b) # | returns: 0 iff `a` == `b` # | returns: -x iff `a` is the x'th direct superclass of `b` # | returns: +x iff `a` is the x'th direct subclass of `b` # | returns: `maxint` iff `a` and `b` are not compatible at all if diff <= 0: # optimize to true: message(c.config, n.info, hintConditionAlwaysTrue, renderTree(n)) result = newIntNode(nkIntLit, 1) result.info = n.info result.typ = getSysType(c.graph, n.info, tyBool) return result elif diff == high(int): if commonSuperclass(a, b) == nil: localError(c.config, n.info, "'$1' cannot be of this subtype" % typeToString(a)) else: message(c.config, n.info, hintConditionAlwaysFalse, renderTree(n)) result = newIntNode(nkIntLit, 0) result.info = n.info result.typ = getSysType(c.graph, n.info, tyBool) else: localError(c.config, n.info, "'of' takes 2 arguments") n.typ = getSysType(c.graph, n.info, tyBool) result = n proc semUnown(c: PContext; n: PNode): PNode = proc unownedType(c: PContext; t: PType): PType = case t.kind of tyTuple: var elems = newSeq[PType](t.len) var someChange = false for i in 0...field proc transform(c: PContext; procSym: PSym; n: PNode; old, fresh: PType; oldParam, newParam: PSym): PNode = result = shallowCopy(n) if sameTypeOrNil(n.typ, old): result.typ = fresh if n.kind == nkSym: if n.sym == oldParam: result.sym = newParam elif n.sym.owner == orig: result.sym = copySym(n.sym, nextSymId c.idgen) result.sym.owner = procSym for i in 0 ..< safeLen(n): result[i] = transform(c, procSym, n[i], old, fresh, oldParam, newParam) #if n.kind == nkDerefExpr and sameType(n[0].typ, old): # result = result = copySym(orig, nextSymId c.idgen) result.info = info result.flags.incl sfFromGeneric result.owner = orig let origParamType = orig.typ[1] let newParamType = makeVarType(result, origParamType.skipTypes(abstractPtrs), c.idgen) let oldParam = orig.typ.n[1].sym let newParam = newSym(skParam, oldParam.name, nextSymId c.idgen, result, result.info) newParam.typ = newParamType # proc body: result.ast = transform(c, result, orig.ast, origParamType, newParamType, oldParam, newParam) # proc signature: result.typ = newProcType(result.info, nextTypeId c.idgen, result) result.typ.addParam newParam proc semQuantifier(c: PContext; n: PNode): PNode = checkSonsLen(n, 2, c.config) openScope(c) result = newNodeIT(n.kind, n.info, n.typ) result.add n[0] let args = n[1] assert args.kind == nkArgList for i in 0..args.len-2: let it = args[i] var valid = false if it.kind == nkInfix: let op = considerQuotedIdent(c, it[0]) if op.id == ord(wIn): let v = newSymS(skForVar, it[1], c) styleCheckDef(c.config, v) onDef(it[1].info, v) let domain = semExprWithType(c, it[2], {efWantIterator}) v.typ = domain.typ valid = true addDecl(c, v) result.add newTree(nkInfix, it[0], newSymNode(v), domain) if not valid: localError(c.config, n.info, " 'in' expected") result.add forceBool(c, semExprWithType(c, args[^1])) closeScope(c) proc semOld(c: PContext; n: PNode): PNode = if n[1].kind == nkHiddenDeref: n[1] = n[1][0] if n[1].kind != nkSym or n[1].sym.kind != skParam: localError(c.config, n[1].info, "'old' takes a parameter name") elif n[1].sym.owner != getCurrOwner(c): localError(c.config, n[1].info, n[1].sym.name.s & " does not belong to " & getCurrOwner(c).name.s) result = n proc semPrivateAccess(c: PContext, n: PNode): PNode = let t = n[1].typ[0].toObjectFromRefPtrGeneric c.currentScope.allowPrivateAccess.add t.sym result = newNodeIT(nkEmpty, n.info, getSysType(c.graph, n.info, tyVoid)) proc magicsAfterOverloadResolution(c: PContext, n: PNode, flags: TExprFlags): PNode = ## This is the preferred code point to implement magics. ## ``c`` the current module, a symbol table to a very good approximation ## ``n`` the ast like it would be passed to a real macro ## ``flags`` Some flags for more contextual information on how the ## "macro" is calld. case n[0].sym.magic of mAddr: checkSonsLen(n, 2, c.config) result = n result[1] = semAddrArg(c, n[1], n[0].sym.name.s == "unsafeAddr") result.typ = makePtrType(c, result[1].typ) of mTypeOf: result = semTypeOf(c, n) of mSizeOf: result = foldSizeOf(c.config, n, n) of mAlignOf: result = foldAlignOf(c.config, n, n) of mOffsetOf: result = foldOffsetOf(c.config, n, n) of mArrGet: result = semArrGet(c, n, flags) of mArrPut: result = semArrPut(c, n, flags) of mAsgn: if n[0].sym.name.s == "=": result = semAsgnOpr(c, n) else: result = semShallowCopy(c, n, flags) of mIsPartOf: result = semIsPartOf(c, n, flags) of mTypeTrait: result = semTypeTraits(c, n) of mAstToStr: result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, c.graph) result.typ = getSysType(c.graph, n.info, tyString) of mInstantiationInfo: result = semInstantiationInfo(c, n) of mOrd: result = semOrd(c, n) of mOf: result = semOf(c, n) of mHigh, mLow: result = semLowHigh(c, n, n[0].sym.magic) of mShallowCopy: result = semShallowCopy(c, n, flags) of mNBindSym: if dynamicBindSym notin c.features: result = semBindSym(c, n) else: result = semDynamicBindSym(c, n) of mProcCall: result = n result.typ = n[1].typ of mDotDot: result = n of mPlugin: let plugin = getPlugin(c.cache, n[0].sym) if plugin.isNil: localError(c.config, n.info, "cannot find plugin " & n[0].sym.name.s) result = n else: result = plugin(c, n) of mNewFinalize: # Make sure the finalizer procedure refers to a procedure if n[^1].kind == nkSym and n[^1].sym.kind notin {skProc, skFunc}: localError(c.config, n.info, "finalizer must be a direct reference to a proc") elif optTinyRtti in c.config.globalOptions: let nfin = skipConvCastAndClosure(n[^1]) let fin = case nfin.kind of nkSym: nfin.sym of nkLambda, nkDo: nfin[namePos].sym else: localError(c.config, n.info, "finalizer must be a direct reference to a proc") nil if fin != nil: if fin.kind notin {skProc, skFunc}: # calling convention is checked in codegen localError(c.config, n.info, "finalizer must be a direct reference to a proc") # check if we converted this finalizer into a destructor already: let t = whereToBindTypeHook(c, fin.typ[1].skipTypes(abstractInst+{tyRef})) if t != nil and getAttachedOp(c.graph, t, attachedDestructor) != nil and getAttachedOp(c.graph, t, attachedDestructor).owner == fin: discard "already turned this one into a finalizer" else: bindTypeHook(c, turnFinalizerIntoDestructor(c, fin, n.info), n, attachedDestructor) result = n of mDestroy: result = n let t = n[1].typ.skipTypes(abstractVar) let op = getAttachedOp(c.graph, t, attachedDestructor) if op != nil: result[0] = newSymNode(op) of mTrace: result = n let t = n[1].typ.skipTypes(abstractVar) let op = getAttachedOp(c.graph, t, attachedTrace) if op != nil: result[0] = newSymNode(op) of mUnown: result = semUnown(c, n) of mExists, mForall: result = semQuantifier(c, n) of mOld: result = semOld(c, n) of mSetLengthSeq: result = n let seqType = result[1].typ.skipTypes({tyPtr, tyRef, # in case we had auto-dereferencing tyVar, tyGenericInst, tyOwned, tySink, tyAlias, tyUserTypeClassInst}) if seqType.kind == tySequence and seqType.base.requiresInit: message(c.config, n.info, warnUnsafeSetLen, typeToString(seqType.base)) of mDefault: result = n c.config.internalAssert result[1].typ.kind == tyTypeDesc let constructed = result[1].typ.base if constructed.requiresInit: message(c.config, n.info, warnUnsafeDefault, typeToString(constructed)) of mIsolate: if not checkIsolate(n[1]): localError(c.config, n.info, "expression cannot be isolated: " & $n[1]) result = n of mPred: if n[1].typ.skipTypes(abstractInst).kind in {tyUInt..tyUInt64}: n[0].sym.magic = mSubU result = n of mPrivateAccess: result = semPrivateAccess(c, n) else: result = n