# # # The Nim Compiler # (c) Copyright 2013 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This module implements the signature matching for resolving ## the call to overloaded procs, generic procs and operators. import intsets, ast, astalgo, semdata, types, msgs, renderer, lookups, semtypinst, magicsys, condsyms, idents, lexer, options, parampatterns, strutils, trees, linter, lineinfos when defined(booting) or defined(nimsuggest): import docgen type TCandidateState* = enum csEmpty, csMatch, csNoMatch CandidateError* = object sym*: PSym unmatchedVarParam*, firstMismatch*: int diagnostics*: seq[string] enabled*: bool CandidateErrors* = seq[CandidateError] TCandidate* = object c*: PContext exactMatches*: int # also misused to prefer iters over procs genericMatches: int # also misused to prefer constraints subtypeMatches: int intConvMatches: int # conversions to int are not as expensive convMatches: int state*: TCandidateState callee*: PType # may not be nil! calleeSym*: PSym # may be nil calleeScope*: int # scope depth: # is this a top-level symbol or a nested proc? call*: PNode # modified call bindings*: TIdTable # maps types to types magic*: TMagic # magic of operation baseTypeMatch: bool # needed for conversions from T to openarray[T] # for example fauxMatch*: TTypeKind # the match was successful only due to the use # of error or wildcard (unknown) types. # this is used to prevent instantiations. genericConverter*: bool # true if a generic converter needs to # be instantiated coerceDistincts*: bool # this is an explicit coercion that can strip away # a distrinct type typedescMatched*: bool isNoCall*: bool # misused for generic type instantiations C[T] mutabilityProblem*: uint8 # tyVar mismatch inferredTypes: seq[PType] # inferred types during the current signature # matching. they will be reset if the matching # is not successful. may replace the bindings # table in the future. diagnostics*: seq[string] # \ # when diagnosticsEnabled, the matching process # will collect extra diagnostics that will be # displayed to the user. # triggered when overload resolution fails # or when the explain pragma is used. may be # triggered with an idetools command in the # future. inheritancePenalty: int # to prefer closest father object type firstMismatch*: int # position of the first type mismatch for # better error messages diagnosticsEnabled*: bool TTypeRelFlag* = enum trDontBind trNoCovariance TTypeRelFlags* = set[TTypeRelFlag] TTypeRelation* = enum # order is important! isNone, isConvertible, isIntConv, isSubtype, isSubrange, # subrange of the wanted type; no type conversion # but apart from that counts as ``isSubtype`` isBothMetaConvertible # generic proc parameter was matched against # generic type, e.g., map(mySeq, x=>x+1), # maybe recoverable by rerun if the parameter is # the proc's return value isInferred, # generic proc was matched against a concrete type isInferredConvertible, # same as above, but requiring proc CC conversion isGeneric, isFromIntLit, # conversion *from* int literal; proven safe isEqual const isNilConversion = isConvertible # maybe 'isIntConv' fits better? proc markUsed*(conf: ConfigRef; info: TLineInfo, s: PSym; usageSym: var PSym) template hasFauxMatch*(c: TCandidate): bool = c.fauxMatch != tyNone proc initCandidateAux(ctx: PContext, c: var TCandidate, callee: PType) {.inline.} = c.c = ctx c.exactMatches = 0 c.subtypeMatches = 0 c.convMatches = 0 c.intConvMatches = 0 c.genericMatches = 0 c.state = csEmpty c.callee = callee c.call = nil c.baseTypeMatch = false c.genericConverter = false c.inheritancePenalty = 0 proc initCandidate*(ctx: PContext, c: var TCandidate, callee: PType) = initCandidateAux(ctx, c, callee) c.calleeSym = nil initIdTable(c.bindings) proc put(c: var TCandidate, key, val: PType) {.inline.} = idTablePut(c.bindings, key, val.skipIntLit) proc initCandidate*(ctx: PContext, c: var TCandidate, callee: PSym, binding: PNode, calleeScope = -1, diagnosticsEnabled = false) = initCandidateAux(ctx, c, callee.typ) c.calleeSym = callee if callee.kind in skProcKinds and calleeScope == -1: if callee.originatingModule == ctx.module: c.calleeScope = 2 var owner = callee while true: owner = owner.skipGenericOwner if owner.kind == skModule: break inc c.calleeScope else: c.calleeScope = 1 else: c.calleeScope = calleeScope c.diagnostics = @[] # if diagnosticsEnabled: @[] else: nil c.diagnosticsEnabled = diagnosticsEnabled c.magic = c.calleeSym.magic initIdTable(c.bindings) if binding != nil and callee.kind in routineKinds: var typeParams = callee.ast[genericParamsPos] for i in 1..min(sonsLen(typeParams), sonsLen(binding)-1): var formalTypeParam = typeParams.sons[i-1].typ var bound = binding[i].typ if bound != nil: if formalTypeParam.kind == tyTypeDesc: if bound.kind != tyTypeDesc: bound = makeTypeDesc(ctx, bound) else: bound = bound.skipTypes({tyTypeDesc}) put(c, formalTypeParam, bound) proc newCandidate*(ctx: PContext, callee: PSym, binding: PNode, calleeScope = -1): TCandidate = initCandidate(ctx, result, callee, binding, calleeScope) proc newCandidate*(ctx: PContext, callee: PType): TCandidate = initCandidate(ctx, result, callee) proc copyCandidate(a: var TCandidate, b: TCandidate) = a.c = b.c a.exactMatches = b.exactMatches a.subtypeMatches = b.subtypeMatches a.convMatches = b.convMatches a.intConvMatches = b.intConvMatches a.genericMatches = b.genericMatches a.state = b.state a.callee = b.callee a.calleeSym = b.calleeSym a.call = copyTree(b.call) a.baseTypeMatch = b.baseTypeMatch copyIdTable(a.bindings, b.bindings) proc sumGeneric(t: PType): int = var t = t var isvar = 1 while true: case t.kind of tyGenericInst, tyArray, tyRef, tyPtr, tyDistinct, tyOpenArray, tyVarargs, tySet, tyRange, tySequence, tyGenericBody, tyLent: t = t.lastSon inc result of tyOr: var maxBranch = 0 for branch in t.sons: let branchSum = branch.sumGeneric if branchSum > maxBranch: maxBranch = branchSum inc result, maxBranch + 1 break of tyVar: t = t.sons[0] inc result inc isvar of tyTypeDesc: t = t.lastSon if t.kind == tyEmpty: break inc result of tyGenericInvocation, tyTuple, tyProc, tyAnd: result += ord(t.kind in {tyGenericInvocation, tyAnd}) for i in 0 ..< t.len: if t.sons[i] != nil: result += t.sons[i].sumGeneric break of tyStatic: return t.sons[0].sumGeneric + 1 of tyGenericParam, tyExpr, tyStmt: break of tyAlias, tySink: t = t.lastSon of tyBool, tyChar, tyEnum, tyObject, tyPointer, tyString, tyCString, tyInt..tyInt64, tyFloat..tyFloat128, tyUInt..tyUInt64, tyCompositeTypeClass: return isvar else: return 0 #var ggDebug: bool proc complexDisambiguation(a, b: PType): int = # 'a' matches better if *every* argument matches better or equal than 'b'. var winner = 0 for i in 1 ..< min(a.len, b.len): let x = a.sons[i].sumGeneric let y = b.sons[i].sumGeneric #if ggDebug: #echo "came herA ", typeToString(a.sons[i]), " ", x #echo "came herB ", typeToString(b.sons[i]), " ", y if x != y: if winner == 0: if x > y: winner = 1 else: winner = -1 elif x > y: if winner != 1: # contradiction return 0 else: if winner != -1: return 0 result = winner when false: var x, y: int for i in 1 ..< a.len: x += a.sons[i].sumGeneric for i in 1 ..< b.len: y += b.sons[i].sumGeneric result = x - y proc writeMatches*(c: TCandidate) = echo "Candidate '", c.calleeSym.name.s, "' at ", c.c.config $ c.calleeSym.info echo " exact matches: ", c.exactMatches echo " generic matches: ", c.genericMatches echo " subtype matches: ", c.subtypeMatches echo " intconv matches: ", c.intConvMatches echo " conv matches: ", c.convMatches echo " inheritance: ", c.inheritancePenalty proc cmpCandidates*(a, b: TCandidate): int = result = a.exactMatches - b.exactMatches if result != 0: return result = a.genericMatches - b.genericMatches if result != 0: return result = a.subtypeMatches - b.subtypeMatches if result != 0: return result = a.intConvMatches - b.intConvMatches if result != 0: return result = a.convMatches - b.convMatches if result != 0: return # the other way round because of other semantics: result = b.inheritancePenalty - a.inheritancePenalty if result != 0: return # prefer more specialized generic over more general generic: result = complexDisambiguation(a.callee, b.callee) # only as a last resort, consider scoping: if result != 0: return result = a.calleeScope - b.calleeScope proc argTypeToString(arg: PNode; prefer: TPreferedDesc): string = if arg.kind in nkSymChoices: result = typeToString(arg[0].typ, prefer) for i in 1 ..< arg.len: result.add(" | ") result.add typeToString(arg[i].typ, prefer) elif arg.typ == nil: result = "void" else: result = arg.typ.typeToString(prefer) proc describeArgs*(c: PContext, n: PNode, startIdx = 1; prefer: TPreferedDesc = preferName): string = result = "" for i in countup(startIdx, n.len - 1): var arg = n.sons[i] if n.sons[i].kind == nkExprEqExpr: add(result, renderTree(n.sons[i].sons[0])) add(result, ": ") if arg.typ.isNil and arg.kind notin {nkStmtList, nkDo}: # XXX we really need to 'tryExpr' here! arg = c.semOperand(c, n.sons[i].sons[1]) n.sons[i].typ = arg.typ n.sons[i].sons[1] = arg else: if arg.typ.isNil and arg.kind notin {nkStmtList, nkDo, nkElse, nkOfBranch, nkElifBranch, nkExceptBranch}: arg = c.semOperand(c, n.sons[i]) n.sons[i] = arg if arg.typ != nil and arg.typ.kind == tyError: return add(result, argTypeToString(arg, prefer)) if i != sonsLen(n) - 1: add(result, ", ") proc typeRelImpl*(c: var TCandidate, f, aOrig: PType, flags: TTypeRelFlags = {}): TTypeRelation const traceTypeRel = false when traceTypeRel: var nextTypeRel = 0 template typeRel*(c: var TCandidate, f, aOrig: PType, flags: TTypeRelFlags = {}): TTypeRelation = when traceTypeRel: var enteringAt = nextTypeRel if mdbg: inc nextTypeRel echo "----- TYPE REL ", enteringAt debug f debug aOrig # writeStackTrace() let r = typeRelImpl(c, f, aOrig, flags) when traceTypeRel: if enteringAt != nextTypeRel: echo "----- TYPE REL ", enteringAt, " RESULT: ", r r proc concreteType(c: TCandidate, t: PType): PType = case t.kind of tyNil: result = nil # what should it be? of tyTypeDesc: if c.isNoCall: result = t else: result = nil of tySequence, tySet: if t.sons[0].kind == tyEmpty: result = nil else: result = t of tyGenericParam, tyAnything: result = t while true: result = PType(idTableGet(c.bindings, t)) if result == nil: break # it's ok, no match # example code that triggers it: # proc sort[T](cmp: proc(a, b: T): int = cmp) if result.kind != tyGenericParam: break of tyGenericInvocation: result = t doAssert(false, "cannot resolve type: " & typeToString(t)) else: result = t # Note: empty is valid here proc handleRange(f, a: PType, min, max: TTypeKind): TTypeRelation = if a.kind == f.kind: result = isEqual else: let ab = skipTypes(a, {tyRange}) let k = ab.kind if k == f.kind: result = isSubrange elif k == tyInt and f.kind in {tyRange, tyInt8..tyInt64, tyUInt..tyUInt64} and isIntLit(ab) and ab.n.intVal >= firstOrd(nil, f) and ab.n.intVal <= lastOrd(nil, f): # passing 'nil' to firstOrd/lastOrd here as type checking rules should # not depent on the target integer size configurations! # integer literal in the proper range; we want ``i16 + 4`` to stay an # ``int16`` operation so we declare the ``4`` pseudo-equal to int16 result = isFromIntLit elif f.kind == tyInt and k in {tyInt8..tyInt32}: result = isIntConv elif k >= min and k <= max: result = isConvertible elif a.kind == tyRange and a.sons[0].kind in {tyInt..tyInt64, tyUInt8..tyUInt32} and a.n[0].intVal >= firstOrd(nil, f) and a.n[1].intVal <= lastOrd(nil, f): # passing 'nil' to firstOrd/lastOrd here as type checking rules should # not depent on the target integer size configurations! result = isConvertible else: result = isNone #elif f.kind == tyInt and k in {tyInt..tyInt32}: result = isIntConv #elif f.kind == tyUInt and k in {tyUInt..tyUInt32}: result = isIntConv proc isConvertibleToRange(f, a: PType): bool = # be less picky for tyRange, as that it is used for array indexing: if f.kind in {tyInt..tyInt64, tyUInt..tyUInt64} and a.kind in {tyInt..tyInt64, tyUInt..tyUInt64}: case f.kind of tyInt, tyInt64: result = true of tyInt8: result = a.kind in {tyInt8, tyInt} of tyInt16: result = a.kind in {tyInt8, tyInt16, tyInt} of tyInt32: result = a.kind in {tyInt8, tyInt16, tyInt32, tyInt} of tyUInt, tyUInt64: result = true of tyUInt8: result = a.kind in {tyUInt8, tyUInt} of tyUInt16: result = a.kind in {tyUInt8, tyUInt16, tyUInt} of tyUInt32: result = a.kind in {tyUInt8, tyUInt16, tyUInt32, tyUInt} else: result = false elif f.kind in {tyFloat..tyFloat128} and a.kind in {tyFloat..tyFloat128}: result = true proc handleFloatRange(f, a: PType): TTypeRelation = if a.kind == f.kind: result = isEqual else: let ab = skipTypes(a, {tyRange}) var k = ab.kind if k == f.kind: result = isSubrange elif isFloatLit(ab): result = isFromIntLit elif isIntLit(ab): result = isConvertible elif k >= tyFloat and k <= tyFloat128: # conversion to "float32" is not as good: if f.kind == tyFloat32: result = isConvertible else: result = isIntConv else: result = isNone proc genericParamPut(c: var TCandidate; last, fGenericOrigin: PType) = if fGenericOrigin != nil and last.kind == tyGenericInst and last.len-1 == fGenericOrigin.len: for i in countup(1, sonsLen(fGenericOrigin) - 1): let x = PType(idTableGet(c.bindings, fGenericOrigin.sons[i])) if x == nil: put(c, fGenericOrigin.sons[i], last.sons[i]) proc isObjectSubtype(c: var TCandidate; a, f, fGenericOrigin: PType): int = var t = a assert t.kind == tyObject var depth = 0 var last = a while t != nil and not sameObjectTypes(f, t): assert t.kind == tyObject t = t.sons[0] if t == nil: break last = t t = skipTypes(t, skipPtrs) inc depth if t != nil: genericParamPut(c, last, fGenericOrigin) result = depth else: result = -1 type SkippedPtr = enum skippedNone, skippedRef, skippedPtr proc skipToObject(t: PType; skipped: var SkippedPtr): PType = var r = t # we're allowed to skip one level of ptr/ref: var ptrs = 0 while r != nil: case r.kind of tyGenericInvocation: r = r.sons[0] of tyRef: inc ptrs skipped = skippedRef r = r.lastSon of tyPtr: inc ptrs skipped = skippedPtr r = r.lastSon of tyGenericBody, tyGenericInst, tyAlias, tySink: r = r.lastSon else: break if r.kind == tyObject and ptrs <= 1: result = r proc isGenericSubtype(c: var TCandidate; a, f: PType, d: var int, fGenericOrigin: PType = nil): bool = assert f.kind in {tyGenericInst, tyGenericInvocation, tyGenericBody} var askip = skippedNone var fskip = skippedNone var t = a.skipToObject(askip) let r = f.skipToObject(fskip) if r == nil: return false var depth = 0 var last = a # XXX sameObjectType can return false here. Need to investigate # why that is but sameObjectType does way too much work here anyway. while t != nil and r.sym != t.sym and askip == fskip: t = t.sons[0] if t == nil: break last = t t = t.skipToObject(askip) inc depth if t != nil and askip == fskip: genericParamPut(c, last, fGenericOrigin) d = depth result = true proc minRel(a, b: TTypeRelation): TTypeRelation = if a <= b: result = a else: result = b proc recordRel(c: var TCandidate, f, a: PType): TTypeRelation = result = isNone if sameType(f, a): result = isEqual elif sonsLen(a) == sonsLen(f): result = isEqual let firstField = if f.kind == tyTuple: 0 else: 1 for i in countup(firstField, sonsLen(f) - 1): var m = typeRel(c, f.sons[i], a.sons[i]) if m < isSubtype: return isNone result = minRel(result, m) if f.n != nil and a.n != nil: for i in countup(0, sonsLen(f.n) - 1): # check field names: if f.n.sons[i].kind != nkSym: return isNone elif a.n.sons[i].kind != nkSym: return isNone else: var x = f.n.sons[i].sym var y = a.n.sons[i].sym if f.kind == tyObject and typeRel(c, x.typ, y.typ) < isSubtype: return isNone if x.name.id != y.name.id: return isNone proc allowsNil(f: PType): TTypeRelation {.inline.} = result = if tfNotNil notin f.flags: isSubtype else: isNone proc allowsNilDeprecated(c: TCandidate, f: PType): TTypeRelation = if optNilSeqs in c.c.config.options: result = allowsNil(f) else: result = isNone proc inconsistentVarTypes(f, a: PType): bool {.inline.} = result = f.kind != a.kind and (f.kind in {tyVar, tyLent} or a.kind in {tyVar, tyLent}) proc procParamTypeRel(c: var TCandidate, f, a: PType): TTypeRelation = ## For example we have: ## .. code-block:: nim ## proc myMap[T,S](sIn: seq[T], f: proc(x: T): S): seq[S] = ... ## proc innerProc[Q,W](q: Q): W = ... ## And we want to match: myMap(@[1,2,3], innerProc) ## This proc (procParamTypeRel) will do the following steps in ## three different calls: ## - matches f=T to a=Q. Since f is metatype, we resolve it ## to int (which is already known at this point). So in this case ## Q=int mapping will be saved to c.bindings. ## - matches f=S to a=W. Both of these metatypes are unknown, so we ## return with isBothMetaConvertible to ask for rerun. ## - matches f=S to a=W. At this point the return type of innerProc ## is known (we get it from c.bindings). We can use that value ## to match with f, and save back to c.bindings. var f = f a = a if a.isMetaType: let aResolved = PType(idTableGet(c.bindings, a)) if aResolved != nil: a = aResolved if a.isMetaType: if f.isMetaType: # We are matching a generic proc (as proc param) # to another generic type appearing in the proc # signature. There is a change that the target # type is already fully-determined, so we are # going to try resolve it if c.call != nil: f = generateTypeInstance(c.c, c.bindings, c.call.info, f) else: f = nil if f == nil or f.isMetaType: # no luck resolving the type, so the inference fails return isBothMetaConvertible # Note that this typeRel call will save a's resolved type into c.bindings let reverseRel = typeRel(c, a, f) if reverseRel >= isGeneric: result = isInferred #inc c.genericMatches else: # Note that this typeRel call will save f's resolved type into c.bindings # if f is metatype. result = typeRel(c, f, a) if result <= isSubtype or inconsistentVarTypes(f, a): result = isNone #if result == isEqual: # inc c.exactMatches proc procTypeRel(c: var TCandidate, f, a: PType): TTypeRelation = case a.kind of tyProc: if sonsLen(f) != sonsLen(a): return result = isEqual # start with maximum; also correct for no # params at all template checkParam(f, a) = result = minRel(result, procParamTypeRel(c, f, a)) if result == isNone: return # Note: We have to do unification for the parameters before the # return type! for i in 1 ..< f.sonsLen: checkParam(f.sons[i], a.sons[i]) if f.sons[0] != nil: if a.sons[0] != nil: checkParam(f.sons[0], a.sons[0]) else: return isNone elif a.sons[0] != nil: return isNone if tfNoSideEffect in f.flags and tfNoSideEffect notin a.flags: return isNone elif tfThread in f.flags and a.flags * {tfThread, tfNoSideEffect} == {} and optThreadAnalysis in c.c.config.globalOptions: # noSideEffect implies ``tfThread``! return isNone elif f.flags * {tfIterator} != a.flags * {tfIterator}: return isNone elif f.callConv != a.callConv: # valid to pass a 'nimcall' thingie to 'closure': if f.callConv == ccClosure and a.callConv == ccDefault: result = if result == isInferred: isInferredConvertible elif result == isBothMetaConvertible: isBothMetaConvertible else: isConvertible else: return isNone when useEffectSystem: if compatibleEffects(f, a) != efCompat: return isNone of tyNil: result = f.allowsNil else: discard proc typeRangeRel(f, a: PType): TTypeRelation {.noinline.} = template checkRange[T](a0, a1, f0, f1: T): TTypeRelation = if a0 == f0 and a1 == f1: isEqual elif a0 >= f0 and a1 <= f1: isConvertible elif a0 <= f1 and f0 <= a1: # X..Y and C..D overlap iff (X <= D and C <= Y) isConvertible else: isNone if f.isOrdinalType: checkRange(firstOrd(nil, a), lastOrd(nil, a), firstOrd(nil, f), lastOrd(nil, f)) else: checkRange(firstFloat(a), lastFloat(a), firstFloat(f), lastFloat(f)) proc matchUserTypeClass*(m: var TCandidate; ff, a: PType): PType = var c = m.c typeClass = ff.skipTypes({tyUserTypeClassInst}) body = typeClass.n[3] matchedConceptContext: TMatchedConcept prevMatchedConcept = c.matchedConcept prevCandidateType = typeClass[0][0] if prevMatchedConcept != nil: matchedConceptContext.prev = prevMatchedConcept matchedConceptContext.depth = prevMatchedConcept.depth + 1 if prevMatchedConcept.depth > 4: localError(m.c.graph.config, body.info, $body & " too nested for type matching") return nil openScope(c) matchedConceptContext.candidateType = a typeClass[0].sons[0] = a c.matchedConcept = addr(matchedConceptContext) defer: c.matchedConcept = prevMatchedConcept typeClass[0].sons[0] = prevCandidateType closeScope(c) var typeParams: seq[(PSym, PType)] if ff.kind == tyUserTypeClassInst: for i in 1 ..< (ff.len - 1): var typeParamName = ff.base.sons[i-1].sym.name typ = ff.sons[i] param: PSym alreadyBound = PType(idTableGet(m.bindings, typ)) if alreadyBound != nil: typ = alreadyBound template paramSym(kind): untyped = newSym(kind, typeParamName, typeClass.sym, typeClass.sym.info, {}) block addTypeParam: for prev in typeParams: if prev[1].id == typ.id: param = paramSym prev[0].kind param.typ = prev[0].typ break addTypeParam case typ.kind of tyStatic: param = paramSym skConst param.typ = typ.exactReplica if typ.n == nil: param.typ.flags.incl tfInferrableStatic else: param.ast = typ.n of tyUnknown: param = paramSym skVar param.typ = typ.exactReplica else: param = paramSym skType param.typ = if typ.isMetaType: c.newTypeWithSons(tyInferred, @[typ]) else: makeTypeDesc(c, typ) typeParams.safeAdd((param, typ)) addDecl(c, param) var oldWriteHook: type(m.c.config.writelnHook) diagnostics: seq[string] errorPrefix: string flags: TExprFlags = {} collectDiagnostics = m.diagnosticsEnabled or sfExplain in typeClass.sym.flags if collectDiagnostics: oldWriteHook = m.c.config.writelnHook # XXX: we can't write to m.diagnostics directly, because # Nim doesn't support capturing var params in closures diagnostics = @[] flags = {efExplain} m.c.config.writelnHook = proc (s: string) = if errorPrefix.len == 0: errorPrefix = typeClass.sym.name.s & ":" let msg = s.replace("Error:", errorPrefix) if oldWriteHook != nil: oldWriteHook msg diagnostics.add msg var checkedBody = c.semTryExpr(c, body.copyTree, flags) if collectDiagnostics: m.c.config.writelnHook = oldWriteHook for msg in diagnostics: m.diagnostics.safeAdd msg m.diagnosticsEnabled = true if checkedBody == nil: return nil # The inferrable type params have been identified during the semTryExpr above. # We need to put them in the current sigmatch's binding table in order for them # to be resolvable while matching the rest of the parameters for p in typeParams: put(m, p[1], p[0].typ) if ff.kind == tyUserTypeClassInst: result = generateTypeInstance(c, m.bindings, typeClass.sym.info, ff) else: result = copyType(ff, ff.owner, true) result.n = checkedBody proc shouldSkipDistinct(m: TCandidate; rules: PNode, callIdent: PIdent): bool = # XXX This is bad as 'considerQuotedIdent' can produce an error! if rules.kind == nkWith: for r in rules: if considerQuotedIdent(m.c, r) == callIdent: return true return false else: for r in rules: if considerQuotedIdent(m.c, r) == callIdent: return false return true proc maybeSkipDistinct(m: TCandidate; t: PType, callee: PSym): PType = if t != nil and t.kind == tyDistinct and t.n != nil and shouldSkipDistinct(m, t.n, callee.name): result = t.base else: result = t proc tryResolvingStaticExpr(c: var TCandidate, n: PNode, allowUnresolved = false): PNode = # Consider this example: # type Value[N: static[int]] = object # proc foo[N](a: Value[N], r: range[0..(N-1)]) # Here, N-1 will be initially nkStaticExpr that can be evaluated only after # N is bound to a concrete value during the matching of the first param. # This proc is used to evaluate such static expressions. let instantiated = replaceTypesInBody(c.c, c.bindings, n, nil, allowMetaTypes = allowUnresolved) result = c.c.semExpr(c.c, instantiated) proc inferStaticParam*(c: var TCandidate, lhs: PNode, rhs: BiggestInt): bool = # This is a simple integer arithimetic equation solver, # capable of deriving the value of a static parameter in # expressions such as (N + 5) / 2 = rhs # # Preconditions: # # * The input of this proc must be semantized # - all templates should be expanded # - aby constant folding possible should already be performed # # * There must be exactly one unresolved static parameter # # Result: # # The proc will return true if the static types was successfully # inferred. The result will be bound to the original static type # in the TCandidate. # if lhs.kind in nkCallKinds and lhs[0].kind == nkSym: case lhs[0].sym.magic of mUnaryLt: return inferStaticParam(c, lhs[1], rhs + 1) of mAddI, mAddU, mInc, mSucc: if lhs[1].kind == nkIntLit: return inferStaticParam(c, lhs[2], rhs - lhs[1].intVal) elif lhs[2].kind == nkIntLit: return inferStaticParam(c, lhs[1], rhs - lhs[2].intVal) of mDec, mSubI, mSubU, mPred: if lhs[1].kind == nkIntLit: return inferStaticParam(c, lhs[2], lhs[1].intVal - rhs) elif lhs[2].kind == nkIntLit: return inferStaticParam(c, lhs[1], rhs + lhs[2].intVal) of mMulI, mMulU: if lhs[1].kind == nkIntLit: if rhs mod lhs[1].intVal == 0: return inferStaticParam(c, lhs[2], rhs div lhs[1].intVal) elif lhs[2].kind == nkIntLit: if rhs mod lhs[2].intVal == 0: return inferStaticParam(c, lhs[1], rhs div lhs[2].intVal) of mDivI, mDivU: if lhs[1].kind == nkIntLit: if lhs[1].intVal mod rhs == 0: return inferStaticParam(c, lhs[2], lhs[1].intVal div rhs) elif lhs[2].kind == nkIntLit: return inferStaticParam(c, lhs[1], lhs[2].intVal * rhs) of mShlI: if lhs[2].kind == nkIntLit: return inferStaticParam(c, lhs[1], rhs shr lhs[2].intVal) of mShrI: if lhs[2].kind == nkIntLit: return inferStaticParam(c, lhs[1], rhs shl lhs[2].intVal) of mAshrI: if lhs[2].kind == nkIntLit: return inferStaticParam(c, lhs[1], ashr(rhs, lhs[2].intVal)) of mUnaryMinusI: return inferStaticParam(c, lhs[1], -rhs) of mUnaryPlusI, mToInt, mToBiggestInt: return inferStaticParam(c, lhs[1], rhs) else: discard elif lhs.kind == nkSym and lhs.typ.kind == tyStatic and lhs.typ.n == nil: var inferred = newTypeWithSons(c.c, tyStatic, lhs.typ.sons) inferred.n = newIntNode(nkIntLit, rhs) put(c, lhs.typ, inferred) if c.c.matchedConcept != nil: # inside concepts, binding is currently done with # direct mutation of the involved types: lhs.typ.n = inferred.n return true return false proc failureToInferStaticParam(conf: ConfigRef; n: PNode) = let staticParam = n.findUnresolvedStatic let name = if staticParam != nil: staticParam.sym.name.s else: "unknown" localError(conf, n.info, "cannot infer the value of the static param '" & name & "'") proc inferStaticsInRange(c: var TCandidate, inferred, concrete: PType): TTypeRelation = let lowerBound = tryResolvingStaticExpr(c, inferred.n[0], allowUnresolved = true) let upperBound = tryResolvingStaticExpr(c, inferred.n[1], allowUnresolved = true) template doInferStatic(e: PNode, r: BiggestInt) = var exp = e var rhs = r if inferStaticParam(c, exp, rhs): return isGeneric else: failureToInferStaticParam(c.c.config, exp) if lowerBound.kind == nkIntLit: if upperBound.kind == nkIntLit: if lengthOrd(c.c.config, concrete) == upperBound.intVal - lowerBound.intVal + 1: return isGeneric else: return isNone doInferStatic(upperBound, lengthOrd(c.c.config, concrete) + lowerBound.intVal - 1) elif upperBound.kind == nkIntLit: doInferStatic(lowerBound, upperBound.intVal + 1 - lengthOrd(c.c.config, concrete)) template subtypeCheck() = if result <= isSubrange and f.lastSon.skipTypes(abstractInst).kind in {tyRef, tyPtr, tyVar, tyLent}: result = isNone proc isCovariantPtr(c: var TCandidate, f, a: PType): bool = # this proc is always called for a pair of matching types assert f.kind == a.kind template baseTypesCheck(lhs, rhs: PType): bool = lhs.kind notin {tyPtr, tyRef, tyVar, tyLent} and typeRel(c, lhs, rhs, {trNoCovariance}) == isSubtype case f.kind of tyRef, tyPtr: return baseTypesCheck(f.base, a.base) of tyGenericInst: let body = f.base return body == a.base and a.sonsLen == 3 and tfWeakCovariant notin body.sons[0].flags and baseTypesCheck(f.sons[1], a.sons[1]) else: return false when false: proc maxNumericType(prev, candidate: PType): PType = let c = candidate.skipTypes({tyRange}) template greater(s) = if c.kind in s: result = c case prev.kind of tyInt: greater({tyInt64}) of tyInt8: greater({tyInt, tyInt16, tyInt32, tyInt64}) of tyInt16: greater({tyInt, tyInt32, tyInt64}) of tyInt32: greater({tyInt64}) of tyUInt: greater({tyUInt64}) of tyUInt8: greater({tyUInt, tyUInt16, tyUInt32, tyUInt64}) of tyUInt16: greater({tyUInt, tyUInt32, tyUInt64}) of tyUInt32: greater({tyUInt64}) of tyFloat32: greater({tyFloat64, tyFloat128}) of tyFloat64: greater({tyFloat128}) else: discard proc typeRelImpl(c: var TCandidate, f, aOrig: PType, flags: TTypeRelFlags = {}): TTypeRelation = # typeRel can be used to establish various relationships between types: # # 1) When used with concrete types, it will check for type equivalence # or a subtype relationship. # # 2) When used with a concrete type against a type class (such as generic # signature of a proc), it will check whether the concrete type is a member # of the designated type class. # # 3) When used with two type classes, it will check whether the types # matching the first type class are a strict subset of the types matching # the other. This allows us to compare the signatures of generic procs in # order to give preferrence to the most specific one: # # seq[seq[any]] is a strict subset of seq[any] and hence more specific. result = isNone assert(f != nil) if f.kind == tyExpr: if aOrig != nil: put(c, f, aOrig) return isGeneric assert(aOrig != nil) var useTypeLoweringRuleInTypeClass = c.c.matchedConcept != nil and not c.isNoCall and f.kind != tyTypeDesc and tfExplicit notin aOrig.flags and tfConceptMatchedTypeSym notin aOrig.flags aOrig = if useTypeLoweringRuleInTypeClass: aOrig.skipTypes({tyTypeDesc}) else: aOrig if aOrig.kind == tyInferred: let prev = aOrig.previouslyInferred if prev != nil: return typeRel(c, f, prev) else: var candidate = f case f.kind of tyGenericParam: var prev = PType(idTableGet(c.bindings, f)) if prev != nil: candidate = prev of tyFromExpr: let computedType = tryResolvingStaticExpr(c, f.n).typ case computedType.kind of tyTypeDesc: candidate = computedType.base of tyStatic: candidate = computedType else: # XXX What is this non-sense? Error reporting in signature matching? discard "localError(f.n.info, errTypeExpected)" else: discard result = typeRel(c, aOrig.base, candidate) if result != isNone: c.inferredTypes.safeAdd aOrig aOrig.sons.add candidate result = isEqual return template doBind: bool = trDontBind notin flags # var and static arguments match regular modifier-free types var a = maybeSkipDistinct(c, aOrig.skipTypes({tyStatic, tyVar, tyLent}), c.calleeSym) # XXX: Theoretically, maybeSkipDistinct could be called before we even # start the param matching process. This could be done in `prepareOperand` # for example, but unfortunately `prepareOperand` is not called in certain # situation when nkDotExpr are rotated to nkDotCalls if aOrig.kind in {tyAlias, tySink}: return typeRel(c, f, lastSon(aOrig)) if a.kind == tyGenericInst and skipTypes(f, {tyVar, tyLent}).kind notin { tyGenericBody, tyGenericInvocation, tyGenericInst, tyGenericParam} + tyTypeClasses: return typeRel(c, f, lastSon(a)) if a.isResolvedUserTypeClass: return typeRel(c, f, a.lastSon) template bindingRet(res) = if doBind: let bound = aOrig.skipTypes({tyRange}).skipIntLit put(c, f, bound) return res template considerPreviousT(body: untyped) = var prev = PType(idTableGet(c.bindings, f)) if prev == nil: body else: return typeRel(c, prev, a) case a.kind of tyOr: # XXX: deal with the current dual meaning of tyGenericParam c.typedescMatched = true # seq[int|string] vs seq[number] # both int and string must match against number # but ensure that '[T: A|A]' matches as good as '[T: A]' (bug #2219): result = isGeneric for branch in a.sons: let x = typeRel(c, f, branch, flags + {trDontBind}) if x == isNone: return isNone if x < result: result = x return of tyAnd: # XXX: deal with the current dual meaning of tyGenericParam c.typedescMatched = true # seq[Sortable and Iterable] vs seq[Sortable] # only one match is enough for branch in a.sons: let x = typeRel(c, f, branch, flags + {trDontBind}) if x != isNone: return if x >= isGeneric: isGeneric else: x return isNone of tyNot: case f.kind of tyNot: # seq[!int] vs seq[!number] # seq[float] matches the first, but not the second # we must turn the problem around: # is number a subset of int? return typeRel(c, a.lastSon, f.lastSon) else: # negative type classes are essentially infinite, # so only the `any` type class is their superset return if f.kind == tyAnything: isGeneric else: isNone of tyAnything: if f.kind == tyAnything: return isGeneric else: return isNone of tyUserTypeClass, tyUserTypeClassInst: if c.c.matchedConcept != nil and c.c.matchedConcept.depth <= 4: # consider this: 'var g: Node' *within* a concept where 'Node' # is a concept too (tgraph) inc c.c.matchedConcept.depth let x = typeRel(c, a, f, flags + {trDontBind}) if x >= isGeneric: return isGeneric else: discard case f.kind of tyEnum: if a.kind == f.kind and sameEnumTypes(f, a): result = isEqual elif sameEnumTypes(f, skipTypes(a, {tyRange})): result = isSubtype of tyBool, tyChar: if a.kind == f.kind: result = isEqual elif skipTypes(a, {tyRange}).kind == f.kind: result = isSubtype of tyRange: if a.kind == f.kind: if f.base.kind == tyNone: return isGeneric result = typeRel(c, base(f), base(a)) # bugfix: accept integer conversions here #if result < isGeneric: result = isNone if result notin {isNone, isGeneric}: # resolve any late-bound static expressions # that may appear in the range: for i in 0..1: if f.n[i].kind == nkStaticExpr: f.n.sons[i] = tryResolvingStaticExpr(c, f.n[i]) result = typeRangeRel(f, a) else: if skipTypes(f, {tyRange}).kind == a.kind: result = isIntConv elif isConvertibleToRange(skipTypes(f, {tyRange}), a): result = isConvertible # a convertible to f of tyInt: result = handleRange(f, a, tyInt8, tyInt32) of tyInt8: result = handleRange(f, a, tyInt8, tyInt8) of tyInt16: result = handleRange(f, a, tyInt8, tyInt16) of tyInt32: result = handleRange(f, a, tyInt8, tyInt32) of tyInt64: result = handleRange(f, a, tyInt, tyInt64) of tyUInt: result = handleRange(f, a, tyUInt8, tyUInt32) of tyUInt8: result = handleRange(f, a, tyUInt8, tyUInt8) of tyUInt16: result = handleRange(f, a, tyUInt8, tyUInt16) of tyUInt32: result = handleRange(f, a, tyUInt8, tyUInt32) of tyUInt64: result = handleRange(f, a, tyUInt, tyUInt64) of tyFloat: result = handleFloatRange(f, a) of tyFloat32: result = handleFloatRange(f, a) of tyFloat64: result = handleFloatRange(f, a) of tyFloat128: result = handleFloatRange(f, a) of tyVar, tyLent: if aOrig.kind == f.kind: result = typeRel(c, f.base, aOrig.base) else: result = typeRel(c, f.base, aOrig, flags + {trNoCovariance}) subtypeCheck() of tyArray: case a.kind of tyArray: var fRange = f.sons[0] var aRange = a.sons[0] if fRange.kind == tyGenericParam: var prev = PType(idTableGet(c.bindings, fRange)) if prev == nil: put(c, fRange, a.sons[0]) fRange = a else: fRange = prev let ff = f.sons[1].skipTypes({tyTypeDesc}) # This typeDesc rule is wrong, see bug #7331 let aa = a.sons[1] #.skipTypes({tyTypeDesc}) if f.sons[0].kind != tyGenericParam and aa.kind == tyEmpty: result = isGeneric else: result = typeRel(c, ff, aa) if result < isGeneric: if nimEnableCovariance and trNoCovariance notin flags and ff.kind == aa.kind and isCovariantPtr(c, ff, aa): result = isSubtype else: return isNone if fRange.rangeHasUnresolvedStatic: return inferStaticsInRange(c, fRange, a) elif c.c.matchedConcept != nil and aRange.rangeHasUnresolvedStatic: return inferStaticsInRange(c, aRange, f) else: if lengthOrd(c.c.config, fRange) != lengthOrd(c.c.config, aRange): result = isNone else: discard of tyOpenArray, tyVarargs: # varargs[expr] is special too but handled earlier. So we only need to # handle varargs[stmt] which is the same as varargs[typed]: if f.kind == tyVarargs: if tfVarargs in a.flags: return typeRel(c, f.base, a.lastSon) if tfOldSchoolExprStmt in f.sons[0].flags: if f.sons[0].kind == tyExpr: return elif f.sons[0].kind == tyStmt: return template matchArrayOrSeq(aBase: PType) = let ff = f.base let aa = aBase let baseRel = typeRel(c, ff, aa) if baseRel >= isGeneric: result = isConvertible elif nimEnableCovariance and trNoCovariance notin flags and ff.kind == aa.kind and isCovariantPtr(c, ff, aa): result = isConvertible case a.kind of tyOpenArray, tyVarargs: result = typeRel(c, base(f), base(a)) if result < isGeneric: result = isNone of tyArray: if (f.sons[0].kind != tyGenericParam) and (a.sons[1].kind == tyEmpty): return isSubtype matchArrayOrSeq(a.sons[1]) of tySequence: if (f.sons[0].kind != tyGenericParam) and (a.sons[0].kind == tyEmpty): return isConvertible matchArrayOrSeq(a.sons[0]) of tyString: if f.kind == tyOpenArray: if f.sons[0].kind == tyChar: result = isConvertible elif f.sons[0].kind == tyGenericParam and a.len > 0 and typeRel(c, base(f), base(a)) >= isGeneric: result = isConvertible else: discard of tySequence: case a.kind of tySequence: if (f.sons[0].kind != tyGenericParam) and (a.sons[0].kind == tyEmpty): result = isSubtype else: let ff = f.sons[0] let aa = a.sons[0] result = typeRel(c, ff, aa) if result < isGeneric: if nimEnableCovariance and trNoCovariance notin flags and ff.kind == aa.kind and isCovariantPtr(c, ff, aa): result = isSubtype else: result = isNone elif tfNotNil in f.flags and tfNotNil notin a.flags: result = isNilConversion of tyNil: result = allowsNilDeprecated(c, f) else: discard of tyOrdinal: if isOrdinalType(a): var x = if a.kind == tyOrdinal: a.sons[0] else: a if f.sons[0].kind == tyNone: result = isGeneric else: result = typeRel(c, f.sons[0], x) if result < isGeneric: result = isNone elif a.kind == tyGenericParam: result = isGeneric of tyForward: #internalError("forward type in typeRel()") result = isNone of tyNil: if a.kind == f.kind: result = isEqual of tyTuple: if a.kind == tyTuple: result = recordRel(c, f, a) of tyObject: if a.kind == tyObject: if sameObjectTypes(f, a): result = isEqual # elif tfHasMeta in f.flags: result = recordRel(c, f, a) else: var depth = isObjectSubtype(c, a, f, nil) if depth > 0: inc(c.inheritancePenalty, depth) result = isSubtype of tyDistinct: if a.kind == tyDistinct: if sameDistinctTypes(f, a): result = isEqual elif f.base.kind == tyAnything: result = isGeneric elif c.coerceDistincts: result = typeRel(c, f.base, a) elif a.kind == tyNil and f.base.kind in NilableTypes: result = f.allowsNil elif c.coerceDistincts: result = typeRel(c, f.base, a) of tySet: if a.kind == tySet: if f.sons[0].kind != tyGenericParam and a.sons[0].kind == tyEmpty: result = isSubtype else: result = typeRel(c, f.sons[0], a.sons[0]) if result <= isConvertible: result = isNone # BUGFIX! of tyPtr, tyRef: if a.kind == f.kind: # ptr[R, T] can be passed to ptr[T], but not the other way round: if a.len < f.len: return isNone for i in 0..f.len-2: if typeRel(c, f.sons[i], a.sons[i]) == isNone: return isNone result = typeRel(c, f.lastSon, a.lastSon, flags + {trNoCovariance}) subtypeCheck() if result <= isConvertible: result = isNone elif tfNotNil in f.flags and tfNotNil notin a.flags: result = isNilConversion elif a.kind == tyNil: result = f.allowsNil else: discard of tyProc: result = procTypeRel(c, f, a) if result != isNone and tfNotNil in f.flags and tfNotNil notin a.flags: result = isNilConversion of tyPointer: case a.kind of tyPointer: if tfNotNil in f.flags and tfNotNil notin a.flags: result = isNilConversion else: result = isEqual of tyNil: result = f.allowsNil of tyProc: if a.callConv != ccClosure: result = isConvertible of tyPtr: # 'pointer' is NOT compatible to regionized pointers # so 'dealloc(regionPtr)' fails: if a.len == 1: result = isConvertible of tyCString: result = isConvertible else: discard of tyString: case a.kind of tyString: if tfNotNil in f.flags and tfNotNil notin a.flags: result = isNilConversion else: result = isEqual of tyNil: result = allowsNilDeprecated(c, f) else: discard of tyCString: # conversion from string to cstring is automatic: case a.kind of tyCString: if tfNotNil in f.flags and tfNotNil notin a.flags: result = isNilConversion else: result = isEqual of tyNil: result = f.allowsNil of tyString: result = isConvertible of tyPtr: # ptr[Tag, char] is not convertible to 'cstring' for now: if a.len == 1: let pointsTo = a.sons[0].skipTypes(abstractInst) if pointsTo.kind == tyChar: result = isConvertible elif pointsTo.kind == tyArray and firstOrd(nil, pointsTo.sons[0]) == 0 and skipTypes(pointsTo.sons[0], {tyRange}).kind in {tyInt..tyInt64} and pointsTo.sons[1].kind == tyChar: result = isConvertible else: discard of tyEmpty, tyVoid: if a.kind == f.kind: result = isEqual of tyAlias, tySink: result = typeRel(c, lastSon(f), a) of tyGenericInst: var prev = PType(idTableGet(c.bindings, f)) let origF = f var f = if prev == nil: f else: prev let roota = a.skipGenericAlias let rootf = f.skipGenericAlias var m = c if a.kind == tyGenericInst: if roota.base == rootf.base: let nextFlags = flags + {trNoCovariance} var hasCovariance = false for i in 1 .. rootf.sonsLen-2: let ff = rootf.sons[i] let aa = roota.sons[i] result = typeRel(c, ff, aa, nextFlags) if result notin {isEqual, isGeneric}: if trNoCovariance notin flags and ff.kind == aa.kind: let paramFlags = rootf.base.sons[i-1].flags hasCovariance = if tfCovariant in paramFlags: if tfWeakCovariant in paramFlags: isCovariantPtr(c, ff, aa) else: ff.kind notin {tyRef, tyPtr} and result == isSubtype else: tfContravariant in paramFlags and typeRel(c, aa, ff) == isSubtype if hasCovariance: continue return isNone if prev == nil: put(c, f, a) result = isGeneric else: let fKind = rootf.lastSon.kind if fKind in {tyAnd, tyOr}: result = typeRel(c, lastSon(f), a) if result != isNone: put(c, f, a) return var aAsObject = roota.lastSon if fKind in {tyRef, tyPtr}: if aAsObject.kind == tyObject: # bug #7600, tyObject cannot be passed # as argument to tyRef/tyPtr return isNone elif aAsObject.kind == fKind: aAsObject = aAsObject.base if aAsObject.kind == tyObject: let baseType = aAsObject.base if baseType != nil: c.inheritancePenalty += 1 return typeRel(c, f, baseType) result = isNone else: assert lastSon(origF) != nil result = typeRel(c, lastSon(origF), a) if result != isNone and a.kind != tyNil: put(c, f, a) of tyGenericBody: considerPreviousT: if a == f or a.kind == tyGenericInst and a.sons[0] == f: bindingRet isGeneric let ff = lastSon(f) if ff != nil: result = typeRel(c, ff, a) of tyGenericInvocation: var x = a.skipGenericAlias # XXX: This is very hacky. It should be moved back into liftTypeParam if x.kind in {tyGenericInst, tyArray} and c.calleeSym != nil and c.calleeSym.kind in {skProc, skFunc} and c.call != nil: let inst = prepareMetatypeForSigmatch(c.c, c.bindings, c.call.info, f) return typeRel(c, inst, a) var depth = 0 if x.kind == tyGenericInvocation or f.sons[0].kind != tyGenericBody: #InternalError("typeRel: tyGenericInvocation -> tyGenericInvocation") # simply no match for now: discard elif x.kind == tyGenericInst and ((f.sons[0] == x.sons[0]) or isGenericSubType(c, x, f, depth)) and (sonsLen(x) - 1 == sonsLen(f)): for i in countup(1, sonsLen(f) - 1): if x.sons[i].kind == tyGenericParam: internalError(c.c.graph.config, "wrong instantiated type!") elif typeRel(c, f.sons[i], x.sons[i]) <= isSubtype: # Workaround for regression #4589 if f.sons[i].kind != tyTypeDesc: return c.inheritancePenalty += depth result = isGeneric else: let genericBody = f.sons[0] var askip = skippedNone var fskip = skippedNone let aobj = x.skipToObject(askip) let fobj = genericBody.lastSon.skipToObject(fskip) var depth = -1 if fobj != nil and aobj != nil and askip == fskip: depth = isObjectSubtype(c, aobj, fobj, f) result = typeRel(c, genericBody, x) if result != isNone: # see tests/generics/tgeneric3.nim for an example that triggers this # piece of code: # # proc internalFind[T,D](n: PNode[T,D], key: T): ref TItem[T,D] # proc internalPut[T,D](ANode: ref TNode[T,D], Akey: T, Avalue: D, # Oldvalue: var D): ref TNode[T,D] # var root = internalPut[int, int](nil, 312, 312, oldvalue) # var it1 = internalFind(root, 312) # cannot instantiate: 'D' # # we steal the generic parameters from the tyGenericBody: for i in countup(1, sonsLen(f) - 1): let x = PType(idTableGet(c.bindings, genericBody.sons[i-1])) if x == nil: discard "maybe fine (for eg. a==tyNil)" elif x.kind in {tyGenericInvocation, tyGenericParam}: internalError(c.c.graph.config, "wrong instantiated type!") else: put(c, f.sons[i], x) if result == isNone: # Here object inheriting from generic/specialized generic object # crossing path with metatypes/aliases, so we need to separate them # by checking sym.id let genericSubtype = isGenericSubType(c, x, f, depth, f) if not (genericSubtype and aobj.sym.id != fobj.sym.id) and aOrig.kind != tyGenericBody: depth = -1 if depth >= 0: c.inheritancePenalty += depth # bug #4863: We still need to bind generic alias crap, so # we cannot return immediately: result = if depth == 0: isGeneric else: isSubtype of tyAnd: considerPreviousT: result = isEqual for branch in f.sons: let x = typeRel(c, branch, aOrig) if x < isSubtype: return isNone # 'and' implies minimum matching result: if x < result: result = x if result > isGeneric: result = isGeneric bindingRet result of tyOr: considerPreviousT: result = isNone let oldInheritancePenalty = c.inheritancePenalty var maxInheritance = 0 for branch in f.sons: c.inheritancePenalty = 0 let x = typeRel(c, branch, aOrig) maxInheritance = max(maxInheritance, c.inheritancePenalty) # 'or' implies maximum matching result: if x > result: result = x if result >= isSubtype: if result > isGeneric: result = isGeneric bindingRet result else: result = isNone c.inheritancePenalty = oldInheritancePenalty + maxInheritance of tyNot: considerPreviousT: for branch in f.sons: if typeRel(c, branch, aOrig) != isNone: return isNone bindingRet isGeneric of tyAnything: considerPreviousT: var concrete = concreteType(c, a) if concrete != nil and doBind: put(c, f, concrete) return isGeneric of tyBuiltInTypeClass: considerPreviousT: let targetKind = f.sons[0].kind let effectiveArgType = a.skipTypes({tyRange, tyGenericInst, tyBuiltInTypeClass, tyAlias, tySink}) let typeClassMatches = targetKind == effectiveArgType.kind and not effectiveArgType.isEmptyContainer if typeClassMatches or (targetKind in {tyProc, tyPointer} and effectiveArgType.kind == tyNil): put(c, f, a) return isGeneric else: return isNone of tyUserTypeClassInst, tyUserTypeClass: if f.isResolvedUserTypeClass: result = typeRel(c, f.lastSon, a) else: considerPreviousT: if aOrig == f: return isEqual var matched = matchUserTypeClass(c, f, aOrig) if matched != nil: bindConcreteTypeToUserTypeClass(matched, a) if doBind: put(c, f, matched) result = isGeneric else: result = isNone of tyCompositeTypeClass: considerPreviousT: let roota = a.skipGenericAlias let rootf = f.lastSon.skipGenericAlias if a.kind == tyGenericInst and roota.base == rootf.base: for i in 1 .. rootf.sonsLen-2: let ff = rootf.sons[i] let aa = roota.sons[i] result = typeRel(c, ff, aa) if result == isNone: return if ff.kind == tyRange and result != isEqual: return isNone else: result = typeRel(c, rootf.lastSon, a) if result != isNone: put(c, f, a) result = isGeneric of tyGenericParam: var x = PType(idTableGet(c.bindings, f)) if x == nil: if c.callee.kind == tyGenericBody and f.kind == tyGenericParam and not c.typedescMatched: # XXX: The fact that generic types currently use tyGenericParam for # their parameters is really a misnomer. tyGenericParam means "match # any value" and what we need is "match any type", which can be encoded # by a tyTypeDesc params. Unfortunately, this requires more substantial # changes in semtypinst and elsewhere. if tfWildcard in a.flags: result = isGeneric elif a.kind == tyTypeDesc: if f.sonsLen == 0: result = isGeneric else: internalAssert c.c.graph.config, a.len > 0 c.typedescMatched = true var aa = a while aa.kind in {tyTypeDesc, tyGenericParam} and aa.len > 0: aa = lastSon(aa) if aa.kind == tyGenericParam: return isGeneric result = typeRel(c, f.base, aa) if result > isGeneric: result = isGeneric else: result = isNone else: if f.sonsLen > 0 and f.sons[0].kind != tyNone: let oldInheritancePenalty = c.inheritancePenalty result = typeRel(c, f.lastSon, a, flags + {trDontBind}) if doBind and result notin {isNone, isGeneric}: let concrete = concreteType(c, a) if concrete == nil: return isNone put(c, f, concrete) # bug #6526 if result in {isEqual, isSubtype}: # 'T: Class' is a *better* match than just 'T' # but 'T: Subclass' is even better: c.inheritancePenalty = oldInheritancePenalty - c.inheritancePenalty - 100 * ord(result == isEqual) result = isGeneric else: result = isGeneric if result == isGeneric: var concrete = a if tfWildcard in a.flags: a.sym.kind = skType a.flags.excl tfWildcard else: concrete = concreteType(c, a) if concrete == nil: return isNone if doBind: put(c, f, concrete) elif result > isGeneric: result = isGeneric elif a.kind == tyEmpty: result = isGeneric elif x.kind == tyGenericParam: result = isGeneric else: # Special type binding rule for numeric types. # See section "Generic type inference for numeric types" of the # manual for further details: when false: let rebinding = maxNumericType(x.skipTypes({tyRange}), a) if rebinding != nil: put(c, f, rebinding) result = isGeneric else: discard result = typeRel(c, x, a) # check if it fits if result > isGeneric: result = isGeneric of tyStatic: let prev = PType(idTableGet(c.bindings, f)) if prev == nil: if aOrig.kind == tyStatic: if f.base.kind != tyNone: result = typeRel(c, f.base, a) if result != isNone and f.n != nil: if not exprStructuralEquivalent(f.n, aOrig.n): result = isNone else: result = isGeneric if result != isNone: put(c, f, aOrig) elif aOrig.n != nil and aOrig.n.typ != nil: result = if f.base.kind != tyNone: typeRel(c, f.lastSon, aOrig.n.typ) else: isGeneric if result != isNone: var boundType = newTypeWithSons(c.c, tyStatic, @[aOrig.n.typ]) boundType.n = aOrig.n put(c, f, boundType) else: result = isNone elif prev.kind == tyStatic: if aOrig.kind == tyStatic: result = typeRel(c, prev.lastSon, a) if result != isNone and prev.n != nil: if not exprStructuralEquivalent(prev.n, aOrig.n): result = isNone else: result = isNone else: # XXX endless recursion? #result = typeRel(c, prev, aOrig) result = isNone of tyInferred: let prev = f.previouslyInferred if prev != nil: result = typeRel(c, prev, a) else: result = typeRel(c, f.base, a) if result != isNone: c.inferredTypes.safeAdd f f.sons.add a of tyTypeDesc: var prev = PType(idTableGet(c.bindings, f)) if prev == nil: # proc foo(T: typedesc, x: T) # when `f` is an unresolved typedesc, `a` could be any # type, so we should not perform this check earlier if a.kind != tyTypeDesc: if a.kind == tyGenericParam and tfWildcard in a.flags: # TODO: prevent `a` from matching as a wildcard again result = isGeneric else: result = isNone elif f.base.kind == tyNone: result = isGeneric else: result = typeRel(c, f.base, a.base) if result != isNone: put(c, f, a) else: if tfUnresolved in f.flags: result = typeRel(c, prev.base, a) elif a.kind == tyTypeDesc: result = typeRel(c, prev.base, a.base) else: result = isNone of tyStmt: if aOrig != nil and tfOldSchoolExprStmt notin f.flags: put(c, f, aOrig) result = isGeneric of tyProxy: result = isEqual of tyFromExpr: # fix the expression, so it contains the already instantiated types if f.n == nil or f.n.kind == nkEmpty: return isGeneric let reevaluated = tryResolvingStaticExpr(c, f.n) case reevaluated.typ.kind of tyTypeDesc: result = typeRel(c, a, reevaluated.typ.base) of tyStatic: result = typeRel(c, a, reevaluated.typ.base) if result != isNone and reevaluated.typ.n != nil: if not exprStructuralEquivalent(aOrig.n, reevaluated.typ.n): result = isNone else: localError(c.c.graph.config, f.n.info, "type expected") result = isNone of tyNone: if a.kind == tyNone: result = isEqual else: internalError c.c.graph.config, " unknown type kind " & $f.kind proc cmpTypes*(c: PContext, f, a: PType): TTypeRelation = var m: TCandidate initCandidate(c, m, f) result = typeRel(m, f, a) proc getInstantiatedType(c: PContext, arg: PNode, m: TCandidate, f: PType): PType = result = PType(idTableGet(m.bindings, f)) if result == nil: result = generateTypeInstance(c, m.bindings, arg, f) if result == nil: internalError(c.graph.config, arg.info, "getInstantiatedType") result = errorType(c) proc implicitConv(kind: TNodeKind, f: PType, arg: PNode, m: TCandidate, c: PContext): PNode = result = newNodeI(kind, arg.info) if containsGenericType(f): if not m.hasFauxMatch: result.typ = getInstantiatedType(c, arg, m, f) else: result.typ = errorType(c) else: result.typ = f if result.typ == nil: internalError(c.graph.config, arg.info, "implicitConv") addSon(result, c.graph.emptyNode) addSon(result, arg) proc userConvMatch(c: PContext, m: var TCandidate, f, a: PType, arg: PNode): PNode = result = nil for i in countup(0, len(c.converters) - 1): var src = c.converters[i].typ.sons[1] var dest = c.converters[i].typ.sons[0] # for generic type converters we need to check 'src <- a' before # 'f <- dest' in order to not break the unification: # see tests/tgenericconverter: let srca = typeRel(m, src, a) if srca notin {isEqual, isGeneric, isSubtype}: continue let constraint = c.converters[i].typ.n[1].sym.constraint if not constraint.isNil and not matchNodeKinds(constraint, arg): continue let destIsGeneric = containsGenericType(dest) if destIsGeneric: dest = generateTypeInstance(c, m.bindings, arg, dest) let fdest = typeRel(m, f, dest) if fdest in {isEqual, isGeneric}: markUsed(c.config, arg.info, c.converters[i], c.graph.usageSym) var s = newSymNode(c.converters[i]) s.typ = c.converters[i].typ s.info = arg.info result = newNodeIT(nkHiddenCallConv, arg.info, dest) addSon(result, s) var param: PNode = nil if srca == isSubtype: param = implicitConv(nkHiddenSubConv, src, copyTree(arg), m, c) else: param = copyTree(arg) addSon(result, param) inc(m.convMatches) m.genericConverter = srca == isGeneric or destIsGeneric return result proc localConvMatch(c: PContext, m: var TCandidate, f, a: PType, arg: PNode): PNode = # arg.typ can be nil in 'suggest': if isNil(arg.typ): return nil # sem'checking for 'echo' needs to be re-entrant: # XXX we will revisit this issue after 0.10.2 is released if f == arg.typ and arg.kind == nkHiddenStdConv: return arg var call = newNodeI(nkCall, arg.info) call.add(f.n.copyTree) call.add(arg.copyTree) result = c.semExpr(c, call) if result != nil: if result.typ == nil: return nil # resulting type must be consistent with the other arguments: var r = typeRel(m, f.sons[0], result.typ) if r < isGeneric: return nil if result.kind == nkCall: result.kind = nkHiddenCallConv inc(m.convMatches) if r == isGeneric: result.typ = getInstantiatedType(c, arg, m, base(f)) m.baseTypeMatch = true proc incMatches(m: var TCandidate; r: TTypeRelation; convMatch = 1) = case r of isConvertible, isIntConv: inc(m.convMatches, convMatch) of isSubtype, isSubrange: inc(m.subtypeMatches) of isGeneric, isInferred, isBothMetaConvertible: inc(m.genericMatches) of isFromIntLit: inc(m.intConvMatches, 256) of isInferredConvertible: inc(m.convMatches) of isEqual: inc(m.exactMatches) of isNone: discard template matchesVoidProc(t: PType): bool = (t.kind == tyProc and t.len == 1 and t.sons[0] == nil) or (t.kind == tyBuiltInTypeClass and t.sons[0].kind == tyProc) proc paramTypesMatchAux(m: var TCandidate, f, a: PType, argSemantized, argOrig: PNode): PNode = var fMaybeStatic = f.skipTypes({tyDistinct}) arg = argSemantized a = a c = m.c if tfHasStatic in fMaybeStatic.flags: # XXX: When implicit statics are the default # this will be done earlier - we just have to # make sure that static types enter here # XXX: weaken tyGenericParam and call it tyGenericPlaceholder # and finally start using tyTypedesc for generic types properly. if a.kind == tyGenericParam and tfWildcard in a.flags: a.assignType(f) # put(m.bindings, f, a) return argSemantized if a.kind == tyStatic: if m.callee.kind == tyGenericBody and a.n == nil and tfGenericTypeParam notin a.flags: return newNodeIT(nkType, argOrig.info, makeTypeFromExpr(c, arg)) else: var evaluated = c.semTryConstExpr(c, arg) if evaluated != nil: arg.typ = newTypeS(tyStatic, c) arg.typ.sons = @[evaluated.typ] arg.typ.n = evaluated a = arg.typ else: if m.callee.kind == tyGenericBody: if f.kind == tyStatic and typeRel(m, f.base, a) != isNone: result = makeStaticExpr(m.c, arg) result.typ.flags.incl tfUnresolved result.typ.n = arg return let oldInheritancePenalty = m.inheritancePenalty var r = typeRel(m, f, a) # This special typing rule for macros and templates is not documented # anywhere and breaks symmetry. It's hard to get rid of though, my # custom seqs example fails to compile without this: if r != isNone and m.calleeSym != nil and m.calleeSym.kind in {skMacro, skTemplate}: # XXX: duplicating this is ugly, but we cannot (!) move this # directly into typeRel using return-like templates incMatches(m, r) if f.kind == tyStmt: return arg elif f.kind == tyTypeDesc: return arg elif f.kind == tyStatic and arg.typ.n != nil: return arg.typ.n else: return argSemantized # argOrig # If r == isBothMetaConvertible then we rerun typeRel. # bothMetaCounter is for safety to avoid any infinite loop, # I don't have any example when it is needed. # lastBindingsLenth is used to check whether m.bindings remains the same, # because in that case there is no point in continuing. var bothMetaCounter = 0 var lastBindingsLength = -1 while r == isBothMetaConvertible and lastBindingsLength != m.bindings.counter and bothMetaCounter < 100: lastBindingsLength = m.bindings.counter inc(bothMetaCounter) if arg.kind in {nkProcDef, nkFuncDef, nkIteratorDef} + nkLambdaKinds: result = c.semInferredLambda(c, m.bindings, arg) elif arg.kind != nkSym: return nil else: let inferred = c.semGenerateInstance(c, arg.sym, m.bindings, arg.info) result = newSymNode(inferred, arg.info) inc(m.convMatches) arg = result r = typeRel(m, f, arg.typ) case r of isConvertible: inc(m.convMatches) result = implicitConv(nkHiddenStdConv, f, arg, m, c) of isIntConv: # I'm too lazy to introduce another ``*matches`` field, so we conflate # ``isIntConv`` and ``isIntLit`` here: inc(m.intConvMatches) result = implicitConv(nkHiddenStdConv, f, arg, m, c) of isSubtype: inc(m.subtypeMatches) if f.kind == tyTypeDesc: result = arg else: result = implicitConv(nkHiddenSubConv, f, arg, m, c) of isSubrange: inc(m.subtypeMatches) if f.kind == tyVar: result = arg else: result = implicitConv(nkHiddenStdConv, f, arg, m, c) of isInferred, isInferredConvertible: if arg.kind in {nkProcDef, nkFuncDef, nkIteratorDef} + nkLambdaKinds: result = c.semInferredLambda(c, m.bindings, arg) elif arg.kind != nkSym: return nil else: let inferred = c.semGenerateInstance(c, arg.sym, m.bindings, arg.info) result = newSymNode(inferred, arg.info) if r == isInferredConvertible: inc(m.convMatches) result = implicitConv(nkHiddenStdConv, f, result, m, c) else: inc(m.genericMatches) of isGeneric: inc(m.genericMatches) if arg.typ == nil: result = arg elif skipTypes(arg.typ, abstractVar-{tyTypeDesc}).kind == tyTuple or m.inheritancePenalty > oldInheritancePenalty: result = implicitConv(nkHiddenSubConv, f, arg, m, c) elif arg.typ.isEmptyContainer: result = arg.copyTree result.typ = getInstantiatedType(c, arg, m, f) else: result = arg of isBothMetaConvertible: # This is the result for the 101th time. result = nil of isFromIntLit: # too lazy to introduce another ``*matches`` field, so we conflate # ``isIntConv`` and ``isIntLit`` here: inc(m.intConvMatches, 256) result = implicitConv(nkHiddenStdConv, f, arg, m, c) of isEqual: inc(m.exactMatches) result = arg if skipTypes(f, abstractVar-{tyTypeDesc}).kind in {tyTuple}: result = implicitConv(nkHiddenSubConv, f, arg, m, c) of isNone: # do not do this in ``typeRel`` as it then can't infer T in ``ref T``: if a.kind in {tyProxy, tyUnknown}: inc(m.genericMatches) m.fauxMatch = a.kind return arg elif a.kind == tyVoid and f.matchesVoidProc and argOrig.kind == nkStmtList: # lift do blocks without params to lambdas let p = c.graph let lifted = c.semExpr(c, newProcNode(nkDo, argOrig.info, body = argOrig, params = p.emptyNode, name = p.emptyNode, pattern = p.emptyNode, genericParams = p.emptyNode, pragmas = p.emptyNode, exceptions = p.emptyNode), {}) if f.kind == tyBuiltInTypeClass: inc m.genericMatches put(m, f, lifted.typ) inc m.convMatches return implicitConv(nkHiddenStdConv, f, lifted, m, c) result = userConvMatch(c, m, f, a, arg) # check for a base type match, which supports varargs[T] without [] # constructor in a call: if result == nil and f.kind == tyVarargs: if f.n != nil: result = localConvMatch(c, m, f, a, arg) else: r = typeRel(m, base(f), a) if r >= isGeneric: inc(m.convMatches) result = copyTree(arg) if r == isGeneric: result.typ = getInstantiatedType(c, arg, m, base(f)) m.baseTypeMatch = true # bug #4799, varargs accepting subtype relation object elif r == isSubtype: inc(m.subtypeMatches) if f.kind == tyTypeDesc: result = arg else: result = implicitConv(nkHiddenSubConv, f, arg, m, c) m.baseTypeMatch = true else: result = userConvMatch(c, m, base(f), a, arg) if result != nil: m.baseTypeMatch = true proc paramTypesMatch*(m: var TCandidate, f, a: PType, arg, argOrig: PNode): PNode = if arg == nil or arg.kind notin nkSymChoices: result = paramTypesMatchAux(m, f, a, arg, argOrig) else: # CAUTION: The order depends on the used hashing scheme. Thus it is # incorrect to simply use the first fitting match. However, to implement # this correctly is inefficient. We have to copy `m` here to be able to # roll back the side effects of the unification algorithm. let c = m.c var x, y, z: TCandidate initCandidate(c, x, m.callee) initCandidate(c, y, m.callee) initCandidate(c, z, m.callee) x.calleeSym = m.calleeSym y.calleeSym = m.calleeSym z.calleeSym = m.calleeSym var best = -1 for i in 0 ..< arg.len: if arg.sons[i].sym.kind in {skProc, skFunc, skMethod, skConverter, skIterator, skMacro, skTemplate}: copyCandidate(z, m) z.callee = arg.sons[i].typ if tfUnresolved in z.callee.flags: continue z.calleeSym = arg.sons[i].sym #if arg.sons[i].sym.name.s == "cmp": # ggDebug = true # echo "CALLLEEEEEEEE A ", typeToString(z.callee) # XXX this is still all wrong: (T, T) should be 2 generic matches # and (int, int) 2 exact matches, etc. Essentially you cannot call # typeRel here and expect things to work! let r = typeRel(z, f, arg.sons[i].typ) incMatches(z, r, 2) #if arg.sons[i].sym.name.s == "cmp": # and arg.info.line == 606: # echo "M ", r, " ", arg.info, " ", typeToString(arg.sons[i].sym.typ) # writeMatches(z) if r != isNone: z.state = csMatch case x.state of csEmpty, csNoMatch: x = z best = i of csMatch: let cmp = cmpCandidates(x, z) if cmp < 0: best = i x = z elif cmp == 0: y = z # z is as good as x if x.state == csEmpty: result = nil elif y.state == csMatch and cmpCandidates(x, y) == 0: if x.state != csMatch: internalError(m.c.graph.config, arg.info, "x.state is not csMatch") # ambiguous: more than one symbol fits! # See tsymchoice_for_expr as an example. 'f.kind == tyExpr' should match # anyway: if f.kind in {tyExpr, tyStmt}: result = arg else: result = nil else: # only one valid interpretation found: markUsed(m.c.config, arg.info, arg.sons[best].sym, m.c.graph.usageSym) styleCheckUse(arg.info, arg.sons[best].sym) result = paramTypesMatchAux(m, f, arg.sons[best].typ, arg.sons[best], argOrig) when false: if m.calleeSym != nil and m.calleeSym.name.s == "[]": echo m.c.config $ arg.info, " for ", m.calleeSym.name.s, " ", m.c.config $ m.calleeSym.info writeMatches(m) proc setSon(father: PNode, at: int, son: PNode) = let oldLen = father.len if oldLen <= at: setLen(father.sons, at + 1) father.sons[at] = son # insert potential 'void' parameters: #for i in oldLen ..< at: # father.sons[i] = newNodeIT(nkEmpty, son.info, getSysType(tyVoid)) # we are allowed to modify the calling node in the 'prepare*' procs: proc prepareOperand(c: PContext; formal: PType; a: PNode): PNode = if formal.kind == tyExpr and formal.len != 1: # {tyTypeDesc, tyExpr, tyStmt, tyProxy}: # a.typ == nil is valid result = a elif a.typ.isNil: # XXX This is unsound! 'formal' can differ from overloaded routine to # overloaded routine! let flags = {efDetermineType, efAllowStmt} #if formal.kind == tyIter: {efDetermineType, efWantIterator} #else: {efDetermineType, efAllowStmt} #elif formal.kind == tyStmt: {efDetermineType, efWantStmt} #else: {efDetermineType} result = c.semOperand(c, a, flags) else: result = a considerGenSyms(c, result) proc prepareOperand(c: PContext; a: PNode): PNode = if a.typ.isNil: result = c.semOperand(c, a, {efDetermineType}) else: result = a considerGenSyms(c, result) proc prepareNamedParam(a: PNode; c: PContext) = if a.sons[0].kind != nkIdent: var info = a.sons[0].info a.sons[0] = newIdentNode(considerQuotedIdent(c, a.sons[0]), info) proc arrayConstr(c: PContext, n: PNode): PType = result = newTypeS(tyArray, c) rawAddSon(result, makeRangeType(c, 0, 0, n.info)) addSonSkipIntLit(result, skipTypes(n.typ, {tyGenericInst, tyVar, tyLent, tyOrdinal})) proc arrayConstr(c: PContext, info: TLineInfo): PType = result = newTypeS(tyArray, c) rawAddSon(result, makeRangeType(c, 0, -1, info)) rawAddSon(result, newTypeS(tyEmpty, c)) # needs an empty basetype! proc incrIndexType(t: PType) = assert t.kind == tyArray inc t.sons[0].n.sons[1].intVal template isVarargsUntyped(x): untyped = x.kind == tyVarargs and x.sons[0].kind == tyExpr and tfOldSchoolExprStmt notin x.sons[0].flags proc matchesAux(c: PContext, n, nOrig: PNode, m: var TCandidate, marker: var IntSet) = template checkConstraint(n: untyped) {.dirty.} = if not formal.constraint.isNil: if matchNodeKinds(formal.constraint, n): # better match over other routines with no such restriction: inc(m.genericMatches, 100) else: m.state = csNoMatch return if formal.typ.kind == tyVar: if not n.isLValue: m.state = csNoMatch m.mutabilityProblem = uint8(f-1) return var # iterates over formal parameters f = if m.callee.kind != tyGenericBody: 1 else: 0 # iterates over the actual given arguments a = 1 m.state = csMatch # until proven otherwise m.call = newNodeI(n.kind, n.info) m.call.typ = base(m.callee) # may be nil var formalLen = m.callee.n.len addSon(m.call, copyTree(n.sons[0])) var container: PNode = nil # constructed container var formal: PSym = if formalLen > 1: m.callee.n.sons[1].sym else: nil while a < n.len: if a >= formalLen-1 and f < formalLen and m.callee.n[f].typ.isVarargsUntyped: formal = m.callee.n.sons[f].sym incl(marker, formal.position) if n.sons[a].kind == nkHiddenStdConv: doAssert n.sons[a].sons[0].kind == nkEmpty and n.sons[a].sons[1].kind == nkArgList and n.sons[a].sons[1].len == 0 # Steal the container and pass it along setSon(m.call, formal.position + 1, n.sons[a].sons[1]) else: if container.isNil: container = newNodeIT(nkArgList, n.sons[a].info, arrayConstr(c, n.info)) setSon(m.call, formal.position + 1, container) else: incrIndexType(container.typ) addSon(container, n.sons[a]) elif n.sons[a].kind == nkExprEqExpr: # named param # check if m.callee has such a param: prepareNamedParam(n.sons[a], c) if n.sons[a].sons[0].kind != nkIdent: localError(c.config, n.sons[a].info, "named parameter has to be an identifier") m.state = csNoMatch m.firstMismatch = -a return formal = getSymFromList(m.callee.n, n.sons[a].sons[0].ident, 1) if formal == nil: # no error message! m.state = csNoMatch m.firstMismatch = -a return if containsOrIncl(marker, formal.position): # already in namedParams, so no match # we used to produce 'errCannotBindXTwice' here but see # bug #3836 of why that is not sound (other overload with # different parameter names could match later on): when false: localError(n.sons[a].info, errCannotBindXTwice, formal.name.s) m.state = csNoMatch return m.baseTypeMatch = false m.typedescMatched = false n.sons[a].sons[1] = prepareOperand(c, formal.typ, n.sons[a].sons[1]) n.sons[a].typ = n.sons[a].sons[1].typ var arg = paramTypesMatch(m, formal.typ, n.sons[a].typ, n.sons[a].sons[1], n.sons[a].sons[1]) if arg == nil: m.state = csNoMatch m.firstMismatch = a return checkConstraint(n.sons[a].sons[1]) if m.baseTypeMatch: #assert(container == nil) container = newNodeIT(nkBracket, n.sons[a].info, arrayConstr(c, arg)) addSon(container, arg) setSon(m.call, formal.position + 1, container) if f != formalLen - 1: container = nil else: setSon(m.call, formal.position + 1, arg) inc f else: # unnamed param if f >= formalLen: # too many arguments? if tfVarargs in m.callee.flags: # is ok... but don't increment any counters... # we have no formal here to snoop at: n.sons[a] = prepareOperand(c, n.sons[a]) if skipTypes(n.sons[a].typ, abstractVar-{tyTypeDesc}).kind==tyString: addSon(m.call, implicitConv(nkHiddenStdConv, getSysType(c.graph, n.sons[a].info, tyCString), copyTree(n.sons[a]), m, c)) else: addSon(m.call, copyTree(n.sons[a])) elif formal != nil and formal.typ.kind == tyVarargs: # beware of the side-effects in 'prepareOperand'! So only do it for # varargs matching. See tests/metatype/tstatic_overloading. m.baseTypeMatch = false m.typedescMatched = false incl(marker, formal.position) n.sons[a] = prepareOperand(c, formal.typ, n.sons[a]) var arg = paramTypesMatch(m, formal.typ, n.sons[a].typ, n.sons[a], nOrig.sons[a]) if arg != nil and m.baseTypeMatch and container != nil: addSon(container, arg) incrIndexType(container.typ) checkConstraint(n.sons[a]) else: m.state = csNoMatch return else: m.state = csNoMatch return else: if m.callee.n.sons[f].kind != nkSym: internalError(c.config, n.sons[a].info, "matches") return formal = m.callee.n.sons[f].sym if containsOrIncl(marker, formal.position) and container.isNil: # already in namedParams: (see above remark) when false: localError(n.sons[a].info, errCannotBindXTwice, formal.name.s) m.state = csNoMatch return if formal.typ.isVarargsUntyped: if container.isNil: container = newNodeIT(nkArgList, n.sons[a].info, arrayConstr(c, n.info)) setSon(m.call, formal.position + 1, container) else: incrIndexType(container.typ) addSon(container, n.sons[a]) else: m.baseTypeMatch = false m.typedescMatched = false n.sons[a] = prepareOperand(c, formal.typ, n.sons[a]) var arg = paramTypesMatch(m, formal.typ, n.sons[a].typ, n.sons[a], nOrig.sons[a]) if arg == nil: m.state = csNoMatch m.firstMismatch = f return if m.baseTypeMatch: assert formal.typ.kind == tyVarargs #assert(container == nil) if container.isNil: container = newNodeIT(nkBracket, n.sons[a].info, arrayConstr(c, arg)) container.typ.flags.incl tfVarargs else: incrIndexType(container.typ) addSon(container, arg) setSon(m.call, formal.position + 1, implicitConv(nkHiddenStdConv, formal.typ, container, m, c)) #if f != formalLen - 1: container = nil # pick the formal from the end, so that 'x, y, varargs, z' works: f = max(f, formalLen - n.len + a + 1) elif formal.typ.kind != tyVarargs or container == nil: setSon(m.call, formal.position + 1, arg) inc(f) container = nil else: # we end up here if the argument can be converted into the varargs # formal (eg. seq[T] -> varargs[T]) but we have already instantiated # a container assert arg.kind == nkHiddenStdConv localError(c.config, n.sons[a].info, "cannot convert $1 to $2" % [ typeToString(n.sons[a].typ), typeToString(formal.typ) ]) m.state = csNoMatch return checkConstraint(n.sons[a]) inc(a) proc semFinishOperands*(c: PContext, n: PNode) = # this needs to be called to ensure that after overloading resolution every # argument has been sem'checked: for i in 1 ..< n.len: n.sons[i] = prepareOperand(c, n.sons[i]) proc partialMatch*(c: PContext, n, nOrig: PNode, m: var TCandidate) = # for 'suggest' support: var marker = initIntSet() matchesAux(c, n, nOrig, m, marker) proc matches*(c: PContext, n, nOrig: PNode, m: var TCandidate) = if m.magic in {mArrGet, mArrPut}: m.state = csMatch m.call = n # Note the following doesn't work as it would produce ambiguities. # Instead we patch system.nim, see bug #8049. when false: inc m.genericMatches inc m.exactMatches return var marker = initIntSet() matchesAux(c, n, nOrig, m, marker) if m.state == csNoMatch: return # check that every formal parameter got a value: var f = 1 while f < sonsLen(m.callee.n): var formal = m.callee.n.sons[f].sym if not containsOrIncl(marker, formal.position): if formal.ast == nil: if formal.typ.kind == tyVarargs: # For consistency with what happens in `matchesAux` select the # container node kind accordingly let cnKind = if formal.typ.isVarargsUntyped: nkArgList else: nkBracket var container = newNodeIT(cnKind, n.info, arrayConstr(c, n.info)) setSon(m.call, formal.position + 1, implicitConv(nkHiddenStdConv, formal.typ, container, m, c)) else: # no default value m.state = csNoMatch m.firstMismatch = f break else: if formal.ast.kind == nkEmpty: # The default param value is set to empty in `instantiateProcType` # when the type of the default expression doesn't match the type # of the instantiated proc param: localError(c.config, m.call.info, ("The default parameter '$1' has incompatible type " & "with the explicitly requested proc instantiation") % formal.name.s) if nfDefaultRefsParam in formal.ast.flags: m.call.flags.incl nfDefaultRefsParam var def = copyTree(formal.ast) if def.kind == nkNilLit: def = implicitConv(nkHiddenStdConv, formal.typ, def, m, c) if {tfImplicitTypeParam, tfGenericTypeParam} * formal.typ.flags != {}: put(m, formal.typ, def.typ) def.flags.incl nfDefaultParam setSon(m.call, formal.position + 1, def) inc(f) # forget all inferred types if the overload matching failed if m.state == csNoMatch: for t in m.inferredTypes: if t.sonsLen > 1: t.sons.setLen 1 proc argtypeMatches*(c: PContext, f, a: PType, fromHlo = false): bool = var m: TCandidate initCandidate(c, m, f) let res = paramTypesMatch(m, f, a, c.graph.emptyNode, nil) #instantiateGenericConverters(c, res, m) # XXX this is used by patterns.nim too; I think it's better to not # instantiate generic converters for that if not fromHlo: res != nil else: # pattern templates do not allow for conversions except from int literal res != nil and m.convMatches == 0 and m.intConvMatches in [0, 256] proc instTypeBoundOp*(c: PContext; dc: PSym; t: PType; info: TLineInfo; op: TTypeAttachedOp; col: int): PSym {.procvar.} = var m: TCandidate initCandidate(c, m, dc.typ) if col >= dc.typ.len: localError(c.config, info, "cannot instantiate: '" & dc.name.s & "'") return nil var f = dc.typ.sons[col] if op == attachedDeepCopy: if f.kind in {tyRef, tyPtr}: f = f.lastSon else: if f.kind == tyVar: f = f.lastSon if typeRel(m, f, t) == isNone: localError(c.config, info, "cannot instantiate: '" & dc.name.s & "'") else: result = c.semGenerateInstance(c, dc, m.bindings, info) if op == attachedDeepCopy: assert sfFromGeneric in result.flags include suggest when not declared(tests): template tests(s: untyped) = discard tests: var dummyOwner = newSym(skModule, getIdent("test_module"), nil, UnknownLineInfo()) proc `|` (t1, t2: PType): PType = result = newType(tyOr, dummyOwner) result.rawAddSon(t1) result.rawAddSon(t2) proc `&` (t1, t2: PType): PType = result = newType(tyAnd, dummyOwner) result.rawAddSon(t1) result.rawAddSon(t2) proc `!` (t: PType): PType = result = newType(tyNot, dummyOwner) result.rawAddSon(t) proc seq(t: PType): PType = result = newType(tySequence, dummyOwner) result.rawAddSon(t) proc array(x: int, t: PType): PType = result = newType(tyArray, dummyOwner) var n = newNodeI(nkRange, UnknownLineInfo()) addSon(n, newIntNode(nkIntLit, 0)) addSon(n, newIntNode(nkIntLit, x)) let range = newType(tyRange, dummyOwner) result.rawAddSon(range) result.rawAddSon(t) suite "type classes": let int = newType(tyInt, dummyOwner) float = newType(tyFloat, dummyOwner) string = newType(tyString, dummyOwner) ordinal = newType(tyOrdinal, dummyOwner) any = newType(tyAnything, dummyOwner) number = int | float var TFoo = newType(tyObject, dummyOwner) TFoo.sym = newSym(skType, getIdent"TFoo", dummyOwner, UnknownLineInfo()) var T1 = newType(tyGenericParam, dummyOwner) T1.sym = newSym(skType, getIdent"T1", dummyOwner, UnknownLineInfo()) T1.sym.position = 0 var T2 = newType(tyGenericParam, dummyOwner) T2.sym = newSym(skType, getIdent"T2", dummyOwner, UnknownLineInfo()) T2.sym.position = 1 setup: var c: TCandidate initCandidate(nil, c, nil) template yes(x, y) = test astToStr(x) & " is " & astToStr(y): check typeRel(c, y, x) == isGeneric template no(x, y) = test astToStr(x) & " is not " & astToStr(y): check typeRel(c, y, x) == isNone yes seq(any), array(10, int) | seq(any) # Sure, seq[any] is directly included yes seq(int), seq(any) yes seq(int), seq(number) # Sure, the int sequence is certainly # part of the number sequences (and all sequences) no seq(any), seq(float) # Nope, seq[any] includes types that are not seq[float] (e.g. seq[int]) yes seq(int|string), seq(any) # Sure yes seq(int&string), seq(any) # Again yes seq(int&string), seq(int) # A bit more complicated # seq[int&string] is not a real type, but it's analogous to # seq[Sortable and Iterable], which is certainly a subset of seq[Sortable] no seq(int|string), seq(int|float) # Nope, seq[string] is not included in not included in # the seq[int|float] set no seq(!(int|string)), seq(string) # A sequence that is neither seq[int] or seq[string] # is obviously not seq[string] no seq(!int), seq(number) # Now your head should start to hurt a bit # A sequence that is not seq[int] is not necessarily a number sequence # it could well be seq[string] for example yes seq(!(int|string)), seq(!string) # all sequnece types besides seq[int] and seq[string] # are subset of all sequence types that are not seq[string] no seq(!(int|string)), seq(!(string|TFoo)) # Nope, seq[TFoo] is included in the first set, but not in the second no seq(!string), seq(!number) # Nope, seq[int] in included in the first set, but not in the second yes seq(!number), seq(any) yes seq(!int), seq(any) no seq(any), seq(!any) no seq(!int), seq(!any) yes int, ordinal no string, ordinal