# # # The Nim Compiler # (c) Copyright 2013 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This module implements the signature matching for resolving ## the call to overloaded procs, generic procs and operators. import intsets, ast, astalgo, semdata, types, msgs, renderer, lookups, semtypinst, magicsys, idents, lexer, options, parampatterns, strutils, trees, linter, lineinfos, lowerings, modulegraphs, concepts type MismatchKind* = enum kUnknown, kAlreadyGiven, kUnknownNamedParam, kTypeMismatch, kVarNeeded, kMissingParam, kExtraArg, kPositionalAlreadyGiven MismatchInfo* = object kind*: MismatchKind # reason for mismatch arg*: int # position of provided arguments that mismatches formal*: PSym # parameter that mismatches against provided argument # its position can differ from `arg` because of varargs TCandidateState* = enum csEmpty, csMatch, csNoMatch CandidateError* = object sym*: PSym firstMismatch*: MismatchInfo diagnostics*: seq[string] enabled*: bool CandidateErrors* = seq[CandidateError] TCandidate* = object c*: PContext exactMatches*: int # also misused to prefer iters over procs genericMatches: int # also misused to prefer constraints subtypeMatches: int intConvMatches: int # conversions to int are not as expensive convMatches: int state*: TCandidateState callee*: PType # may not be nil! calleeSym*: PSym # may be nil calleeScope*: int # scope depth: # is this a top-level symbol or a nested proc? call*: PNode # modified call bindings*: TIdTable # maps types to types magic*: TMagic # magic of operation baseTypeMatch: bool # needed for conversions from T to openarray[T] # for example fauxMatch*: TTypeKind # the match was successful only due to the use # of error or wildcard (unknown) types. # this is used to prevent instantiations. genericConverter*: bool # true if a generic converter needs to # be instantiated coerceDistincts*: bool # this is an explicit coercion that can strip away # a distrinct type typedescMatched*: bool isNoCall*: bool # misused for generic type instantiations C[T] inferredTypes: seq[PType] # inferred types during the current signature # matching. they will be reset if the matching # is not successful. may replace the bindings # table in the future. diagnostics*: seq[string] # \ # when diagnosticsEnabled, the matching process # will collect extra diagnostics that will be # displayed to the user. # triggered when overload resolution fails # or when the explain pragma is used. may be # triggered with an idetools command in the # future. inheritancePenalty: int # to prefer closest father object type firstMismatch*: MismatchInfo # mismatch info for better error messages diagnosticsEnabled*: bool TTypeRelFlag* = enum trDontBind trNoCovariance trBindGenericParam # bind tyGenericParam even with trDontBind TTypeRelFlags* = set[TTypeRelFlag] const isNilConversion = isConvertible # maybe 'isIntConv' fits better? proc markUsed*(c: PContext; info: TLineInfo, s: PSym) proc markOwnerModuleAsUsed*(c: PContext; s: PSym) template hasFauxMatch*(c: TCandidate): bool = c.fauxMatch != tyNone proc initCandidateAux(ctx: PContext, c: var TCandidate, callee: PType) {.inline.} = c.c = ctx c.exactMatches = 0 c.subtypeMatches = 0 c.convMatches = 0 c.intConvMatches = 0 c.genericMatches = 0 c.state = csEmpty c.firstMismatch = MismatchInfo() c.callee = callee c.call = nil c.baseTypeMatch = false c.genericConverter = false c.inheritancePenalty = 0 proc initCandidate*(ctx: PContext, c: var TCandidate, callee: PType) = initCandidateAux(ctx, c, callee) c.calleeSym = nil initIdTable(c.bindings) proc put(c: var TCandidate, key, val: PType) {.inline.} = ## Given: proc foo[T](x: T); foo(4) ## key: 'T' ## val: 'int' (typeof(4)) when false: let old = PType(idTableGet(c.bindings, key)) if old != nil: echo "Putting ", typeToString(key), " ", typeToString(val), " and old is ", typeToString(old) if typeToString(old) == "float32": writeStackTrace() if c.c.module.name.s == "temp3": echo "binding ", key, " -> ", val idTablePut(c.bindings, key, val.skipIntLit(c.c.idgen)) proc initCandidate*(ctx: PContext, c: var TCandidate, callee: PSym, binding: PNode, calleeScope = -1, diagnosticsEnabled = false) = initCandidateAux(ctx, c, callee.typ) c.calleeSym = callee if callee.kind in skProcKinds and calleeScope == -1: if callee.originatingModule == ctx.module: c.calleeScope = 2 var owner = callee while true: owner = owner.skipGenericOwner if owner.kind == skModule: break inc c.calleeScope else: c.calleeScope = 1 else: c.calleeScope = calleeScope c.diagnostics = @[] # if diagnosticsEnabled: @[] else: nil c.diagnosticsEnabled = diagnosticsEnabled c.magic = c.calleeSym.magic initIdTable(c.bindings) if binding != nil and callee.kind in routineKinds: var typeParams = callee.ast[genericParamsPos] for i in 1..min(typeParams.len, binding.len-1): var formalTypeParam = typeParams[i-1].typ var bound = binding[i].typ if bound != nil: if formalTypeParam.kind == tyTypeDesc: if bound.kind != tyTypeDesc: bound = makeTypeDesc(ctx, bound) else: bound = bound.skipTypes({tyTypeDesc}) put(c, formalTypeParam, bound) proc newCandidate*(ctx: PContext, callee: PSym, binding: PNode, calleeScope = -1): TCandidate = initCandidate(ctx, result, callee, binding, calleeScope) proc newCandidate*(ctx: PContext, callee: PType): TCandidate = initCandidate(ctx, result, callee) proc copyCandidate(a: var TCandidate, b: TCandidate) = a.c = b.c a.exactMatches = b.exactMatches a.subtypeMatches = b.subtypeMatches a.convMatches = b.convMatches a.intConvMatches = b.intConvMatches a.genericMatches = b.genericMatches a.state = b.state a.callee = b.callee a.calleeSym = b.calleeSym a.call = copyTree(b.call) a.baseTypeMatch = b.baseTypeMatch copyIdTable(a.bindings, b.bindings) proc typeRel*(c: var TCandidate, f, aOrig: PType, flags: TTypeRelFlags = {}): TTypeRelation proc checkGeneric(a, b: TCandidate): int = let c = a.c let aa = a.callee let bb = b.callee var winner = 0 for i in 1.. maxBranch: maxBranch = branchSum inc result, maxBranch break of tyVar: t = t[0] inc result inc isvar of tyTypeDesc: t = t.lastSon if t.kind == tyEmpty: break inc result of tyGenericInvocation, tyTuple, tyProc, tyAnd: result += ord(t.kind in {tyGenericInvocation, tyAnd}) for i in 0.. y: winner = 1 else: winner = -1 elif x > y: if winner != 1: # contradiction return 0 else: if winner != -1: return 0 result = winner when false: var x, y: int for i in 1.. 0 and f[0].skipTypes({tyBuiltInTypeClass}).kind == tyProc: result = t.lastSon else: result = t else: result = t # Note: empty is valid here proc handleRange(f, a: PType, min, max: TTypeKind): TTypeRelation = if a.kind == f.kind: result = isEqual else: let ab = skipTypes(a, {tyRange}) let k = ab.kind if k == f.kind: result = isSubrange elif k == tyInt and f.kind in {tyRange, tyInt8..tyInt64, tyUInt..tyUInt64} and isIntLit(ab) and getInt(ab.n) >= firstOrd(nil, f) and getInt(ab.n) <= lastOrd(nil, f): # passing 'nil' to firstOrd/lastOrd here as type checking rules should # not depend on the target integer size configurations! # integer literal in the proper range; we want ``i16 + 4`` to stay an # ``int16`` operation so we declare the ``4`` pseudo-equal to int16 result = isFromIntLit elif f.kind == tyInt and k in {tyInt8..tyInt32}: result = isIntConv elif f.kind == tyUInt and k in {tyUInt8..tyUInt32}: result = isIntConv elif k >= min and k <= max: result = isConvertible elif a.kind == tyRange and # Make sure the conversion happens between types w/ same signedness (f.kind in {tyInt..tyInt64} and a[0].kind in {tyInt..tyInt64} or f.kind in {tyUInt8..tyUInt32} and a[0].kind in {tyUInt8..tyUInt32}) and a.n[0].intVal >= firstOrd(nil, f) and a.n[1].intVal <= lastOrd(nil, f): # passing 'nil' to firstOrd/lastOrd here as type checking rules should # not depend on the target integer size configurations! result = isConvertible else: result = isNone proc isConvertibleToRange(f, a: PType): bool = if f.kind in {tyInt..tyInt64, tyUInt..tyUInt64} and a.kind in {tyInt..tyInt64, tyUInt..tyUInt64}: case f.kind of tyInt8: result = isIntLit(a) or a.kind in {tyInt8} of tyInt16: result = isIntLit(a) or a.kind in {tyInt8, tyInt16} of tyInt32: result = isIntLit(a) or a.kind in {tyInt8, tyInt16, tyInt32} # This is wrong, but seems like there's a lot of code that relies on it :( of tyInt, tyUInt, tyUInt64: result = true of tyInt64: result = isIntLit(a) or a.kind in {tyInt8, tyInt16, tyInt32, tyInt, tyInt64} of tyUInt8: result = isIntLit(a) or a.kind in {tyUInt8} of tyUInt16: result = isIntLit(a) or a.kind in {tyUInt8, tyUInt16} of tyUInt32: result = isIntLit(a) or a.kind in {tyUInt8, tyUInt16, tyUInt32} #of tyUInt: result = isIntLit(a) or a.kind in {tyUInt8, tyUInt16, tyUInt32, tyUInt} #of tyUInt64: result = isIntLit(a) or a.kind in {tyUInt8, tyUInt16, tyUInt32, tyUInt, tyUInt64} else: result = false elif f.kind in {tyFloat..tyFloat128}: # `isIntLit` is correct and should be used above as well, see PR: # https://github.com/nim-lang/Nim/pull/11197 result = isIntLit(a) or a.kind in {tyFloat..tyFloat128} proc handleFloatRange(f, a: PType): TTypeRelation = if a.kind == f.kind: result = isEqual else: let ab = skipTypes(a, {tyRange}) var k = ab.kind if k == f.kind: result = isSubrange elif isFloatLit(ab): result = isFromIntLit elif isIntLit(ab): result = isConvertible elif k >= tyFloat and k <= tyFloat128: # conversion to "float32" is not as good: if f.kind == tyFloat32: result = isConvertible else: result = isIntConv else: result = isNone proc genericParamPut(c: var TCandidate; last, fGenericOrigin: PType) = if fGenericOrigin != nil and last.kind == tyGenericInst and last.len-1 == fGenericOrigin.len: for i in 1..= isGeneric: result = isInferred #inc c.genericMatches else: # Note that this typeRel call will save f's resolved type into c.bindings # if f is metatype. result = typeRel(c, f, a) if result <= isSubrange or inconsistentVarTypes(f, a): result = isNone #if result == isEqual: # inc c.exactMatches proc procTypeRel(c: var TCandidate, f, a: PType): TTypeRelation = case a.kind of tyProc: if f.len != a.len: return result = isEqual # start with maximum; also correct for no # params at all template checkParam(f, a) = result = minRel(result, procParamTypeRel(c, f, a)) if result == isNone: return # Note: We have to do unification for the parameters before the # return type! for i in 1..= f0 and a1 <= f1: isConvertible elif a0 <= f1 and f0 <= a1: # X..Y and C..D overlap iff (X <= D and C <= Y) isConvertible else: isNone if f.isOrdinalType: checkRange(firstOrd(nil, a), lastOrd(nil, a), firstOrd(nil, f), lastOrd(nil, f)) else: checkRange(firstFloat(a), lastFloat(a), firstFloat(f), lastFloat(f)) proc matchUserTypeClass*(m: var TCandidate; ff, a: PType): PType = var c = m.c typeClass = ff.skipTypes({tyUserTypeClassInst}) body = typeClass.n[3] matchedConceptContext: TMatchedConcept prevMatchedConcept = c.matchedConcept prevCandidateType = typeClass[0][0] if prevMatchedConcept != nil: matchedConceptContext.prev = prevMatchedConcept matchedConceptContext.depth = prevMatchedConcept.depth + 1 if prevMatchedConcept.depth > 4: localError(m.c.graph.config, body.info, $body & " too nested for type matching") return nil openScope(c) matchedConceptContext.candidateType = a typeClass[0][0] = a c.matchedConcept = addr(matchedConceptContext) defer: c.matchedConcept = prevMatchedConcept typeClass[0][0] = prevCandidateType closeScope(c) var typeParams: seq[(PSym, PType)] if ff.kind == tyUserTypeClassInst: for i in 1..<(ff.len - 1): var typeParamName = ff.base[i-1].sym.name typ = ff[i] param: PSym alreadyBound = PType(idTableGet(m.bindings, typ)) if alreadyBound != nil: typ = alreadyBound template paramSym(kind): untyped = newSym(kind, typeParamName, nextSymId(c.idgen), typeClass.sym, typeClass.sym.info, {}) block addTypeParam: for prev in typeParams: if prev[1].id == typ.id: param = paramSym prev[0].kind param.typ = prev[0].typ break addTypeParam case typ.kind of tyStatic: param = paramSym skConst param.typ = typ.exactReplica #copyType(typ, nextTypeId(c.idgen), typ.owner) if typ.n == nil: param.typ.flags.incl tfInferrableStatic else: param.ast = typ.n of tyUnknown: param = paramSym skVar param.typ = typ.exactReplica #copyType(typ, nextTypeId(c.idgen), typ.owner) else: param = paramSym skType param.typ = if typ.isMetaType: c.newTypeWithSons(tyInferred, @[typ]) else: makeTypeDesc(c, typ) typeParams.add((param, typ)) addDecl(c, param) var oldWriteHook: typeof(m.c.config.writelnHook) diagnostics: seq[string] errorPrefix: string flags: TExprFlags = {} collectDiagnostics = m.diagnosticsEnabled or sfExplain in typeClass.sym.flags if collectDiagnostics: oldWriteHook = m.c.config.writelnHook # XXX: we can't write to m.diagnostics directly, because # Nim doesn't support capturing var params in closures diagnostics = @[] flags = {efExplain} m.c.config.writelnHook = proc (s: string) = if errorPrefix.len == 0: errorPrefix = typeClass.sym.name.s & ":" let msg = s.replace("Error:", errorPrefix) if oldWriteHook != nil: oldWriteHook msg diagnostics.add msg var checkedBody = c.semTryExpr(c, body.copyTree, flags) if collectDiagnostics: m.c.config.writelnHook = oldWriteHook for msg in diagnostics: m.diagnostics.add msg m.diagnosticsEnabled = true if checkedBody == nil: return nil # The inferrable type params have been identified during the semTryExpr above. # We need to put them in the current sigmatch's binding table in order for them # to be resolvable while matching the rest of the parameters for p in typeParams: put(m, p[1], p[0].typ) if ff.kind == tyUserTypeClassInst: result = generateTypeInstance(c, m.bindings, typeClass.sym.info, ff) else: result = ff.exactReplica #copyType(ff, nextTypeId(c.idgen), ff.owner) result.n = checkedBody proc shouldSkipDistinct(m: TCandidate; rules: PNode, callIdent: PIdent): bool = # XXX This is bad as 'considerQuotedIdent' can produce an error! if rules.kind == nkWith: for r in rules: if considerQuotedIdent(m.c, r) == callIdent: return true return false else: for r in rules: if considerQuotedIdent(m.c, r) == callIdent: return false return true proc maybeSkipDistinct(m: TCandidate; t: PType, callee: PSym): PType = if t != nil and t.kind == tyDistinct and t.n != nil and shouldSkipDistinct(m, t.n, callee.name): result = t.base else: result = t proc tryResolvingStaticExpr(c: var TCandidate, n: PNode, allowUnresolved = false): PNode = # Consider this example: # type Value[N: static[int]] = object # proc foo[N](a: Value[N], r: range[0..(N-1)]) # Here, N-1 will be initially nkStaticExpr that can be evaluated only after # N is bound to a concrete value during the matching of the first param. # This proc is used to evaluate such static expressions. let instantiated = replaceTypesInBody(c.c, c.bindings, n, nil, allowMetaTypes = allowUnresolved) result = c.c.semExpr(c.c, instantiated) proc inferStaticParam*(c: var TCandidate, lhs: PNode, rhs: BiggestInt): bool = # This is a simple integer arithimetic equation solver, # capable of deriving the value of a static parameter in # expressions such as (N + 5) / 2 = rhs # # Preconditions: # # * The input of this proc must be semantized # - all templates should be expanded # - aby constant folding possible should already be performed # # * There must be exactly one unresolved static parameter # # Result: # # The proc will return true if the static types was successfully # inferred. The result will be bound to the original static type # in the TCandidate. # if lhs.kind in nkCallKinds and lhs[0].kind == nkSym: case lhs[0].sym.magic of mAddI, mAddU, mInc, mSucc: if lhs[1].kind == nkIntLit: return inferStaticParam(c, lhs[2], rhs - lhs[1].intVal) elif lhs[2].kind == nkIntLit: return inferStaticParam(c, lhs[1], rhs - lhs[2].intVal) of mDec, mSubI, mSubU, mPred: if lhs[1].kind == nkIntLit: return inferStaticParam(c, lhs[2], lhs[1].intVal - rhs) elif lhs[2].kind == nkIntLit: return inferStaticParam(c, lhs[1], rhs + lhs[2].intVal) of mMulI, mMulU: if lhs[1].kind == nkIntLit: if rhs mod lhs[1].intVal == 0: return inferStaticParam(c, lhs[2], rhs div lhs[1].intVal) elif lhs[2].kind == nkIntLit: if rhs mod lhs[2].intVal == 0: return inferStaticParam(c, lhs[1], rhs div lhs[2].intVal) of mDivI, mDivU: if lhs[1].kind == nkIntLit: if lhs[1].intVal mod rhs == 0: return inferStaticParam(c, lhs[2], lhs[1].intVal div rhs) elif lhs[2].kind == nkIntLit: return inferStaticParam(c, lhs[1], lhs[2].intVal * rhs) of mShlI: if lhs[2].kind == nkIntLit: return inferStaticParam(c, lhs[1], rhs shr lhs[2].intVal) of mShrI: if lhs[2].kind == nkIntLit: return inferStaticParam(c, lhs[1], rhs shl lhs[2].intVal) of mAshrI: if lhs[2].kind == nkIntLit: return inferStaticParam(c, lhs[1], ashr(rhs, lhs[2].intVal)) of mUnaryMinusI: return inferStaticParam(c, lhs[1], -rhs) of mUnaryPlusI: return inferStaticParam(c, lhs[1], rhs) else: discard elif lhs.kind == nkSym and lhs.typ.kind == tyStatic and lhs.typ.n == nil: var inferred = newTypeWithSons(c.c, tyStatic, lhs.typ.sons) inferred.n = newIntNode(nkIntLit, rhs) put(c, lhs.typ, inferred) if c.c.matchedConcept != nil: # inside concepts, binding is currently done with # direct mutation of the involved types: lhs.typ.n = inferred.n return true return false proc failureToInferStaticParam(conf: ConfigRef; n: PNode) = let staticParam = n.findUnresolvedStatic let name = if staticParam != nil: staticParam.sym.name.s else: "unknown" localError(conf, n.info, "cannot infer the value of the static param '" & name & "'") proc inferStaticsInRange(c: var TCandidate, inferred, concrete: PType): TTypeRelation = let lowerBound = tryResolvingStaticExpr(c, inferred.n[0], allowUnresolved = true) let upperBound = tryResolvingStaticExpr(c, inferred.n[1], allowUnresolved = true) template doInferStatic(e: PNode, r: Int128) = var exp = e var rhs = r if inferStaticParam(c, exp, toInt64(rhs)): return isGeneric else: failureToInferStaticParam(c.c.config, exp) if lowerBound.kind == nkIntLit: if upperBound.kind == nkIntLit: if lengthOrd(c.c.config, concrete) == upperBound.intVal - lowerBound.intVal + 1: return isGeneric else: return isNone doInferStatic(upperBound, lengthOrd(c.c.config, concrete) + lowerBound.intVal - 1) elif upperBound.kind == nkIntLit: doInferStatic(lowerBound, getInt(upperBound) + 1 - lengthOrd(c.c.config, concrete)) template subtypeCheck() = if result <= isSubrange and f.lastSon.skipTypes(abstractInst).kind in { tyRef, tyPtr, tyVar, tyLent, tyOwned}: result = isNone proc isCovariantPtr(c: var TCandidate, f, a: PType): bool = # this proc is always called for a pair of matching types assert f.kind == a.kind template baseTypesCheck(lhs, rhs: PType): bool = lhs.kind notin {tyPtr, tyRef, tyVar, tyLent, tyOwned} and typeRel(c, lhs, rhs, {trNoCovariance}) == isSubtype case f.kind of tyRef, tyPtr, tyOwned: return baseTypesCheck(f.base, a.base) of tyGenericInst: let body = f.base return body == a.base and a.len == 3 and tfWeakCovariant notin body[0].flags and baseTypesCheck(f[1], a[1]) else: return false when false: proc maxNumericType(prev, candidate: PType): PType = let c = candidate.skipTypes({tyRange}) template greater(s) = if c.kind in s: result = c case prev.kind of tyInt: greater({tyInt64}) of tyInt8: greater({tyInt, tyInt16, tyInt32, tyInt64}) of tyInt16: greater({tyInt, tyInt32, tyInt64}) of tyInt32: greater({tyInt64}) of tyUInt: greater({tyUInt64}) of tyUInt8: greater({tyUInt, tyUInt16, tyUInt32, tyUInt64}) of tyUInt16: greater({tyUInt, tyUInt32, tyUInt64}) of tyUInt32: greater({tyUInt64}) of tyFloat32: greater({tyFloat64, tyFloat128}) of tyFloat64: greater({tyFloat128}) else: discard template skipOwned(a) = if a.kind == tyOwned: a = a.skipTypes({tyOwned, tyGenericInst}) proc typeRel(c: var TCandidate, f, aOrig: PType, flags: TTypeRelFlags = {}): TTypeRelation = # typeRel can be used to establish various relationships between types: # # 1) When used with concrete types, it will check for type equivalence # or a subtype relationship. # # 2) When used with a concrete type against a type class (such as generic # signature of a proc), it will check whether the concrete type is a member # of the designated type class. # # 3) When used with two type classes, it will check whether the types # matching the first type class are a strict subset of the types matching # the other. This allows us to compare the signatures of generic procs in # order to give preferrence to the most specific one: # # seq[seq[any]] is a strict subset of seq[any] and hence more specific. result = isNone assert(f != nil) when declared(deallocatedRefId): let corrupt = deallocatedRefId(cast[pointer](f)) if corrupt != 0: c.c.config.quitOrRaise "it's corrupt " & $corrupt if f.kind == tyUntyped: if aOrig != nil: put(c, f, aOrig) return isGeneric assert(aOrig != nil) var useTypeLoweringRuleInTypeClass = c.c.matchedConcept != nil and not c.isNoCall and f.kind != tyTypeDesc and tfExplicit notin aOrig.flags and tfConceptMatchedTypeSym notin aOrig.flags aOrig = if useTypeLoweringRuleInTypeClass: aOrig.skipTypes({tyTypeDesc}) else: aOrig if aOrig.kind == tyInferred: let prev = aOrig.previouslyInferred if prev != nil: return typeRel(c, f, prev, flags) else: var candidate = f case f.kind of tyGenericParam: var prev = PType(idTableGet(c.bindings, f)) if prev != nil: candidate = prev of tyFromExpr: let computedType = tryResolvingStaticExpr(c, f.n).typ case computedType.kind of tyTypeDesc: candidate = computedType.base of tyStatic: candidate = computedType else: # XXX What is this non-sense? Error reporting in signature matching? discard "localError(f.n.info, errTypeExpected)" else: discard result = typeRel(c, aOrig.base, candidate, flags) if result != isNone: c.inferredTypes.add aOrig aOrig.add candidate result = isEqual return template doBind: bool = trDontBind notin flags # var, sink and static arguments match regular modifier-free types var a = maybeSkipDistinct(c, aOrig.skipTypes({tyStatic, tyVar, tyLent, tySink}), c.calleeSym) # XXX: Theoretically, maybeSkipDistinct could be called before we even # start the param matching process. This could be done in `prepareOperand` # for example, but unfortunately `prepareOperand` is not called in certain # situation when nkDotExpr are rotated to nkDotCalls if aOrig.kind in {tyAlias, tySink}: return typeRel(c, f, lastSon(aOrig), flags) if a.kind == tyGenericInst and skipTypes(f, {tyStatic, tyVar, tyLent, tySink}).kind notin { tyGenericBody, tyGenericInvocation, tyGenericInst, tyGenericParam} + tyTypeClasses: return typeRel(c, f, lastSon(a), flags) if a.isResolvedUserTypeClass: return typeRel(c, f, a.lastSon, flags) template bindingRet(res) = if doBind: let bound = aOrig.skipTypes({tyRange}).skipIntLit(c.c.idgen) put(c, f, bound) return res template considerPreviousT(body: untyped) = var prev = PType(idTableGet(c.bindings, f)) if prev == nil: body else: return typeRel(c, prev, a, flags) case a.kind of tyOr: # XXX: deal with the current dual meaning of tyGenericParam c.typedescMatched = true # seq[int|string] vs seq[number] # both int and string must match against number # but ensure that '[T: A|A]' matches as good as '[T: A]' (bug #2219): result = isGeneric for branch in a.sons: let x = typeRel(c, f, branch, flags + {trDontBind}) if x == isNone: return isNone if x < result: result = x return result of tyAnd: # XXX: deal with the current dual meaning of tyGenericParam c.typedescMatched = true # seq[Sortable and Iterable] vs seq[Sortable] # only one match is enough for branch in a.sons: let x = typeRel(c, f, branch, flags + {trDontBind}) if x != isNone: return if x >= isGeneric: isGeneric else: x return isNone of tyIterable: if f.kind != tyIterable: return isNone of tyNot: case f.kind of tyNot: # seq[!int] vs seq[!number] # seq[float] matches the first, but not the second # we must turn the problem around: # is number a subset of int? return typeRel(c, a.lastSon, f.lastSon, flags) else: # negative type classes are essentially infinite, # so only the `any` type class is their superset return if f.kind == tyAnything: isGeneric else: isNone of tyAnything: if f.kind == tyAnything: return isGeneric else: return isNone of tyUserTypeClass, tyUserTypeClassInst: if c.c.matchedConcept != nil and c.c.matchedConcept.depth <= 4: # consider this: 'var g: Node' *within* a concept where 'Node' # is a concept too (tgraph) inc c.c.matchedConcept.depth let x = typeRel(c, a, f, flags + {trDontBind}) if x >= isGeneric: return isGeneric else: discard case f.kind of tyEnum: if a.kind == f.kind and sameEnumTypes(f, a): result = isEqual elif sameEnumTypes(f, skipTypes(a, {tyRange})): result = isSubtype of tyBool, tyChar: if a.kind == f.kind: result = isEqual elif skipTypes(a, {tyRange}).kind == f.kind: result = isSubtype of tyRange: if a.kind == f.kind: if f.base.kind == tyNone: return isGeneric result = typeRel(c, base(f), base(a), flags) # bugfix: accept integer conversions here #if result < isGeneric: result = isNone if result notin {isNone, isGeneric}: # resolve any late-bound static expressions # that may appear in the range: for i in 0..1: if f.n[i].kind == nkStaticExpr: f.n[i] = tryResolvingStaticExpr(c, f.n[i]) result = typeRangeRel(f, a) else: let f = skipTypes(f, {tyRange}) if f.kind == a.kind and (f.kind != tyEnum or sameEnumTypes(f, a)): result = isIntConv elif isConvertibleToRange(f, a): result = isConvertible # a convertible to f of tyInt: result = handleRange(f, a, tyInt8, tyInt32) of tyInt8: result = handleRange(f, a, tyInt8, tyInt8) of tyInt16: result = handleRange(f, a, tyInt8, tyInt16) of tyInt32: result = handleRange(f, a, tyInt8, tyInt32) of tyInt64: result = handleRange(f, a, tyInt, tyInt64) of tyUInt: result = handleRange(f, a, tyUInt8, tyUInt32) of tyUInt8: result = handleRange(f, a, tyUInt8, tyUInt8) of tyUInt16: result = handleRange(f, a, tyUInt8, tyUInt16) of tyUInt32: result = handleRange(f, a, tyUInt8, tyUInt32) of tyUInt64: result = handleRange(f, a, tyUInt, tyUInt64) of tyFloat: result = handleFloatRange(f, a) of tyFloat32: result = handleFloatRange(f, a) of tyFloat64: result = handleFloatRange(f, a) of tyFloat128: result = handleFloatRange(f, a) of tyVar, tyLent: if aOrig.kind == f.kind: result = typeRel(c, f.base, aOrig.base, flags) else: result = typeRel(c, f.base, aOrig, flags + {trNoCovariance}) subtypeCheck() of tyArray: case a.kind of tyArray: var fRange = f[0] var aRange = a[0] if fRange.kind == tyGenericParam: var prev = PType(idTableGet(c.bindings, fRange)) if prev == nil: put(c, fRange, a[0]) fRange = a else: fRange = prev let ff = f[1].skipTypes({tyTypeDesc}) # This typeDesc rule is wrong, see bug #7331 let aa = a[1] #.skipTypes({tyTypeDesc}) if f[0].kind != tyGenericParam and aa.kind == tyEmpty: result = isGeneric else: result = typeRel(c, ff, aa, flags) if result < isGeneric: if nimEnableCovariance and trNoCovariance notin flags and ff.kind == aa.kind and isCovariantPtr(c, ff, aa): result = isSubtype else: return isNone if fRange.rangeHasUnresolvedStatic: return inferStaticsInRange(c, fRange, a) elif c.c.matchedConcept != nil and aRange.rangeHasUnresolvedStatic: return inferStaticsInRange(c, aRange, f) else: if lengthOrd(c.c.config, fRange) != lengthOrd(c.c.config, aRange): result = isNone else: discard of tyUncheckedArray: if a.kind == tyUncheckedArray: result = typeRel(c, base(f), base(a), flags) if result < isGeneric: result = isNone else: discard of tyOpenArray, tyVarargs: # varargs[untyped] is special too but handled earlier. So we only need to # handle varargs[typed]: if f.kind == tyVarargs: if tfVarargs in a.flags: return typeRel(c, f.base, a.lastSon, flags) if f[0].kind == tyTyped: return template matchArrayOrSeq(aBase: PType) = let ff = f.base let aa = aBase let baseRel = typeRel(c, ff, aa, flags) if baseRel >= isGeneric: result = isConvertible elif nimEnableCovariance and trNoCovariance notin flags and ff.kind == aa.kind and isCovariantPtr(c, ff, aa): result = isConvertible case a.kind of tyOpenArray, tyVarargs: result = typeRel(c, base(f), base(a), flags) if result < isGeneric: result = isNone of tyArray: if (f[0].kind != tyGenericParam) and (a[1].kind == tyEmpty): return isSubtype matchArrayOrSeq(a[1]) of tySequence: if (f[0].kind != tyGenericParam) and (a[0].kind == tyEmpty): return isConvertible matchArrayOrSeq(a[0]) of tyString: if f.kind == tyOpenArray: if f[0].kind == tyChar: result = isConvertible elif f[0].kind == tyGenericParam and a.len > 0 and typeRel(c, base(f), base(a), flags) >= isGeneric: result = isConvertible else: discard of tySequence: case a.kind of tySequence: if (f[0].kind != tyGenericParam) and (a[0].kind == tyEmpty): result = isSubtype else: let ff = f[0] let aa = a[0] result = typeRel(c, ff, aa, flags) if result < isGeneric: if nimEnableCovariance and trNoCovariance notin flags and ff.kind == aa.kind and isCovariantPtr(c, ff, aa): result = isSubtype else: result = isNone elif tfNotNil in f.flags and tfNotNil notin a.flags: result = isNilConversion of tyNil: result = isNone else: discard of tyOrdinal: if isOrdinalType(a, allowEnumWithHoles = optNimV1Emulation in c.c.config.globalOptions): var x = if a.kind == tyOrdinal: a[0] else: a if f[0].kind == tyNone: result = isGeneric else: result = typeRel(c, f[0], x, flags) if result < isGeneric: result = isNone elif a.kind == tyGenericParam: result = isGeneric of tyForward: #internalError("forward type in typeRel()") result = isNone of tyNil: skipOwned(a) if a.kind == f.kind: result = isEqual of tyTuple: if a.kind == tyTuple: result = recordRel(c, f, a) of tyObject: if a.kind == tyObject: if sameObjectTypes(f, a): result = isEqual # elif tfHasMeta in f.flags: result = recordRel(c, f, a) else: var depth = isObjectSubtype(c, a, f, nil) if depth > 0: inc(c.inheritancePenalty, depth) result = isSubtype of tyDistinct: a = a.skipTypes({tyOwned, tyGenericInst, tyRange}) if a.kind == tyDistinct: if sameDistinctTypes(f, a): result = isEqual #elif f.base.kind == tyAnything: result = isGeneric # issue 4435 elif c.coerceDistincts: result = typeRel(c, f.base, a, flags) elif a.kind == tyNil and f.base.kind in NilableTypes: result = f.allowsNil # XXX remove this typing rule, it is not in the spec elif c.coerceDistincts: result = typeRel(c, f.base, a, flags) of tySet: if a.kind == tySet: if f[0].kind != tyGenericParam and a[0].kind == tyEmpty: result = isSubtype else: result = typeRel(c, f[0], a[0], flags) if result < isGeneric: if result <= isConvertible: result = isNone elif tfIsConstructor notin a.flags: # set constructors are a bit special... result = isNone of tyPtr, tyRef: skipOwned(a) if a.kind == f.kind: # ptr[R, T] can be passed to ptr[T], but not the other way round: if a.len < f.len: return isNone for i in 0..= 0: c.inheritancePenalty += depth # bug #4863: We still need to bind generic alias crap, so # we cannot return immediately: result = if depth == 0: isGeneric else: isSubtype of tyAnd: considerPreviousT: result = isEqual for branch in f.sons: let x = typeRel(c, branch, aOrig, flags) if x < isSubtype: return isNone # 'and' implies minimum matching result: if x < result: result = x if result > isGeneric: result = isGeneric bindingRet result of tyOr: considerPreviousT: result = isNone let oldInheritancePenalty = c.inheritancePenalty var maxInheritance = 0 for branch in f.sons: c.inheritancePenalty = 0 let x = typeRel(c, branch, aOrig, flags) maxInheritance = max(maxInheritance, c.inheritancePenalty) # 'or' implies maximum matching result: if x > result: result = x if result >= isSubtype: if result > isGeneric: result = isGeneric bindingRet result else: result = isNone c.inheritancePenalty = oldInheritancePenalty + maxInheritance of tyNot: considerPreviousT: for branch in f.sons: if typeRel(c, branch, aOrig, flags) != isNone: return isNone bindingRet isGeneric of tyAnything: considerPreviousT: var concrete = concreteType(c, a) if concrete != nil and doBind: put(c, f, concrete) return isGeneric of tyBuiltInTypeClass: considerPreviousT: let targetKind = f[0].kind let effectiveArgType = a.skipTypes({tyRange, tyGenericInst, tyBuiltInTypeClass, tyAlias, tySink, tyOwned}) let typeClassMatches = targetKind == effectiveArgType.kind and not effectiveArgType.isEmptyContainer if typeClassMatches or (targetKind in {tyProc, tyPointer} and effectiveArgType.kind == tyNil): put(c, f, a) return isGeneric else: return isNone of tyUserTypeClassInst, tyUserTypeClass: if f.isResolvedUserTypeClass: result = typeRel(c, f.lastSon, a, flags) else: considerPreviousT: if aOrig == f: return isEqual var matched = matchUserTypeClass(c, f, aOrig) if matched != nil: bindConcreteTypeToUserTypeClass(matched, a) if doBind: put(c, f, matched) result = isGeneric else: result = isNone of tyConcept: result = if concepts.conceptMatch(c.c, f, a, c.bindings, nil): isGeneric else: isNone of tyCompositeTypeClass: considerPreviousT: let roota = a.skipGenericAlias let rootf = f.lastSon.skipGenericAlias if a.kind == tyGenericInst and roota.base == rootf.base: for i in 1.. 0 c.typedescMatched = true var aa = a while aa.kind in {tyTypeDesc, tyGenericParam} and aa.len > 0: aa = lastSon(aa) if aa.kind == tyGenericParam: return isGeneric result = typeRel(c, f.base, aa, flags) if result > isGeneric: result = isGeneric elif c.isNoCall: if doBindGP: let concrete = concreteType(c, a, f) if concrete == nil: return isNone put(c, f, concrete) result = isGeneric else: result = isNone else: # check if 'T' has a constraint as in 'proc p[T: Constraint](x: T)' if f.len > 0 and f[0].kind != tyNone: let oldInheritancePenalty = c.inheritancePenalty result = typeRel(c, f[0], a, flags + {trDontBind,trBindGenericParam}) if doBindGP and result notin {isNone, isGeneric}: let concrete = concreteType(c, a, f) if concrete == nil: return isNone put(c, f, concrete) # bug #6526 if result in {isEqual, isSubtype}: # 'T: Class' is a *better* match than just 'T' # but 'T: Subclass' is even better: c.inheritancePenalty = oldInheritancePenalty - c.inheritancePenalty - 100 * ord(result == isEqual) result = isGeneric elif a.kind == tyTypeDesc: # somewhat special typing rule, the following is illegal: # proc p[T](x: T) # p(int) result = isNone else: result = isGeneric if result == isGeneric: var concrete = a if tfWildcard in a.flags: a.sym.transitionGenericParamToType() a.flags.excl tfWildcard else: concrete = concreteType(c, a, f) if concrete == nil: return isNone if doBindGP: put(c, f, concrete) elif result > isGeneric: result = isGeneric elif a.kind == tyEmpty: result = isGeneric elif x.kind == tyGenericParam: result = isGeneric else: result = typeRel(c, x, a, flags) # check if it fits if result > isGeneric: result = isGeneric of tyStatic: let prev = PType(idTableGet(c.bindings, f)) if prev == nil: if aOrig.kind == tyStatic: if f.base.kind != tyNone: result = typeRel(c, f.base, a, flags) if result != isNone and f.n != nil: if not exprStructuralEquivalent(f.n, aOrig.n): result = isNone else: result = isGeneric if result != isNone: put(c, f, aOrig) elif aOrig.n != nil and aOrig.n.typ != nil: result = if f.base.kind != tyNone: typeRel(c, f.lastSon, aOrig.n.typ, flags) else: isGeneric if result != isNone: var boundType = newTypeWithSons(c.c, tyStatic, @[aOrig.n.typ]) boundType.n = aOrig.n put(c, f, boundType) else: result = isNone elif prev.kind == tyStatic: if aOrig.kind == tyStatic: result = typeRel(c, prev.lastSon, a, flags) if result != isNone and prev.n != nil: if not exprStructuralEquivalent(prev.n, aOrig.n): result = isNone else: result = isNone else: # XXX endless recursion? #result = typeRel(c, prev, aOrig, flags) result = isNone of tyInferred: let prev = f.previouslyInferred if prev != nil: result = typeRel(c, prev, a, flags) else: result = typeRel(c, f.base, a, flags) if result != isNone: c.inferredTypes.add f f.add a of tyTypeDesc: var prev = PType(idTableGet(c.bindings, f)) if prev == nil: # proc foo(T: typedesc, x: T) # when `f` is an unresolved typedesc, `a` could be any # type, so we should not perform this check earlier if a.kind != tyTypeDesc: if a.kind == tyGenericParam and tfWildcard in a.flags: # TODO: prevent `a` from matching as a wildcard again result = isGeneric else: result = isNone elif f.base.kind == tyNone: result = isGeneric else: result = typeRel(c, f.base, a.base, flags) if result != isNone: put(c, f, a) else: if tfUnresolved in f.flags: result = typeRel(c, prev.base, a, flags) elif a.kind == tyTypeDesc: result = typeRel(c, prev.base, a.base, flags) else: result = isNone of tyTyped: if aOrig != nil: put(c, f, aOrig) result = isGeneric of tyProxy: result = isEqual of tyFromExpr: # fix the expression, so it contains the already instantiated types if f.n == nil or f.n.kind == nkEmpty: return isGeneric let reevaluated = tryResolvingStaticExpr(c, f.n) case reevaluated.typ.kind of tyTypeDesc: result = typeRel(c, a, reevaluated.typ.base, flags) of tyStatic: result = typeRel(c, a, reevaluated.typ.base, flags) if result != isNone and reevaluated.typ.n != nil: if not exprStructuralEquivalent(aOrig.n, reevaluated.typ.n): result = isNone else: # bug #14136: other types are just like 'tyStatic' here: result = typeRel(c, a, reevaluated.typ, flags) if result != isNone and reevaluated.typ.n != nil: if not exprStructuralEquivalent(aOrig.n, reevaluated.typ.n): result = isNone of tyNone: if a.kind == tyNone: result = isEqual else: internalError c.c.graph.config, " unknown type kind " & $f.kind when false: var nowDebug = false var dbgCount = 0 proc typeRel(c: var TCandidate, f, aOrig: PType, flags: TTypeRelFlags = {}): TTypeRelation = if nowDebug: echo f, " <- ", aOrig inc dbgCount if dbgCount == 2: writeStackTrace() result = typeRelImpl(c, f, aOrig, flags) if nowDebug: echo f, " <- ", aOrig, " res ", result proc cmpTypes*(c: PContext, f, a: PType): TTypeRelation = var m = newCandidate(c, f) result = typeRel(m, f, a) proc getInstantiatedType(c: PContext, arg: PNode, m: TCandidate, f: PType): PType = result = PType(idTableGet(m.bindings, f)) if result == nil: result = generateTypeInstance(c, m.bindings, arg, f) if result == nil: internalError(c.graph.config, arg.info, "getInstantiatedType") result = errorType(c) proc implicitConv(kind: TNodeKind, f: PType, arg: PNode, m: TCandidate, c: PContext): PNode = result = newNodeI(kind, arg.info) if containsGenericType(f): if not m.hasFauxMatch: result.typ = getInstantiatedType(c, arg, m, f).skipTypes({tySink}) else: result.typ = errorType(c) else: result.typ = f.skipTypes({tySink}) if result.typ == nil: internalError(c.graph.config, arg.info, "implicitConv") result.add c.graph.emptyNode result.add arg proc isLValue(c: PContext; n: PNode): bool {.inline.} = let aa = isAssignable(nil, n) case aa of arLValue, arLocalLValue, arStrange: result = true of arDiscriminant: result = c.inUncheckedAssignSection > 0 else: result = false proc userConvMatch(c: PContext, m: var TCandidate, f, a: PType, arg: PNode): PNode = result = nil for i in 0.. oldInheritancePenalty: result = implicitConv(nkHiddenSubConv, f, arg, m, c) elif arg.typ.isEmptyContainer: result = arg.copyTree result.typ = getInstantiatedType(c, arg, m, f) else: result = arg of isBothMetaConvertible: # This is the result for the 101th time. result = nil of isFromIntLit: # too lazy to introduce another ``*matches`` field, so we conflate # ``isIntConv`` and ``isIntLit`` here: inc(m.intConvMatches, 256) result = implicitConv(nkHiddenStdConv, f, arg, m, c) of isEqual: inc(m.exactMatches) result = arg if skipTypes(f, abstractVar-{tyTypeDesc}).kind == tyTuple or (arg.typ != nil and skipTypes(arg.typ, abstractVar-{tyTypeDesc}).kind == tyTuple): result = implicitConv(nkHiddenSubConv, f, arg, m, c) of isNone: # do not do this in ``typeRel`` as it then can't infer T in ``ref T``: if a.kind in {tyProxy, tyUnknown}: inc(m.genericMatches) m.fauxMatch = a.kind return arg elif a.kind == tyVoid and f.matchesVoidProc and argOrig.kind == nkStmtList: # lift do blocks without params to lambdas let p = c.graph let lifted = c.semExpr(c, newProcNode(nkDo, argOrig.info, body = argOrig, params = nkFormalParams.newTree(p.emptyNode), name = p.emptyNode, pattern = p.emptyNode, genericParams = p.emptyNode, pragmas = p.emptyNode, exceptions = p.emptyNode), {}) if f.kind == tyBuiltInTypeClass: inc m.genericMatches put(m, f, lifted.typ) inc m.convMatches return implicitConv(nkHiddenStdConv, f, lifted, m, c) result = userConvMatch(c, m, f, a, arg) # check for a base type match, which supports varargs[T] without [] # constructor in a call: if result == nil and f.kind == tyVarargs: if f.n != nil: # Forward to the varargs converter result = localConvMatch(c, m, f, a, arg) else: r = typeRel(m, base(f), a) case r of isGeneric: inc(m.convMatches) result = copyTree(arg) result.typ = getInstantiatedType(c, arg, m, base(f)) m.baseTypeMatch = true of isFromIntLit: inc(m.intConvMatches, 256) result = implicitConv(nkHiddenStdConv, f[0], arg, m, c) m.baseTypeMatch = true of isEqual: inc(m.convMatches) result = copyTree(arg) m.baseTypeMatch = true of isSubtype: # bug #4799, varargs accepting subtype relation object inc(m.subtypeMatches) if base(f).kind == tyTypeDesc: result = arg else: result = implicitConv(nkHiddenSubConv, base(f), arg, m, c) m.baseTypeMatch = true else: result = userConvMatch(c, m, base(f), a, arg) if result != nil: m.baseTypeMatch = true proc paramTypesMatch*(m: var TCandidate, f, a: PType, arg, argOrig: PNode): PNode = if arg == nil or arg.kind notin nkSymChoices: result = paramTypesMatchAux(m, f, a, arg, argOrig) else: # CAUTION: The order depends on the used hashing scheme. Thus it is # incorrect to simply use the first fitting match. However, to implement # this correctly is inefficient. We have to copy `m` here to be able to # roll back the side effects of the unification algorithm. let c = m.c var x = newCandidate(c, m.callee) y = newCandidate(c, m.callee) z = newCandidate(c, m.callee) x.calleeSym = m.calleeSym y.calleeSym = m.calleeSym z.calleeSym = m.calleeSym var best = -1 for i in 0.. 1: m.callee.n[1].sym else: nil # current routine parameter container: PNode = nil # constructed container let firstArgBlock = findFirstArgBlock(m, n) while a < n.len: c.openShadowScope if a >= formalLen-1 and f < formalLen and m.callee.n[f].typ.isVarargsUntyped: formal = m.callee.n[f].sym incl(marker, formal.position) if n[a].kind == nkHiddenStdConv: doAssert n[a][0].kind == nkEmpty and n[a][1].kind in {nkBracket, nkArgList} # Steal the container and pass it along setSon(m.call, formal.position + 1, n[a][1]) else: if container.isNil: container = newNodeIT(nkArgList, n[a].info, arrayConstr(c, n.info)) setSon(m.call, formal.position + 1, container) else: incrIndexType(container.typ) container.add n[a] elif n[a].kind == nkExprEqExpr: # named param m.firstMismatch.kind = kUnknownNamedParam # check if m.callee has such a param: prepareNamedParam(n[a], c) if n[a][0].kind != nkIdent: localError(c.config, n[a].info, "named parameter has to be an identifier") noMatch() formal = getNamedParamFromList(m.callee.n, n[a][0].ident) if formal == nil: # no error message! noMatch() if containsOrIncl(marker, formal.position): m.firstMismatch.kind = kAlreadyGiven # already in namedParams, so no match # we used to produce 'errCannotBindXTwice' here but see # bug #3836 of why that is not sound (other overload with # different parameter names could match later on): when false: localError(n[a].info, errCannotBindXTwice, formal.name.s) noMatch() m.baseTypeMatch = false m.typedescMatched = false n[a][1] = prepareOperand(c, formal.typ, n[a][1]) n[a].typ = n[a][1].typ arg = paramTypesMatch(m, formal.typ, n[a].typ, n[a][1], n[a][1]) m.firstMismatch.kind = kTypeMismatch if arg == nil: noMatch() checkConstraint(n[a][1]) if m.baseTypeMatch: #assert(container == nil) container = newNodeIT(nkBracket, n[a].info, arrayConstr(c, arg)) container.add arg setSon(m.call, formal.position + 1, container) if f != formalLen - 1: container = nil else: setSon(m.call, formal.position + 1, arg) inc f else: # unnamed param if f >= formalLen: # too many arguments? if tfVarargs in m.callee.flags: # is ok... but don't increment any counters... # we have no formal here to snoop at: n[a] = prepareOperand(c, n[a]) if skipTypes(n[a].typ, abstractVar-{tyTypeDesc}).kind==tyString: m.call.add implicitConv(nkHiddenStdConv, getSysType(c.graph, n[a].info, tyCstring), copyTree(n[a]), m, c) else: m.call.add copyTree(n[a]) elif formal != nil and formal.typ.kind == tyVarargs: m.firstMismatch.kind = kTypeMismatch # beware of the side-effects in 'prepareOperand'! So only do it for # varargs matching. See tests/metatype/tstatic_overloading. m.baseTypeMatch = false m.typedescMatched = false incl(marker, formal.position) n[a] = prepareOperand(c, formal.typ, n[a]) arg = paramTypesMatch(m, formal.typ, n[a].typ, n[a], nOrig[a]) if arg != nil and m.baseTypeMatch and container != nil: container.add arg incrIndexType(container.typ) checkConstraint(n[a]) else: noMatch() else: m.firstMismatch.kind = kExtraArg noMatch() else: if m.callee.n[f].kind != nkSym: internalError(c.config, n[a].info, "matches") noMatch() if a >= firstArgBlock: f = max(f, m.callee.n.len - (n.len - a)) formal = m.callee.n[f].sym m.firstMismatch.kind = kTypeMismatch if containsOrIncl(marker, formal.position) and container.isNil: m.firstMismatch.kind = kPositionalAlreadyGiven # positional param already in namedParams: (see above remark) when false: localError(n[a].info, errCannotBindXTwice, formal.name.s) noMatch() if formal.typ.isVarargsUntyped: if container.isNil: container = newNodeIT(nkArgList, n[a].info, arrayConstr(c, n.info)) setSon(m.call, formal.position + 1, container) else: incrIndexType(container.typ) container.add n[a] else: m.baseTypeMatch = false m.typedescMatched = false n[a] = prepareOperand(c, formal.typ, n[a]) arg = paramTypesMatch(m, formal.typ, n[a].typ, n[a], nOrig[a]) if arg == nil: noMatch() if m.baseTypeMatch: assert formal.typ.kind == tyVarargs #assert(container == nil) if container.isNil: container = newNodeIT(nkBracket, n[a].info, arrayConstr(c, arg)) container.typ.flags.incl tfVarargs else: incrIndexType(container.typ) container.add arg setSon(m.call, formal.position + 1, implicitConv(nkHiddenStdConv, formal.typ, container, m, c)) #if f != formalLen - 1: container = nil # pick the formal from the end, so that 'x, y, varargs, z' works: f = max(f, formalLen - n.len + a + 1) elif formal.typ.kind != tyVarargs or container == nil: setSon(m.call, formal.position + 1, arg) inc f container = nil else: # we end up here if the argument can be converted into the varargs # formal (e.g. seq[T] -> varargs[T]) but we have already instantiated # a container #assert arg.kind == nkHiddenStdConv # for 'nim check' # this assertion can be off localError(c.config, n[a].info, "cannot convert $1 to $2" % [ typeToString(n[a].typ), typeToString(formal.typ) ]) noMatch() checkConstraint(n[a]) if m.state == csMatch and not (m.calleeSym != nil and m.calleeSym.kind in {skTemplate, skMacro}): c.mergeShadowScope else: c.closeShadowScope inc a # for some edge cases (see tdont_return_unowned_from_owned test case) m.firstMismatch.arg = a m.firstMismatch.formal = formal proc semFinishOperands*(c: PContext, n: PNode) = # this needs to be called to ensure that after overloading resolution every # argument has been sem'checked: for i in 1.. 1: t.sons.setLen 1 proc argtypeMatches*(c: PContext, f, a: PType, fromHlo = false): bool = var m = newCandidate(c, f) let res = paramTypesMatch(m, f, a, c.graph.emptyNode, nil) #instantiateGenericConverters(c, res, m) # XXX this is used by patterns.nim too; I think it's better to not # instantiate generic converters for that if not fromHlo: res != nil else: # pattern templates do not allow for conversions except from int literal res != nil and m.convMatches == 0 and m.intConvMatches in [0, 256] when not defined(nimHasSinkInference): {.pragma: nosinks.} proc instTypeBoundOp*(c: PContext; dc: PSym; t: PType; info: TLineInfo; op: TTypeAttachedOp; col: int): PSym {.nosinks.} = var m = newCandidate(c, dc.typ) if col >= dc.typ.len: localError(c.config, info, "cannot instantiate: '" & dc.name.s & "'") return nil var f = dc.typ[col] if op == attachedDeepCopy: if f.kind in {tyRef, tyPtr}: f = f.lastSon else: if f.kind in {tyVar}: f = f.lastSon if typeRel(m, f, t) == isNone: localError(c.config, info, "cannot instantiate: '" & dc.name.s & "'") else: result = c.semGenerateInstance(c, dc, m.bindings, info) if op == attachedDeepCopy: assert sfFromGeneric in result.flags include suggest when not declared(tests): template tests(s: untyped) = discard tests: var dummyOwner = newSym(skModule, getIdent("test_module"), nil, unknownLineInfo) proc `|` (t1, t2: PType): PType = result = newType(tyOr, dummyOwner) result.rawAddSon(t1) result.rawAddSon(t2) proc `&` (t1, t2: PType): PType = result = newType(tyAnd, dummyOwner) result.rawAddSon(t1) result.rawAddSon(t2) proc `!` (t: PType): PType = result = newType(tyNot, dummyOwner) result.rawAddSon(t) proc seq(t: PType): PType = result = newType(tySequence, dummyOwner) result.rawAddSon(t) proc array(x: int, t: PType): PType = result = newType(tyArray, dummyOwner) var n = newNodeI(nkRange, unknownLineInfo) n.add newIntNode(nkIntLit, 0) n.add newIntNode(nkIntLit, x) let range = newType(tyRange, dummyOwner) result.rawAddSon(range) result.rawAddSon(t) suite "type classes": let int = newType(tyInt, dummyOwner) float = newType(tyFloat, dummyOwner) string = newType(tyString, dummyOwner) ordinal = newType(tyOrdinal, dummyOwner) any = newType(tyAnything, dummyOwner) number = int | float var TFoo = newType(tyObject, dummyOwner) TFoo.sym = newSym(skType, getIdent"TFoo", dummyOwner, unknownLineInfo) var T1 = newType(tyGenericParam, dummyOwner) T1.sym = newSym(skType, getIdent"T1", dummyOwner, unknownLineInfo) T1.sym.position = 0 var T2 = newType(tyGenericParam, dummyOwner) T2.sym = newSym(skType, getIdent"T2", dummyOwner, unknownLineInfo) T2.sym.position = 1 setup: var c = newCandidate(nil, nil) template yes(x, y) = test astToStr(x) & " is " & astToStr(y): check typeRel(c, y, x) == isGeneric template no(x, y) = test astToStr(x) & " is not " & astToStr(y): check typeRel(c, y, x) == isNone yes seq(any), array(10, int) | seq(any) # Sure, seq[any] is directly included yes seq(int), seq(any) yes seq(int), seq(number) # Sure, the int sequence is certainly # part of the number sequences (and all sequences) no seq(any), seq(float) # Nope, seq[any] includes types that are not seq[float] (e.g. seq[int]) yes seq(int|string), seq(any) # Sure yes seq(int&string), seq(any) # Again yes seq(int&string), seq(int) # A bit more complicated # seq[int&string] is not a real type, but it's analogous to # seq[Sortable and Iterable], which is certainly a subset of seq[Sortable] no seq(int|string), seq(int|float) # Nope, seq[string] is not included in not included in # the seq[int|float] set no seq(!(int|string)), seq(string) # A sequence that is neither seq[int] or seq[string] # is obviously not seq[string] no seq(!int), seq(number) # Now your head should start to hurt a bit # A sequence that is not seq[int] is not necessarily a number sequence # it could well be seq[string] for example yes seq(!(int|string)), seq(!string) # all sequnece types besides seq[int] and seq[string] # are subset of all sequence types that are not seq[string] no seq(!(int|string)), seq(!(string|TFoo)) # Nope, seq[TFoo] is included in the first set, but not in the second no seq(!string), seq(!number) # Nope, seq[int] in included in the first set, but not in the second yes seq(!number), seq(any) yes seq(!int), seq(any) no seq(any), seq(!any) no seq(!int), seq(!any) yes int, ordinal no string, ordinal