# # # The Nimrod Compiler # (c) Copyright 2012 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # # This module implements the transformator. It transforms the syntax tree # to ease the work of the code generators. Does some transformations: # # * inlines iterators # * inlines constants # * performes contant folding # * converts "continue" to "break" # * introduces method dispatchers # * performs lambda lifting for closure support import intsets, strutils, lists, options, ast, astalgo, trees, treetab, msgs, os, idents, renderer, types, passes, semfold, magicsys, cgmeth, rodread const genPrefix* = ":tmp" # prefix for generated names proc transfPass*(): TPass # implementation type PTransNode* = distinct PNode PTransCon = ref TTransCon TTransCon{.final.} = object # part of TContext; stackable mapping: TIdNodeTable # mapping from symbols to nodes owner: PSym # current owner forStmt: PNode # current for stmt forLoopBody: PTransNode # transformed for loop body yieldStmts: int # we count the number of yield statements, # because we need to introduce new variables # if we encounter the 2nd yield statement next: PTransCon # for stacking TTransfContext = object of passes.TPassContext module: PSym transCon: PTransCon # top of a TransCon stack inlining: int # > 0 if we are in inlining context (copy vars) nestedProcs: int # > 0 if we are in a nested proc blocksyms: seq[PSym] transformedInnerProcs: TIntSet PTransf = ref TTransfContext proc newTransNode(a: PNode): PTransNode {.inline.} = result = PTransNode(shallowCopy(a)) proc newTransNode(kind: TNodeKind, info: TLineInfo, sons: int): PTransNode {.inline.} = var x = newNodeI(kind, info) newSeq(x.sons, sons) result = x.PTransNode proc newTransNode(kind: TNodeKind, n: PNode, sons: int): PTransNode {.inline.} = var x = newNodeIT(kind, n.info, n.typ) newSeq(x.sons, sons) x.typ = n.typ result = x.PTransNode proc `[]=`(a: PTransNode, i: int, x: PTransNode) {.inline.} = var n = PNode(a) n.sons[i] = PNode(x) proc `[]`(a: PTransNode, i: int): PTransNode {.inline.} = var n = PNode(a) result = n.sons[i].PTransNode proc add(a, b: PTransNode) {.inline.} = addSon(PNode(a), PNode(b)) proc len(a: PTransNode): int {.inline.} = result = sonsLen(a.PNode) proc newTransCon(owner: PSym): PTransCon = assert owner != nil new(result) initIdNodeTable(result.mapping) result.owner = owner proc pushTransCon(c: PTransf, t: PTransCon) = t.next = c.transCon c.transCon = t proc popTransCon(c: PTransf) = if (c.transCon == nil): InternalError("popTransCon") c.transCon = c.transCon.next proc getCurrOwner(c: PTransf): PSym = if c.transCon != nil: result = c.transCon.owner else: result = c.module proc newTemp(c: PTransf, typ: PType, info: TLineInfo): PSym = result = newSym(skTemp, getIdent(genPrefix), getCurrOwner(c)) result.info = info result.typ = skipTypes(typ, {tyGenericInst}) incl(result.flags, sfFromGeneric) proc transform(c: PTransf, n: PNode): PTransNode proc transformSons(c: PTransf, n: PNode): PTransNode = result = newTransNode(n) for i in countup(0, sonsLen(n)-1): result[i] = transform(c, n.sons[i]) # Transforming iterators into non-inlined versions is pretty hard, but # unavoidable for not bloating the code too much. If we had direct access to # the program counter, things'd be much easier. # :: # # iterator items(a: string): char = # var i = 0 # while i < length(a): # yield a[i] # inc(i) # # for ch in items("hello world"): # `ch` is an iteration variable # echo(ch) # # Should be transformed into:: # # type # TItemsClosure = record # i: int # state: int # proc items(a: string, c: var TItemsClosure): char = # case c.state # of 0: goto L0 # very difficult without goto! # of 1: goto L1 # can be implemented by GCC's computed gotos # # block L0: # c.i = 0 # while c.i < length(a): # c.state = 1 # return a[i] # block L1: inc(c.i) # # More efficient, but not implementable:: # # type # TItemsClosure = record # i: int # pc: pointer # # proc items(a: string, c: var TItemsClosure): char = # goto c.pc # c.i = 0 # while c.i < length(a): # c.pc = label1 # return a[i] # label1: inc(c.i) # proc newAsgnStmt(c: PTransf, le: PNode, ri: PTransNode): PTransNode = result = newTransNode(nkFastAsgn, PNode(ri).info, 2) result[0] = PTransNode(le) result[1] = ri proc transformSymAux(c: PTransf, n: PNode): PNode = var b: PNode var tc = c.transCon if sfBorrow in n.sym.flags: # simply exchange the symbol: b = n.sym.getBody if b.kind != nkSym: internalError(n.info, "wrong AST for borrowed symbol") b = newSymNode(b.sym) b.info = n.info else: b = n while tc != nil: result = IdNodeTableGet(tc.mapping, b.sym) if result != nil: return tc = tc.next result = b when false: case b.sym.kind of skConst, skEnumField: if sfFakeConst notin b.sym.flags: if skipTypes(b.sym.typ, abstractInst).kind notin ConstantDataTypes: result = getConstExpr(c.module, b) if result == nil: InternalError(b.info, "transformSym: const") else: nil proc transformSym(c: PTransf, n: PNode): PTransNode = result = PTransNode(transformSymAux(c, n)) proc transformVarSection(c: PTransf, v: PNode): PTransNode = result = newTransNode(v) for i in countup(0, sonsLen(v)-1): var it = v.sons[i] if it.kind == nkCommentStmt: result[i] = PTransNode(it) elif it.kind == nkIdentDefs: if it.sons[0].kind != nkSym: InternalError(it.info, "transformVarSection") var newVar = copySym(it.sons[0].sym) incl(newVar.flags, sfFromGeneric) # fixes a strange bug for rodgen: #include(it.sons[0].sym.flags, sfFromGeneric); newVar.owner = getCurrOwner(c) IdNodeTablePut(c.transCon.mapping, it.sons[0].sym, newSymNode(newVar)) var defs = newTransNode(nkIdentDefs, it.info, 3) defs[0] = newSymNode(newVar).PTransNode defs[1] = it.sons[1].PTransNode defs[2] = transform(c, it.sons[2]) result[i] = defs else: if it.kind != nkVarTuple: InternalError(it.info, "transformVarSection: not nkVarTuple") var L = sonsLen(it) var defs = newTransNode(it.kind, it.info, L) for j in countup(0, L-3): var newVar = copySym(it.sons[j].sym) incl(newVar.flags, sfFromGeneric) newVar.owner = getCurrOwner(c) IdNodeTablePut(c.transCon.mapping, it.sons[j].sym, newSymNode(newVar)) defs[j] = newSymNode(newVar).PTransNode assert(it.sons[L-2].kind == nkEmpty) defs[L-1] = transform(c, it.sons[L-1]) result[i] = defs proc transformConstSection(c: PTransf, v: PNode): PTransNode = result = newTransNode(v) for i in countup(0, sonsLen(v)-1): var it = v.sons[i] if it.kind == nkCommentStmt: result[i] = PTransNode(it) else: if it.kind != nkConstDef: InternalError(it.info, "transformConstSection") if it.sons[0].kind != nkSym: InternalError(it.info, "transformConstSection") if sfFakeConst in it[0].sym.flags: var b = newNodeI(nkConstDef, it.info) addSon(b, it[0]) addSon(b, ast.emptyNode) # no type description addSon(b, transform(c, it[2]).pnode) result[i] = PTransNode(b) else: result[i] = PTransNode(it) proc hasContinue(n: PNode): bool = case n.kind of nkEmpty..nkNilLit, nkForStmt, nkWhileStmt: nil of nkContinueStmt: result = true else: for i in countup(0, sonsLen(n) - 1): if hasContinue(n.sons[i]): return true proc transformLoopBody(c: PTransf, n: PNode): PTransNode = # XXX BUG: What if it contains "continue" and "break"? "break" needs # an explicit label too, but not the same! if hasContinue(n): var labl = newSym(skLabel, nil, getCurrOwner(c)) labl.name = getIdent(genPrefix & $labl.id) labl.info = n.info c.blockSyms.add(labl) result = newTransNode(nkBlockStmt, n.info, 2) result[0] = newSymNode(labl).PTransNode result[1] = transform(c, n) discard c.blockSyms.pop() else: result = transform(c, n) proc skipConv(n: PNode): PNode = case n.kind of nkObjUpConv, nkObjDownConv, nkChckRange, nkChckRangeF, nkChckRange64: result = n.sons[0] of nkHiddenStdConv, nkHiddenSubConv, nkConv: result = n.sons[1] else: result = n proc newTupleAccess(tup: PNode, i: int): PNode = result = newNodeIT(nkBracketExpr, tup.info, tup.typ.sons[i]) addSon(result, copyTree(tup)) var lit = newNodeIT(nkIntLit, tup.info, getSysType(tyInt)) lit.intVal = i addSon(result, lit) proc unpackTuple(c: PTransf, n: PNode, father: PTransNode) = # XXX: BUG: what if `n` is an expression with side-effects? for i in countup(0, sonsLen(c.transCon.forStmt) - 3): add(father, newAsgnStmt(c, c.transCon.forStmt.sons[i], transform(c, newTupleAccess(n, i)))) proc introduceNewLocalVars(c: PTransf, n: PNode): PTransNode = case n.kind of nkSym: result = transformSym(c, n) of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit: # nothing to be done for leaves: result = PTransNode(n) of nkVarSection, nkLetSection: result = transformVarSection(c, n) else: result = newTransNode(n) for i in countup(0, sonsLen(n)-1): result[i] = introduceNewLocalVars(c, n.sons[i]) proc transformYield(c: PTransf, n: PNode): PTransNode = result = newTransNode(nkStmtList, n.info, 0) var e = n.sons[0] # c.transCon.forStmt.len == 3 means that there is one for loop variable # and thus no tuple unpacking: if skipTypes(e.typ, {tyGenericInst}).kind == tyTuple and c.transCon.forStmt.len != 3: e = skipConv(e) if e.kind == nkPar: for i in countup(0, sonsLen(e) - 1): add(result, newAsgnStmt(c, c.transCon.forStmt.sons[i], transform(c, e.sons[i]))) else: unpackTuple(c, e, result) else: var x = transform(c, e) add(result, newAsgnStmt(c, c.transCon.forStmt.sons[0], x)) inc(c.transCon.yieldStmts) if c.transCon.yieldStmts <= 1: # common case add(result, c.transCon.forLoopBody) else: # we need to introduce new local variables: add(result, introduceNewLocalVars(c, c.transCon.forLoopBody.pnode)) proc addVar(father, v: PNode) = var vpart = newNodeI(nkIdentDefs, v.info) addSon(vpart, v) addSon(vpart, ast.emptyNode) addSon(vpart, ast.emptyNode) addSon(father, vpart) proc transformAddrDeref(c: PTransf, n: PNode, a, b: TNodeKind): PTransNode = result = transformSons(c, n) var n = result.pnode case n.sons[0].kind of nkObjUpConv, nkObjDownConv, nkChckRange, nkChckRangeF, nkChckRange64: var m = n.sons[0].sons[0] if m.kind == a or m.kind == b: # addr ( nkConv ( deref ( x ) ) ) --> nkConv(x) n.sons[0].sons[0] = m.sons[0] result = PTransNode(n.sons[0]) of nkHiddenStdConv, nkHiddenSubConv, nkConv: var m = n.sons[0].sons[1] if m.kind == a or m.kind == b: # addr ( nkConv ( deref ( x ) ) ) --> nkConv(x) n.sons[0].sons[1] = m.sons[0] result = PTransNode(n.sons[0]) else: if n.sons[0].kind == a or n.sons[0].kind == b: # addr ( deref ( x )) --> x result = PTransNode(n.sons[0].sons[0]) include lambdalifting proc transformConv(c: PTransf, n: PNode): PTransNode = # numeric types need range checks: var dest = skipTypes(n.typ, abstractVarRange) var source = skipTypes(n.sons[1].typ, abstractVarRange) case dest.kind of tyInt..tyInt64, tyEnum, tyChar, tyBool, tyUInt..tyUInt64: if not isOrdinalType(source): # XXX int64 -> float conversion? result = transformSons(c, n) elif firstOrd(dest) <= firstOrd(source) and lastOrd(source) <= lastOrd(dest): # BUGFIX: simply leave n as it is; we need a nkConv node, # but no range check: result = transformSons(c, n) else: # generate a range check: if (dest.kind == tyInt64) or (source.kind == tyInt64): result = newTransNode(nkChckRange64, n, 3) else: result = newTransNode(nkChckRange, n, 3) dest = skipTypes(n.typ, abstractVar) result[0] = transform(c, n.sons[1]) result[1] = newIntTypeNode(nkIntLit, firstOrd(dest), source).PTransNode result[2] = newIntTypeNode(nkIntLit, lastOrd(dest), source).PTransNode of tyFloat..tyFloat128: if skipTypes(n.typ, abstractVar).kind == tyRange: result = newTransNode(nkChckRangeF, n, 3) dest = skipTypes(n.typ, abstractVar) result[0] = transform(c, n.sons[1]) result[1] = copyTree(dest.n.sons[0]).PTransNode result[2] = copyTree(dest.n.sons[1]).PTransNode else: result = transformSons(c, n) of tyOpenArray: result = transform(c, n.sons[1]) of tyCString: if source.kind == tyString: result = newTransNode(nkStringToCString, n, 1) result[0] = transform(c, n.sons[1]) else: result = transformSons(c, n) of tyString: if source.kind == tyCString: result = newTransNode(nkCStringToString, n, 1) result[0] = transform(c, n.sons[1]) else: result = transformSons(c, n) of tyRef, tyPtr: dest = skipTypes(dest, abstractPtrs) source = skipTypes(source, abstractPtrs) if source.kind == tyObject: var diff = inheritanceDiff(dest, source) if diff < 0: result = newTransNode(nkObjUpConv, n, 1) result[0] = transform(c, n.sons[1]) elif diff > 0: result = newTransNode(nkObjDownConv, n, 1) result[0] = transform(c, n.sons[1]) else: result = transform(c, n.sons[1]) else: result = transformSons(c, n) of tyObject: var diff = inheritanceDiff(dest, source) if diff < 0: result = newTransNode(nkObjUpConv, n, 1) result[0] = transform(c, n.sons[1]) elif diff > 0: result = newTransNode(nkObjDownConv, n, 1) result[0] = transform(c, n.sons[1]) else: result = transform(c, n.sons[1]) of tyProc: if dest.callConv == ccClosure and source.callConv == ccDefault: let x = transform(c, n.sons[1]).pnode result = generateThunk(c, x, dest).ptransnode else: result = transformSons(c, n) of tyGenericParam, tyOrdinal: result = transform(c, n.sons[1]) # happens sometimes for generated assignments, etc. else: result = transformSons(c, n) type TPutArgInto = enum paDirectMapping, paFastAsgn, paVarAsgn proc putArgInto(arg: PNode, formal: PType): TPutArgInto = # This analyses how to treat the mapping "formal <-> arg" in an # inline context. if skipTypes(formal, abstractInst).kind == tyOpenArray: return paDirectMapping # XXX really correct? # what if ``arg`` has side-effects? case arg.kind of nkEmpty..nkNilLit: result = paDirectMapping of nkPar, nkCurly, nkBracket: result = paFastAsgn for i in countup(0, sonsLen(arg) - 1): if putArgInto(arg.sons[i], formal) != paDirectMapping: return result = paDirectMapping else: if skipTypes(formal, abstractInst).kind == tyVar: result = paVarAsgn else: result = paFastAsgn proc transformFor(c: PTransf, n: PNode): PTransNode = # generate access statements for the parameters (unless they are constant) # put mapping from formal parameters to actual parameters if n.kind != nkForStmt: InternalError(n.info, "transformFor") #echo "transforming: ", renderTree(n) result = newTransNode(nkStmtList, n.info, 0) var length = sonsLen(n) var loopBody = transformLoopBody(c, n.sons[length-1]) var v = newNodeI(nkVarSection, n.info) for i in countup(0, length - 3): addVar(v, copyTree(n.sons[i])) # declare new vars add(result, v.ptransNode) var call = n.sons[length - 2] if call.kind notin nkCallKinds or call.sons[0].kind != nkSym: InternalError(call.info, "transformFor") var newC = newTransCon(call.sons[0].sym) newC.forStmt = n newC.forLoopBody = loopBody if newC.owner.kind != skIterator: InternalError(call.info, "transformFor") # generate access statements for the parameters (unless they are constant) pushTransCon(c, newC) for i in countup(1, sonsLen(call) - 1): var arg = transform(c, call.sons[i]).pnode var formal = skipTypes(newC.owner.typ, abstractInst).n.sons[i].sym case putArgInto(arg, formal.typ) of paDirectMapping: IdNodeTablePut(newC.mapping, formal, arg) of paFastAsgn: # generate a temporary and produce an assignment statement: var temp = newTemp(c, formal.typ, formal.info) addVar(v, newSymNode(temp)) add(result, newAsgnStmt(c, newSymNode(temp), arg.ptransNode)) IdNodeTablePut(newC.mapping, formal, newSymNode(temp)) of paVarAsgn: assert(skipTypes(formal.typ, abstractInst).kind == tyVar) IdNodeTablePut(newC.mapping, formal, arg) # XXX BUG still not correct if the arg has a side effect! var body = newC.owner.getBody pushInfoContext(n.info) inc(c.inlining) add(result, transform(c, body)) dec(c.inlining) popInfoContext() popTransCon(c) #echo "transformed: ", renderTree(n) proc getMagicOp(call: PNode): TMagic = if call.sons[0].kind == nkSym and call.sons[0].sym.kind in {skProc, skMethod, skConverter}: result = call.sons[0].sym.magic else: result = mNone proc transformCase(c: PTransf, n: PNode): PTransNode = # removes `elif` branches of a case stmt # adds ``else: nil`` if needed for the code generator result = newTransNode(nkCaseStmt, n, 0) var ifs = PTransNode(nil) for i in 0 .. sonsLen(n)-1: var it = n.sons[i] var e = transform(c, it) case it.kind of nkElifBranch: if ifs.pnode == nil: ifs = newTransNode(nkIfStmt, it.info, 0) ifs.add(e) of nkElse: if ifs.pnode == nil: result.add(e) else: ifs.add(e) else: result.add(e) if ifs.pnode != nil: var elseBranch = newTransNode(nkElse, n.info, 1) elseBranch[0] = ifs result.add(elseBranch) elif result.Pnode.lastSon.kind != nkElse and not ( skipTypes(n.sons[0].Typ, abstractVarRange).Kind in {tyInt..tyInt64, tyChar, tyEnum}): # fix a stupid code gen bug by normalizing: var elseBranch = newTransNode(nkElse, n.info, 1) elseBranch[0] = newTransNode(nkNilLit, n.info, 0) add(result, elseBranch) proc transformArrayAccess(c: PTransf, n: PNode): PTransNode = result = newTransNode(n) result[0] = transform(c, skipConv(n.sons[0])) result[1] = transform(c, skipConv(n.sons[1])) proc getMergeOp(n: PNode): PSym = case n.kind of nkCall, nkHiddenCallConv, nkCommand, nkInfix, nkPrefix, nkPostfix, nkCallStrLit: if (n.sons[0].Kind == nkSym) and (n.sons[0].sym.kind == skProc) and (sfMerge in n.sons[0].sym.flags): result = n.sons[0].sym else: nil proc flattenTreeAux(d, a: PNode, op: PSym) = var op2 = getMergeOp(a) if op2 != nil and (op2.id == op.id or op.magic != mNone and op2.magic == op.magic): for i in countup(1, sonsLen(a)-1): flattenTreeAux(d, a.sons[i], op) else: addSon(d, copyTree(a)) proc flattenTree(root: PNode): PNode = var op = getMergeOp(root) if op != nil: result = copyNode(root) addSon(result, copyTree(root.sons[0])) flattenTreeAux(result, root, op) else: result = root proc transformCall(c: PTransf, n: PNode): PTransNode = var n = flattenTree(n) var op = getMergeOp(n) if (op != nil) and (op.magic != mNone) and (sonsLen(n) >= 3): result = newTransNode(nkCall, n, 0) add(result, transform(c, n.sons[0])) var j = 1 while j < sonsLen(n): var a = transform(c, n.sons[j]).pnode inc(j) if isConstExpr(a): while (j < sonsLen(n)): let b = transform(c, n.sons[j]).pnode if not isConstExpr(b): break a = evalOp(op.magic, n, a, b, nil) inc(j) add(result, a.ptransnode) if len(result) == 2: result = result[1] elif n.sons[0].kind == nkSym and n.sons[0].sym.kind == skMethod: # use the dispatcher for the call: result = methodCall(transformSons(c, n).pnode).ptransNode else: result = transformSons(c, n) proc dontInlineConstant(orig, cnst: PNode): bool {.inline.} = # symbols that expand to a complex constant (array, etc.) should not be # inlined, unless it's the empty array: result = orig.kind == nkSym and cnst.kind in {nkCurly, nkPar, nkBracket} and cnst.len != 0 proc transform(c: PTransf, n: PNode): PTransNode = case n.kind of nkSym: result = transformSym(c, n) of nkEmpty..pred(nkSym), succ(nkSym)..nkNilLit: # nothing to be done for leaves: result = PTransNode(n) of nkBracketExpr: result = transformArrayAccess(c, n) of procDefs: if c.nestedProcs == 0: inc c.nestedProcs result = transformProc(c, n) dec c.nestedProcs else: result = PTransNode(n) if n.sons[namePos].kind == nkSym: let x = transformSym(c, n.sons[namePos]) if x.pnode.kind == nkClosure: result = x of nkMacroDef: # XXX no proper closure support yet: if n.sons[genericParamsPos].kind == nkEmpty: var s = n.sons[namePos].sym n.sons[bodyPos] = PNode(transform(c, s.getBody)) if n.kind == nkMethodDef: methodDef(s, false) result = PTransNode(n) of nkForStmt: result = transformFor(c, n) of nkCaseStmt: result = transformCase(c, n) of nkContinueStmt: result = PTransNode(newNode(nkBreakStmt)) var labl = c.blockSyms[c.blockSyms.high] add(result, PTransNode(newSymNode(labl))) of nkWhileStmt: result = newTransNode(n) result[0] = transform(c, n.sons[0]) result[1] = transformLoopBody(c, n.sons[1]) of nkCall, nkHiddenCallConv, nkCommand, nkInfix, nkPrefix, nkPostfix, nkCallStrLit: result = transformCall(c, n) of nkAddr, nkHiddenAddr: result = transformAddrDeref(c, n, nkDerefExpr, nkHiddenDeref) of nkDerefExpr, nkHiddenDeref: result = transformAddrDeref(c, n, nkAddr, nkHiddenAddr) of nkHiddenStdConv, nkHiddenSubConv, nkConv: result = transformConv(c, n) of nkDiscardStmt: result = transformSons(c, n) if isConstExpr(PNode(result).sons[0]): # ensure that e.g. discard "some comment" gets optimized away completely: result = PTransNode(newNode(nkCommentStmt)) of nkCommentStmt, nkTemplateDef: return n.ptransNode of nkConstSection: # do not replace ``const c = 3`` with ``const 3 = 3`` return transformConstSection(c, n) of nkVarSection, nkLetSection: if c.inlining > 0: # we need to copy the variables for multiple yield statements: result = transformVarSection(c, n) else: result = transformSons(c, n) of nkYieldStmt: if c.inlining > 0: result = transformYield(c, n) else: result = transformSons(c, n) else: result = transformSons(c, n) var cnst = getConstExpr(c.module, PNode(result)) # we inline constants if they are not complex constants: if cnst != nil and not dontInlineConstant(n, cnst): result = PTransNode(cnst) # do not miss an optimization proc processTransf(context: PPassContext, n: PNode): PNode = # Note: For interactive mode we cannot call 'passes.skipCodegen' and skip # this step! We have to rely that the semantic pass transforms too errornous # nodes into an empty node. if passes.skipCodegen(n) or context.fromCache or nfTransf in n.flags: return n var c = PTransf(context) pushTransCon(c, newTransCon(getCurrOwner(c))) result = PNode(transform(c, n)) popTransCon(c) incl(result.flags, nfTransf) proc openTransf(module: PSym, filename: string): PPassContext = var n: PTransf new(n) n.blocksyms = @[] n.module = module n.transformedInnerProcs = initIntSet() result = n proc openTransfCached(module: PSym, filename: string, rd: PRodReader): PPassContext = result = openTransf(module, filename) for m in items(rd.methods): methodDef(m, true) proc transfPass(): TPass = initPass(result) result.open = openTransf result.openCached = openTransfCached result.process = processTransf result.close = processTransf # we need to process generics too! proc transform*(module: PSym, n: PNode): PNode = if nfTransf in n.flags: result = n else: var c = openTransf(module, "") result = processTransf(c, n) incl(result.flags, nfTransf)