# # # The Nim Compiler # (c) Copyright 2015 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This file implements the new evaluation engine for Nim code. ## An instruction is 1-3 int32s in memory, it is a register based VM. import ast except getstr import strutils, astalgo, msgs, vmdef, vmgen, nimsets, types, passes, parser, vmdeps, idents, trees, renderer, options, transf, parseutils, vmmarshal, gorgeimpl, lineinfos, tables, btrees, macrocacheimpl, sighashes from semfold import leValueConv, ordinalValToString from evaltempl import evalTemplate from modulegraphs import ModuleGraph, PPassContext const traceCode = defined(nimVMDebug) when hasFFI: import evalffi type TRegisterKind = enum rkNone, rkNode, rkInt, rkFloat, rkRegisterAddr, rkNodeAddr TFullReg = object # with a custom mark proc, we could use the same # data representation as LuaJit (tagged NaNs). case kind: TRegisterKind of rkNone: nil of rkInt: intVal: BiggestInt of rkFloat: floatVal: BiggestFloat of rkNode: node: PNode of rkRegisterAddr: regAddr: ptr TFullReg of rkNodeAddr: nodeAddr: ptr PNode PStackFrame* = ref TStackFrame TStackFrame* = object prc: PSym # current prc; proc that is evaluated slots: seq[TFullReg] # parameters passed to the proc + locals; # parameters come first next: PStackFrame # for stacking comesFrom: int safePoints: seq[int] # used for exception handling # XXX 'break' should perform cleanup actions # What does the C backend do for it? proc stackTraceAux(c: PCtx; x: PStackFrame; pc: int; recursionLimit=100) = if x != nil: if recursionLimit == 0: var calls = 0 var x = x while x != nil: inc calls x = x.next msgWriteln(c.config, $calls & " calls omitted\n") return stackTraceAux(c, x.next, x.comesFrom, recursionLimit-1) var info = c.debug[pc] # we now use a format similar to the one in lib/system/excpt.nim var s = "" # todo: factor with quotedFilename if optExcessiveStackTrace in c.config.globalOptions: s = toFullPath(c.config, info) else: s = toFilename(c.config, info) var line = toLinenumber(info) var col = toColumn(info) if line > 0: add(s, '(') add(s, $line) add(s, ", ") add(s, $(col + ColOffset)) add(s, ')') if x.prc != nil: for k in 1..max(1, 25-s.len): add(s, ' ') add(s, x.prc.name.s) msgWriteln(c.config, s) proc stackTraceImpl(c: PCtx, tos: PStackFrame, pc: int, msg: string, lineInfo: TLineInfo) = msgWriteln(c.config, "stack trace: (most recent call last)") stackTraceAux(c, tos, pc) # XXX test if we want 'globalError' for every mode if c.mode == emRepl: globalError(c.config, lineInfo, msg) else: localError(c.config, lineInfo, msg) template stackTrace(c: PCtx, tos: PStackFrame, pc: int, msg: string, lineInfo: TLineInfo) = stackTraceImpl(c, tos, pc, msg, lineInfo) return template stackTrace(c: PCtx, tos: PStackFrame, pc: int, msg: string) = stackTraceImpl(c, tos, pc, msg, c.debug[pc]) return proc bailOut(c: PCtx; tos: PStackFrame) = stackTrace(c, tos, c.exceptionInstr, "unhandled exception: " & c.currentExceptionA.sons[3].skipColon.strVal) when not defined(nimComputedGoto): {.pragma: computedGoto.} proc myreset(n: var TFullReg) = reset(n) template ensureKind(k: untyped) {.dirty.} = if regs[ra].kind != k: myreset(regs[ra]) regs[ra].kind = k template decodeB(k: untyped) {.dirty.} = let rb = instr.regB ensureKind(k) template decodeBC(k: untyped) {.dirty.} = let rb = instr.regB let rc = instr.regC ensureKind(k) template declBC() {.dirty.} = let rb = instr.regB let rc = instr.regC template decodeBImm(k: untyped) {.dirty.} = let rb = instr.regB let imm = instr.regC - byteExcess ensureKind(k) template decodeBx(k: untyped) {.dirty.} = let rbx = instr.regBx - wordExcess ensureKind(k) template move(a, b: untyped) {.dirty.} = system.shallowCopy(a, b) # XXX fix minor 'shallowCopy' overloading bug in compiler proc createStrKeepNode(x: var TFullReg; keepNode=true) = if x.node.isNil or not keepNode: x.node = newNode(nkStrLit) elif x.node.kind == nkNilLit and keepNode: when defined(useNodeIds): let id = x.node.id system.reset(x.node[]) x.node.kind = nkStrLit when defined(useNodeIds): x.node.id = id elif x.node.kind notin {nkStrLit..nkTripleStrLit} or nfAllConst in x.node.flags: # XXX this is hacky; tests/txmlgen triggers it: x.node = newNode(nkStrLit) # It not only hackey, it is also wrong for tgentemplate. The primary # cause of bugs like these is that the VM does not properly distinguish # between variable defintions (var foo = e) and variable updates (foo = e). include vmhooks template createStr(x) = x.node = newNode(nkStrLit) template createSet(x) = x.node = newNode(nkCurly) proc moveConst(x: var TFullReg, y: TFullReg) = if x.kind != y.kind: myreset(x) x.kind = y.kind case x.kind of rkNone: discard of rkInt: x.intVal = y.intVal of rkFloat: x.floatVal = y.floatVal of rkNode: x.node = y.node of rkRegisterAddr: x.regAddr = y.regAddr of rkNodeAddr: x.nodeAddr = y.nodeAddr # this seems to be the best way to model the reference semantics # of system.NimNode: template asgnRef(x, y: untyped) = moveConst(x, y) proc copyValue(src: PNode): PNode = if src == nil or nfIsRef in src.flags: return src result = newNode(src.kind) result.info = src.info result.typ = src.typ result.flags = src.flags * PersistentNodeFlags result.comment = src.comment when defined(useNodeIds): if result.id == nodeIdToDebug: echo "COMES FROM ", src.id case src.kind of nkCharLit..nkUInt64Lit: result.intVal = src.intVal of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal of nkSym: result.sym = src.sym of nkIdent: result.ident = src.ident of nkStrLit..nkTripleStrLit: result.strVal = src.strVal else: newSeq(result.sons, sonsLen(src)) for i in countup(0, sonsLen(src) - 1): result.sons[i] = copyValue(src.sons[i]) proc asgnComplex(x: var TFullReg, y: TFullReg) = if x.kind != y.kind: myreset(x) x.kind = y.kind case x.kind of rkNone: discard of rkInt: x.intVal = y.intVal of rkFloat: x.floatVal = y.floatVal of rkNode: x.node = copyValue(y.node) of rkRegisterAddr: x.regAddr = y.regAddr of rkNodeAddr: x.nodeAddr = y.nodeAddr proc writeField(n: var PNode, x: TFullReg) = case x.kind of rkNone: discard of rkInt: n.intVal = x.intVal of rkFloat: n.floatVal = x.floatVal of rkNode: n = copyValue(x.node) of rkRegisterAddr: writeField(n, x.regAddr[]) of rkNodeAddr: n = x.nodeAddr[] proc putIntoReg(dest: var TFullReg; n: PNode) = case n.kind of nkStrLit..nkTripleStrLit: dest.kind = rkNode createStr(dest) dest.node.strVal = n.strVal of nkCharLit..nkUInt64Lit: dest.kind = rkInt dest.intVal = n.intVal of nkFloatLit..nkFloat128Lit: dest.kind = rkFloat dest.floatVal = n.floatVal else: dest.kind = rkNode dest.node = n proc regToNode(x: TFullReg): PNode = case x.kind of rkNone: result = newNode(nkEmpty) of rkInt: result = newNode(nkIntLit); result.intVal = x.intVal of rkFloat: result = newNode(nkFloatLit); result.floatVal = x.floatVal of rkNode: result = x.node of rkRegisterAddr: result = regToNode(x.regAddr[]) of rkNodeAddr: result = x.nodeAddr[] template getstr(a: untyped): untyped = (if a.kind == rkNode: a.node.strVal else: $chr(int(a.intVal))) proc pushSafePoint(f: PStackFrame; pc: int) = when not defined(nimNoNilSeqs): if f.safePoints.isNil: f.safePoints = @[] f.safePoints.add(pc) proc popSafePoint(f: PStackFrame) = discard f.safePoints.pop() type ExceptionGoto = enum ExceptionGotoHandler, ExceptionGotoFinally, ExceptionGotoUnhandled proc findExceptionHandler(c: PCtx, f: PStackFrame, exc: PNode): tuple[why: ExceptionGoto, where: int] = let raisedType = exc.typ.skipTypes(abstractPtrs) while f.safePoints.len > 0: var pc = f.safePoints.pop() var matched = false var pcEndExcept = pc # Scan the chain of exceptions starting at pc. # The structure is the following: # pc - opcExcept, # - opcExcept, # - opcExcept, # ... # - opcExcept, # - Exception handler body # - ... more opcExcept blocks may follow # - ... an optional opcFinally block may follow # # Note that the exception handler body already contains a jump to the # finally block or, if that's not present, to the point where the execution # should continue. # Also note that opcFinally blocks are the last in the chain. while c.code[pc].opcode == opcExcept: # Where this Except block ends pcEndExcept = pc + c.code[pc].regBx - wordExcess inc pc # A series of opcExcept follows for each exception type matched while c.code[pc].opcode == opcExcept: let excIndex = c.code[pc].regBx - wordExcess let exceptType = if excIndex > 0: c.types[excIndex].skipTypes(abstractPtrs) else: nil # echo typeToString(exceptType), " ", typeToString(raisedType) # Determine if the exception type matches the pattern if exceptType.isNil or inheritanceDiff(raisedType, exceptType) <= 0: matched = true break inc pc # Skip any further ``except`` pattern and find the first instruction of # the handler body while c.code[pc].opcode == opcExcept: inc pc if matched: break # If no handler in this chain is able to catch this exception we check if # the "parent" chains are able to. If this chain ends with a `finally` # block we must execute it before continuing. pc = pcEndExcept # Where the handler body starts let pcBody = pc if matched: return (ExceptionGotoHandler, pcBody) elif c.code[pc].opcode == opcFinally: # The +1 here is here because we don't want to execute it since we've # already pop'd this statepoint from the stack. return (ExceptionGotoFinally, pc + 1) return (ExceptionGotoUnhandled, 0) proc cleanUpOnReturn(c: PCtx; f: PStackFrame): int = # Walk up the chain of safepoints and return the PC of the first `finally` # block we find or -1 if no such block is found. # Note that the safepoint is removed once the function returns! result = -1 # Traverse the stack starting from the end in order to execute the blocks in # the inteded order for i in 1 .. f.safePoints.len: var pc = f.safePoints[^i] # Skip the `except` blocks while c.code[pc].opcode == opcExcept: pc += c.code[pc].regBx - wordExcess if c.code[pc].opcode == opcFinally: discard f.safePoints.pop return pc + 1 proc opConv(c: PCtx; dest: var TFullReg, src: TFullReg, desttyp, srctyp: PType): bool = if desttyp.kind == tyString: if dest.kind != rkNode: myreset(dest) dest.kind = rkNode dest.node = newNode(nkStrLit) let styp = srctyp.skipTypes(abstractRange) case styp.kind of tyEnum: let n = styp.n let x = src.intVal.int if x <% n.len and (let f = n.sons[x].sym; f.position == x): dest.node.strVal = if f.ast.isNil: f.name.s else: f.ast.strVal else: for i in 0.. lastOrd(c.config, desttyp): return true of tyUInt..tyUInt64: if dest.kind != rkInt: myreset(dest); dest.kind = rkInt case skipTypes(srctyp, abstractRange).kind of tyFloat..tyFloat64: dest.intVal = int(src.floatVal) else: let srcDist = (sizeof(src.intVal) - srctyp.size) * 8 let destDist = (sizeof(dest.intVal) - desttyp.size) * 8 when system.cpuEndian == bigEndian: dest.intVal = (src.intVal shr srcDist) shl srcDist dest.intVal = (dest.intVal shr destDist) shl destDist else: dest.intVal = (src.intVal shl srcDist) shr srcDist dest.intVal = (dest.intVal shl destDist) shr destDist of tyFloat..tyFloat64: if dest.kind != rkFloat: myreset(dest); dest.kind = rkFloat case skipTypes(srctyp, abstractRange).kind of tyInt..tyInt64, tyUInt..tyUInt64, tyEnum, tyBool, tyChar: dest.floatVal = toBiggestFloat(src.intVal) else: dest.floatVal = src.floatVal of tyObject: if srctyp.skipTypes(abstractRange).kind != tyObject: internalError(c.config, "invalid object-to-object conversion") # A object-to-object conversion is essentially a no-op moveConst(dest, src) else: asgnComplex(dest, src) proc compile(c: PCtx, s: PSym): int = result = vmgen.genProc(c, s) when debugEchoCode: c.echoCode result #c.echoCode template handleJmpBack() {.dirty.} = if c.loopIterations <= 0: if allowInfiniteLoops in c.features: c.loopIterations = MaxLoopIterations else: msgWriteln(c.config, "stack trace: (most recent call last)") stackTraceAux(c, tos, pc) globalError(c.config, c.debug[pc], errTooManyIterations) dec(c.loopIterations) proc recSetFlagIsRef(arg: PNode) = arg.flags.incl(nfIsRef) for i in 0 ..< arg.safeLen: arg.sons[i].recSetFlagIsRef proc setLenSeq(c: PCtx; node: PNode; newLen: int; info: TLineInfo) = let typ = node.typ.skipTypes(abstractInst+{tyRange}-{tyTypeDesc}) let oldLen = node.len setLen(node.sons, newLen) if oldLen < newLen: for i in oldLen ..< newLen: node.sons[i] = getNullValue(typ.sons[0], info, c.config) const errNilAccess = "attempt to access a nil address" errOverOrUnderflow = "over- or underflow" errConstantDivisionByZero = "division by zero" errIllegalConvFromXtoY = "illegal conversion from '$1' to '$2'" errTooManyIterations = "interpretation requires too many iterations; " & "if you are sure this is not a bug in your code edit " & "compiler/vmdef.MaxLoopIterations and rebuild the compiler" errFieldXNotFound = "node lacks field: " proc rawExecute(c: PCtx, start: int, tos: PStackFrame): TFullReg = var pc = start var tos = tos # Used to keep track of where the execution is resumed. var savedPC = -1 var savedFrame: PStackFrame var regs: seq[TFullReg] # alias to tos.slots for performance move(regs, tos.slots) #echo "NEW RUN ------------------------" while true: #{.computedGoto.} let instr = c.code[pc] let ra = instr.regA when traceCode: template regDescr(name, r): string = let kind = if r < regs.len: $regs[r].kind else: "" let ret = name & ": " & $r & " " & $kind alignLeft(ret, 15) echo "PC:$pc $opcode $ra $rb $rc" % [ "pc", $pc, "opcode", alignLeft($c.code[pc].opcode, 15), "ra", regDescr("ra", ra), "rb", regDescr("rb", instr.regB), "rc", regDescr("rc", instr.regC)] case instr.opcode of opcEof: return regs[ra] of opcRet: let newPc = c.cleanUpOnReturn(tos) # Perform any cleanup action before returning if newPc < 0: pc = tos.comesFrom tos = tos.next let retVal = regs[0] if tos.isNil: return retVal move(regs, tos.slots) assert c.code[pc].opcode in {opcIndCall, opcIndCallAsgn} if c.code[pc].opcode == opcIndCallAsgn: regs[c.code[pc].regA] = retVal else: savedPC = pc savedFrame = tos # The -1 is needed because at the end of the loop we increment `pc` pc = newPc - 1 of opcYldYoid: assert false of opcYldVal: assert false of opcAsgnInt: decodeB(rkInt) regs[ra].intVal = regs[rb].intVal of opcAsgnStr: decodeBC(rkNode) createStrKeepNode regs[ra], rc != 0 regs[ra].node.strVal = regs[rb].node.strVal of opcAsgnFloat: decodeB(rkFloat) regs[ra].floatVal = regs[rb].floatVal of opcAsgnIntFromFloat32: let rb = instr.regB ensureKind(rkInt) regs[ra].intVal = cast[int32](float32(regs[rb].floatVal)) of opcAsgnIntFromFloat64: let rb = instr.regB ensureKind(rkInt) regs[ra].intVal = cast[int64](regs[rb].floatVal) of opcAsgnFloat32FromInt: let rb = instr.regB ensureKind(rkFloat) regs[ra].floatVal = cast[float32](int32(regs[rb].intVal)) of opcAsgnFloat64FromInt: let rb = instr.regB ensureKind(rkFloat) regs[ra].floatVal = cast[float64](int64(regs[rb].intVal)) of opcAsgnComplex: asgnComplex(regs[ra], regs[instr.regB]) of opcAsgnRef: asgnRef(regs[ra], regs[instr.regB]) of opcNodeToReg: let ra = instr.regA let rb = instr.regB # opcDeref might already have loaded it into a register. XXX Let's hope # this is still correct this way: if regs[rb].kind != rkNode: regs[ra] = regs[rb] else: assert regs[rb].kind == rkNode let nb = regs[rb].node case nb.kind of nkCharLit..nkUInt64Lit: ensureKind(rkInt) regs[ra].intVal = nb.intVal of nkFloatLit..nkFloat64Lit: ensureKind(rkFloat) regs[ra].floatVal = nb.floatVal else: ensureKind(rkNode) regs[ra].node = nb of opcLdArr: # a = b[c] decodeBC(rkNode) if regs[rc].intVal > high(int): stackTrace(c, tos, pc, formatErrorIndexBound(regs[rc].intVal, high(int))) let idx = regs[rc].intVal.int let src = regs[rb].node if src.kind in {nkStrLit..nkTripleStrLit}: if idx <% src.strVal.len: regs[ra].node = newNodeI(nkCharLit, c.debug[pc]) regs[ra].node.intVal = src.strVal[idx].ord else: stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.strVal.len-1)) elif src.kind notin {nkEmpty..nkFloat128Lit} and idx <% src.len: regs[ra].node = src.sons[idx] else: stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.len-1)) of opcLdStrIdx: decodeBC(rkInt) let idx = regs[rc].intVal.int let s = regs[rb].node.strVal if idx <% s.len: regs[ra].intVal = s[idx].ord elif idx == s.len and optLaxStrings in c.config.options: regs[ra].intVal = 0 else: stackTrace(c, tos, pc, formatErrorIndexBound(idx, s.len-1)) of opcWrArr: # a[b] = c decodeBC(rkNode) let idx = regs[rb].intVal.int let arr = regs[ra].node if arr.kind in {nkStrLit..nkTripleStrLit}: if idx <% arr.strVal.len: arr.strVal[idx] = chr(regs[rc].intVal) else: stackTrace(c, tos, pc, formatErrorIndexBound(idx, arr.strVal.len-1)) elif idx <% arr.len: writeField(arr.sons[idx], regs[rc]) else: stackTrace(c, tos, pc, formatErrorIndexBound(idx, arr.len-1)) of opcLdObj: # a = b.c decodeBC(rkNode) let src = regs[rb].node case src.kind of nkEmpty..nkNilLit: stackTrace(c, tos, pc, errNilAccess) of nkObjConstr: let n = src.sons[rc + 1].skipColon regs[ra].node = n else: let n = src.sons[rc] regs[ra].node = n of opcWrObj: # a.b = c decodeBC(rkNode) let shiftedRb = rb + ord(regs[ra].node.kind == nkObjConstr) let dest = regs[ra].node if dest.kind == nkNilLit: stackTrace(c, tos, pc, errNilAccess) elif dest.sons[shiftedRb].kind == nkExprColonExpr: writeField(dest.sons[shiftedRb].sons[1], regs[rc]) else: writeField(dest.sons[shiftedRb], regs[rc]) of opcWrStrIdx: decodeBC(rkNode) let idx = regs[rb].intVal.int if idx <% regs[ra].node.strVal.len: regs[ra].node.strVal[idx] = chr(regs[rc].intVal) else: stackTrace(c, tos, pc, formatErrorIndexBound(idx, regs[ra].node.strVal.len-1)) of opcAddrReg: decodeB(rkRegisterAddr) regs[ra].regAddr = addr(regs[rb]) of opcAddrNode: decodeB(rkNodeAddr) if regs[rb].kind == rkNode: regs[ra].nodeAddr = addr(regs[rb].node) else: stackTrace(c, tos, pc, "limited VM support for 'addr'") of opcLdDeref: # a = b[] let ra = instr.regA let rb = instr.regB case regs[rb].kind of rkNodeAddr: ensureKind(rkNode) regs[ra].node = regs[rb].nodeAddr[] of rkRegisterAddr: ensureKind(regs[rb].regAddr.kind) regs[ra] = regs[rb].regAddr[] of rkNode: if regs[rb].node.kind == nkNilLit: stackTrace(c, tos, pc, errNilAccess) if regs[rb].node.kind == nkRefTy: regs[ra].node = regs[rb].node.sons[0] else: ensureKind(rkNode) regs[ra].node = regs[rb].node else: stackTrace(c, tos, pc, errNilAccess) of opcWrDeref: # a[] = c; b unused let ra = instr.regA let rc = instr.regC case regs[ra].kind of rkNodeAddr: let n = regs[rc].regToNode # `var object` parameters are sent as rkNodeAddr. When they are mutated # vmgen generates opcWrDeref, which means that we must dereference # twice. # TODO: This should likely be handled differently in vmgen. if (nfIsRef notin regs[ra].nodeAddr[].flags and nfIsRef notin n.flags): regs[ra].nodeAddr[][] = n[] else: regs[ra].nodeAddr[] = n of rkRegisterAddr: regs[ra].regAddr[] = regs[rc] of rkNode: if regs[ra].node.kind == nkNilLit: stackTrace(c, tos, pc, errNilAccess) assert nfIsRef in regs[ra].node.flags regs[ra].node[] = regs[rc].regToNode[] regs[ra].node.flags.incl nfIsRef else: stackTrace(c, tos, pc, errNilAccess) of opcAddInt: decodeBC(rkInt) let bVal = regs[rb].intVal cVal = regs[rc].intVal sum = bVal +% cVal if (sum xor bVal) >= 0 or (sum xor cVal) >= 0: regs[ra].intVal = sum else: stackTrace(c, tos, pc, errOverOrUnderflow) of opcAddImmInt: decodeBImm(rkInt) #message(c.config, c.debug[pc], warnUser, "came here") #debug regs[rb].node let bVal = regs[rb].intVal cVal = imm sum = bVal +% cVal if (sum xor bVal) >= 0 or (sum xor cVal) >= 0: regs[ra].intVal = sum else: stackTrace(c, tos, pc, errOverOrUnderflow) of opcSubInt: decodeBC(rkInt) let bVal = regs[rb].intVal cVal = regs[rc].intVal diff = bVal -% cVal if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0: regs[ra].intVal = diff else: stackTrace(c, tos, pc, errOverOrUnderflow) of opcSubImmInt: decodeBImm(rkInt) let bVal = regs[rb].intVal cVal = imm diff = bVal -% cVal if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0: regs[ra].intVal = diff else: stackTrace(c, tos, pc, errOverOrUnderflow) of opcLenSeq: decodeBImm(rkInt) #assert regs[rb].kind == nkBracket let high = (imm and 1) # discard flags if (imm and nimNodeFlag) != 0: # used by mNLen (NimNode.len) regs[ra].intVal = regs[rb].node.safeLen - high else: # safeArrLen also return string node len # used when string is passed as openArray in VM regs[ra].intVal = regs[rb].node.safeArrLen - high of opcLenStr: decodeBImm(rkInt) assert regs[rb].kind == rkNode regs[ra].intVal = regs[rb].node.strVal.len - imm of opcIncl: decodeB(rkNode) let b = regs[rb].regToNode if not inSet(regs[ra].node, b): addSon(regs[ra].node, copyTree(b)) of opcInclRange: decodeBC(rkNode) var r = newNode(nkRange) r.add regs[rb].regToNode r.add regs[rc].regToNode addSon(regs[ra].node, r.copyTree) of opcExcl: decodeB(rkNode) var b = newNodeIT(nkCurly, regs[ra].node.info, regs[ra].node.typ) addSon(b, regs[rb].regToNode) var r = diffSets(c.config, regs[ra].node, b) discardSons(regs[ra].node) for i in countup(0, sonsLen(r) - 1): addSon(regs[ra].node, r.sons[i]) of opcCard: decodeB(rkInt) regs[ra].intVal = nimsets.cardSet(c.config, regs[rb].node) of opcMulInt: decodeBC(rkInt) let bVal = regs[rb].intVal cVal = regs[rc].intVal product = bVal *% cVal floatProd = toBiggestFloat(bVal) * toBiggestFloat(cVal) resAsFloat = toBiggestFloat(product) if resAsFloat == floatProd: regs[ra].intVal = product elif 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd): regs[ra].intVal = product else: stackTrace(c, tos, pc, errOverOrUnderflow) of opcDivInt: decodeBC(rkInt) if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero) else: regs[ra].intVal = regs[rb].intVal div regs[rc].intVal of opcModInt: decodeBC(rkInt) if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero) else: regs[ra].intVal = regs[rb].intVal mod regs[rc].intVal of opcAddFloat: decodeBC(rkFloat) regs[ra].floatVal = regs[rb].floatVal + regs[rc].floatVal of opcSubFloat: decodeBC(rkFloat) regs[ra].floatVal = regs[rb].floatVal - regs[rc].floatVal of opcMulFloat: decodeBC(rkFloat) regs[ra].floatVal = regs[rb].floatVal * regs[rc].floatVal of opcDivFloat: decodeBC(rkFloat) regs[ra].floatVal = regs[rb].floatVal / regs[rc].floatVal of opcShrInt: decodeBC(rkInt) regs[ra].intVal = regs[rb].intVal shr regs[rc].intVal of opcShlInt: decodeBC(rkInt) regs[ra].intVal = regs[rb].intVal shl regs[rc].intVal of opcAshrInt: decodeBC(rkInt) regs[ra].intVal = ashr(regs[rb].intVal, regs[rc].intVal) of opcBitandInt: decodeBC(rkInt) regs[ra].intVal = regs[rb].intVal and regs[rc].intVal of opcBitorInt: decodeBC(rkInt) regs[ra].intVal = regs[rb].intVal or regs[rc].intVal of opcBitxorInt: decodeBC(rkInt) regs[ra].intVal = regs[rb].intVal xor regs[rc].intVal of opcAddu: decodeBC(rkInt) regs[ra].intVal = regs[rb].intVal +% regs[rc].intVal of opcSubu: decodeBC(rkInt) regs[ra].intVal = regs[rb].intVal -% regs[rc].intVal of opcMulu: decodeBC(rkInt) regs[ra].intVal = regs[rb].intVal *% regs[rc].intVal of opcDivu: decodeBC(rkInt) regs[ra].intVal = regs[rb].intVal /% regs[rc].intVal of opcModu: decodeBC(rkInt) regs[ra].intVal = regs[rb].intVal %% regs[rc].intVal of opcEqInt: decodeBC(rkInt) regs[ra].intVal = ord(regs[rb].intVal == regs[rc].intVal) of opcLeInt: decodeBC(rkInt) regs[ra].intVal = ord(regs[rb].intVal <= regs[rc].intVal) of opcLtInt: decodeBC(rkInt) regs[ra].intVal = ord(regs[rb].intVal < regs[rc].intVal) of opcEqFloat: decodeBC(rkInt) regs[ra].intVal = ord(regs[rb].floatVal == regs[rc].floatVal) of opcLeFloat: decodeBC(rkInt) regs[ra].intVal = ord(regs[rb].floatVal <= regs[rc].floatVal) of opcLtFloat: decodeBC(rkInt) regs[ra].intVal = ord(regs[rb].floatVal < regs[rc].floatVal) of opcLeu: decodeBC(rkInt) regs[ra].intVal = ord(regs[rb].intVal <=% regs[rc].intVal) of opcLtu: decodeBC(rkInt) regs[ra].intVal = ord(regs[rb].intVal <% regs[rc].intVal) of opcEqRef: decodeBC(rkInt) if regs[rb].kind == rkNodeAddr: if regs[rc].kind == rkNodeAddr: regs[ra].intVal = ord(regs[rb].nodeAddr == regs[rc].nodeAddr) else: assert regs[rc].kind == rkNode # we know these cannot be equal regs[ra].intVal = ord(false) elif regs[rc].kind == rkNodeAddr: assert regs[rb].kind == rkNode # we know these cannot be equal regs[ra].intVal = ord(false) else: regs[ra].intVal = ord((regs[rb].node.kind == nkNilLit and regs[rc].node.kind == nkNilLit) or regs[rb].node == regs[rc].node) of opcEqNimNode: decodeBC(rkInt) regs[ra].intVal = ord(exprStructuralEquivalent(regs[rb].node, regs[rc].node, strictSymEquality=true)) of opcSameNodeType: decodeBC(rkInt) regs[ra].intVal = ord(regs[rb].node.typ.sameTypeOrNil regs[rc].node.typ) of opcXor: decodeBC(rkInt) regs[ra].intVal = ord(regs[rb].intVal != regs[rc].intVal) of opcNot: decodeB(rkInt) assert regs[rb].kind == rkInt regs[ra].intVal = 1 - regs[rb].intVal of opcUnaryMinusInt: decodeB(rkInt) assert regs[rb].kind == rkInt let val = regs[rb].intVal if val != int64.low: regs[ra].intVal = -val else: stackTrace(c, tos, pc, errOverOrUnderflow) of opcUnaryMinusFloat: decodeB(rkFloat) assert regs[rb].kind == rkFloat regs[ra].floatVal = -regs[rb].floatVal of opcBitnotInt: decodeB(rkInt) assert regs[rb].kind == rkInt regs[ra].intVal = not regs[rb].intVal of opcEqStr: decodeBC(rkInt) regs[ra].intVal = ord(regs[rb].node.strVal == regs[rc].node.strVal) of opcLeStr: decodeBC(rkInt) regs[ra].intVal = ord(regs[rb].node.strVal <= regs[rc].node.strVal) of opcLtStr: decodeBC(rkInt) regs[ra].intVal = ord(regs[rb].node.strVal < regs[rc].node.strVal) of opcLeSet: decodeBC(rkInt) regs[ra].intVal = ord(containsSets(c.config, regs[rb].node, regs[rc].node)) of opcEqSet: decodeBC(rkInt) regs[ra].intVal = ord(equalSets(c.config, regs[rb].node, regs[rc].node)) of opcLtSet: decodeBC(rkInt) let a = regs[rb].node let b = regs[rc].node regs[ra].intVal = ord(containsSets(c.config, a, b) and not equalSets(c.config, a, b)) of opcMulSet: decodeBC(rkNode) createSet(regs[ra]) move(regs[ra].node.sons, nimsets.intersectSets(c.config, regs[rb].node, regs[rc].node).sons) of opcPlusSet: decodeBC(rkNode) createSet(regs[ra]) move(regs[ra].node.sons, nimsets.unionSets(c.config, regs[rb].node, regs[rc].node).sons) of opcMinusSet: decodeBC(rkNode) createSet(regs[ra]) move(regs[ra].node.sons, nimsets.diffSets(c.config, regs[rb].node, regs[rc].node).sons) of opcSymdiffSet: decodeBC(rkNode) createSet(regs[ra]) move(regs[ra].node.sons, nimsets.symdiffSets(c.config, regs[rb].node, regs[rc].node).sons) of opcConcatStr: decodeBC(rkNode) createStr regs[ra] regs[ra].node.strVal = getstr(regs[rb]) for i in rb+1..rb+rc-1: regs[ra].node.strVal.add getstr(regs[i]) of opcAddStrCh: decodeB(rkNode) #createStrKeepNode regs[ra] regs[ra].node.strVal.add(regs[rb].intVal.chr) of opcAddStrStr: decodeB(rkNode) #createStrKeepNode regs[ra] regs[ra].node.strVal.add(regs[rb].node.strVal) of opcAddSeqElem: decodeB(rkNode) if regs[ra].node.kind == nkBracket: regs[ra].node.add(copyValue(regs[rb].regToNode)) else: stackTrace(c, tos, pc, errNilAccess) of opcGetImpl: decodeB(rkNode) var a = regs[rb].node if a.kind == nkVarTy: a = a[0] if a.kind == nkSym: regs[ra].node = if a.sym.ast.isNil: newNode(nkNilLit) else: copyTree(a.sym.ast) regs[ra].node.flags.incl nfIsRef else: stackTrace(c, tos, pc, "node is not a symbol") of opcGetImplTransf: decodeB(rkNode) let a = regs[rb].node if a.kind == nkSym: regs[ra].node = if a.sym.ast.isNil: newNode(nkNilLit) else: let ast = a.sym.ast.shallowCopy for i in 0.. The codegen has to deal with it # via 'genAsgnPatch'. of opcLdNullReg: let typ = c.types[instr.regBx - wordExcess] if typ.skipTypes(abstractInst+{tyRange}-{tyTypeDesc}).kind in { tyFloat..tyFloat128}: ensureKind(rkFloat) regs[ra].floatVal = 0.0 else: ensureKind(rkInt) regs[ra].intVal = 0 of opcLdConst: let rb = instr.regBx - wordExcess let cnst = c.constants.sons[rb] if fitsRegister(cnst.typ): myreset(regs[ra]) putIntoReg(regs[ra], cnst) else: ensureKind(rkNode) regs[ra].node = cnst of opcAsgnConst: let rb = instr.regBx - wordExcess let cnst = c.constants.sons[rb] if fitsRegister(cnst.typ): putIntoReg(regs[ra], cnst) else: ensureKind(rkNode) regs[ra].node = cnst.copyTree of opcLdGlobal: let rb = instr.regBx - wordExcess - 1 ensureKind(rkNode) regs[ra].node = c.globals.sons[rb] of opcLdGlobalAddr: let rb = instr.regBx - wordExcess - 1 ensureKind(rkNodeAddr) regs[ra].nodeAddr = addr(c.globals.sons[rb]) of opcRepr: decodeB(rkNode) createStr regs[ra] regs[ra].node.strVal = renderTree(regs[rb].regToNode, {renderNoComments, renderDocComments}) of opcQuit: if c.mode in {emRepl, emStaticExpr, emStaticStmt}: message(c.config, c.debug[pc], hintQuitCalled) msgQuit(int8(getOrdValue(regs[ra].regToNode))) else: return TFullReg(kind: rkNone) of opcSetLenStr: decodeB(rkNode) #createStrKeepNode regs[ra] regs[ra].node.strVal.setLen(regs[rb].intVal.int) of opcOf: decodeBC(rkInt) let typ = c.types[regs[rc].intVal.int] regs[ra].intVal = ord(inheritanceDiff(regs[rb].node.typ, typ) <= 0) of opcIs: decodeBC(rkInt) let t1 = regs[rb].node.typ.skipTypes({tyTypeDesc}) let t2 = c.types[regs[rc].intVal.int] # XXX: This should use the standard isOpImpl let match = if t2.kind == tyUserTypeClass: true else: sameType(t1, t2) regs[ra].intVal = ord(match) of opcSetLenSeq: decodeB(rkNode) let newLen = regs[rb].intVal.int if regs[ra].node.isNil: stackTrace(c, tos, pc, errNilAccess) else: c.setLenSeq(regs[ra].node, newLen, c.debug[pc]) of opcNarrowS: decodeB(rkInt) let min = -(1.BiggestInt shl (rb-1)) let max = (1.BiggestInt shl (rb-1))-1 if regs[ra].intVal < min or regs[ra].intVal > max: stackTrace(c, tos, pc, "unhandled exception: value out of range") of opcNarrowU: decodeB(rkInt) regs[ra].intVal = regs[ra].intVal and ((1'i64 shl rb)-1) of opcSignExtend: # like opcNarrowS, but no out of range possible decodeB(rkInt) let imm = 64 - rb regs[ra].intVal = ashr(regs[ra].intVal shl imm, imm) of opcIsNil: decodeB(rkInt) let node = regs[rb].node regs[ra].intVal = ord( # Note that `nfIsRef` + `nkNilLit` represents an allocated # reference with the value `nil`, so `isNil` should be false! (node.kind == nkNilLit and nfIsRef notin node.flags) or (not node.typ.isNil and node.typ.kind == tyProc and node.typ.callConv == ccClosure and node.sons[0].kind == nkNilLit and node.sons[1].kind == nkNilLit)) of opcNBindSym: # cannot use this simple check # if dynamicBindSym notin c.config.features: # bindSym with static input decodeBx(rkNode) regs[ra].node = copyTree(c.constants.sons[rbx]) regs[ra].node.flags.incl nfIsRef of opcNDynBindSym: # experimental bindSym let rb = instr.regB rc = instr.regC idx = int(regs[rb+rc-1].intVal) callback = c.callbacks[idx].value args = VmArgs(ra: ra, rb: rb, rc: rc, slots: cast[pointer](regs), currentException: c.currentExceptionA, currentLineInfo: c.debug[pc]) callback(args) regs[ra].node.flags.incl nfIsRef of opcNChild: decodeBC(rkNode) let idx = regs[rc].intVal.int let src = regs[rb].node if src.kind notin {nkEmpty..nkNilLit} and idx <% src.len: regs[ra].node = src.sons[idx] else: stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.len-1)) of opcNSetChild: decodeBC(rkNode) let idx = regs[rb].intVal.int var dest = regs[ra].node if dest.kind notin {nkEmpty..nkNilLit} and idx <% dest.len: dest.sons[idx] = regs[rc].node else: stackTrace(c, tos, pc, formatErrorIndexBound(idx, dest.len-1)) of opcNAdd: decodeBC(rkNode) var u = regs[rb].node if u.kind notin {nkEmpty..nkNilLit}: u.add(regs[rc].node) else: stackTrace(c, tos, pc, "cannot add to node kind: " & $u.kind) regs[ra].node = u of opcNAddMultiple: decodeBC(rkNode) let x = regs[rc].node var u = regs[rb].node if u.kind notin {nkEmpty..nkNilLit}: # XXX can be optimized: for i in 0.. 0: c.errorFlag = error elif sonsLen(ast) != 1: c.errorFlag = formatMsg(c.config, c.debug[pc], errGenerated, "expected expression, but got multiple statements") else: regs[ra].node = ast.sons[0] of opcParseStmtToAst: decodeB(rkNode) var error: string let ast = parseString(regs[rb].node.strVal, c.cache, c.config, toFullPath(c.config, c.debug[pc]), c.debug[pc].line.int, proc (conf: ConfigRef; info: TLineInfo; msg: TMsgKind; arg: string) = if error.len == 0 and msg <= errMax: error = formatMsg(conf, info, msg, arg)) if error.len > 0: c.errorFlag = error else: regs[ra].node = ast of opcQueryErrorFlag: createStr regs[ra] regs[ra].node.strVal = c.errorFlag c.errorFlag.setLen 0 of opcCallSite: ensureKind(rkNode) if c.callsite != nil: regs[ra].node = c.callsite else: stackTrace(c, tos, pc, errFieldXNotFound & "callsite") of opcNGetLineInfo: decodeBImm(rkNode) let n = regs[rb].node case imm of 0: # getFile regs[ra].node = newStrNode(nkStrLit, toFullPath(c.config, n.info)) of 1: # getLine regs[ra].node = newIntNode(nkIntLit, n.info.line.int) of 2: # getColumn regs[ra].node = newIntNode(nkIntLit, n.info.col) else: internalAssert c.config, false regs[ra].node.info = n.info regs[ra].node.typ = n.typ of opcNSetLineInfo: decodeB(rkNode) regs[ra].node.info = regs[rb].node.info of opcEqIdent: decodeBC(rkInt) # aliases for shorter and easier to understand code below let aNode = regs[rb].node let bNode = regs[rc].node # these are cstring to prevent string copy, and cmpIgnoreStyle from # takes cstring arguments var aStrVal: cstring = nil var bStrVal: cstring = nil # extract strVal from argument ``a`` case aNode.kind of nkStrLit..nkTripleStrLit: aStrVal = aNode.strVal.cstring of nkIdent: aStrVal = aNode.ident.s.cstring of nkSym: aStrVal = aNode.sym.name.s.cstring of nkOpenSymChoice, nkClosedSymChoice: aStrVal = aNode[0].sym.name.s.cstring else: discard # extract strVal from argument ``b`` case bNode.kind of nkStrLit..nkTripleStrLit: bStrVal = bNode.strVal.cstring of nkIdent: bStrVal = bNode.ident.s.cstring of nkSym: bStrVal = bNode.sym.name.s.cstring of nkOpenSymChoice, nkClosedSymChoice: bStrVal = bNode[0].sym.name.s.cstring else: discard # set result regs[ra].intVal = if aStrVal != nil and bStrVal != nil: ord(idents.cmpIgnoreStyle(aStrVal, bStrVal, high(int)) == 0) else: 0 of opcStrToIdent: decodeB(rkNode) if regs[rb].node.kind notin {nkStrLit..nkTripleStrLit}: stackTrace(c, tos, pc, errFieldXNotFound & "strVal") else: regs[ra].node = newNodeI(nkIdent, c.debug[pc]) regs[ra].node.ident = getIdent(c.cache, regs[rb].node.strVal) regs[ra].node.flags.incl nfIsRef of opcSetType: let typ = c.types[instr.regBx - wordExcess] if regs[ra].kind != rkNode: let temp = regToNode(regs[ra]) ensureKind(rkNode) regs[ra].node = temp regs[ra].node.info = c.debug[pc] regs[ra].node.typ = typ of opcConv: let rb = instr.regB inc pc let desttyp = c.types[c.code[pc].regBx - wordExcess] inc pc let srctyp = c.types[c.code[pc].regBx - wordExcess] if opConv(c, regs[ra], regs[rb], desttyp, srctyp): stackTrace(c, tos, pc, errIllegalConvFromXtoY % [ typeToString(srctyp), typeToString(desttyp)]) of opcCast: let rb = instr.regB inc pc let desttyp = c.types[c.code[pc].regBx - wordExcess] inc pc let srctyp = c.types[c.code[pc].regBx - wordExcess] when hasFFI: let dest = fficast(c.config, regs[rb].node, desttyp) # todo: check whether this is correct # asgnRef(regs[ra], dest) putIntoReg(regs[ra], dest) else: globalError(c.config, c.debug[pc], "cannot evaluate cast") of opcNSetIntVal: decodeB(rkNode) var dest = regs[ra].node if dest.kind in {nkCharLit..nkUInt64Lit} and regs[rb].kind in {rkInt}: dest.intVal = regs[rb].intVal else: stackTrace(c, tos, pc, errFieldXNotFound & "intVal") of opcNSetFloatVal: decodeB(rkNode) var dest = regs[ra].node if dest.kind in {nkFloatLit..nkFloat64Lit} and regs[rb].kind in {rkFloat}: dest.floatVal = regs[rb].floatVal else: stackTrace(c, tos, pc, errFieldXNotFound & "floatVal") of opcNSetSymbol: decodeB(rkNode) var dest = regs[ra].node if dest.kind == nkSym and regs[rb].node.kind == nkSym: dest.sym = regs[rb].node.sym else: stackTrace(c, tos, pc, errFieldXNotFound & "symbol") of opcNSetIdent: decodeB(rkNode) var dest = regs[ra].node if dest.kind == nkIdent and regs[rb].node.kind == nkIdent: dest.ident = regs[rb].node.ident else: stackTrace(c, tos, pc, errFieldXNotFound & "ident") of opcNSetType: decodeB(rkNode) let b = regs[rb].node internalAssert c.config, b.kind == nkSym and b.sym.kind == skType internalAssert c.config, regs[ra].node != nil regs[ra].node.typ = b.sym.typ of opcNSetStrVal: decodeB(rkNode) var dest = regs[ra].node if dest.kind in {nkStrLit..nkTripleStrLit} and regs[rb].kind in {rkNode}: dest.strVal = regs[rb].node.strVal elif dest.kind == nkCommentStmt and regs[rb].kind in {rkNode}: dest.comment = regs[rb].node.strVal else: stackTrace(c, tos, pc, errFieldXNotFound & "strVal") of opcNNewNimNode: decodeBC(rkNode) var k = regs[rb].intVal if k < 0 or k > ord(high(TNodeKind)): internalError(c.config, c.debug[pc], "request to create a NimNode of invalid kind") let cc = regs[rc].node let x = newNodeI(TNodeKind(int(k)), if cc.kind != nkNilLit: cc.info elif c.comesFromHeuristic.line != 0'u16: c.comesFromHeuristic elif c.callsite != nil and c.callsite.safeLen > 1: c.callsite[1].info else: c.debug[pc]) x.flags.incl nfIsRef # prevent crashes in the compiler resulting from wrong macros: if x.kind == nkIdent: x.ident = c.cache.emptyIdent regs[ra].node = x of opcNCopyNimNode: decodeB(rkNode) regs[ra].node = copyNode(regs[rb].node) of opcNCopyNimTree: decodeB(rkNode) regs[ra].node = copyTree(regs[rb].node) of opcNDel: decodeBC(rkNode) let bb = regs[rb].intVal.int for i in countup(0, regs[rc].intVal.int-1): delSon(regs[ra].node, bb) of opcGenSym: decodeBC(rkNode) let k = regs[rb].intVal let name = if regs[rc].node.strVal.len == 0: ":tmp" else: regs[rc].node.strVal if k < 0 or k > ord(high(TSymKind)): internalError(c.config, c.debug[pc], "request to create symbol of invalid kind") var sym = newSym(k.TSymKind, getIdent(c.cache, name), c.module.owner, c.debug[pc]) incl(sym.flags, sfGenSym) regs[ra].node = newSymNode(sym) regs[ra].node.flags.incl nfIsRef of opcNccValue: decodeB(rkInt) let destKey = regs[rb].node.strVal regs[ra].intVal = getOrDefault(c.graph.cacheCounters, destKey) of opcNccInc: let g = c.graph let destKey = regs[ra].node.strVal let by = regs[instr.regB].intVal let v = getOrDefault(g.cacheCounters, destKey) g.cacheCounters[destKey] = v+by recordInc(c, c.debug[pc], destKey, by) of opcNcsAdd: let g = c.graph let destKey = regs[ra].node.strVal let val = regs[instr.regB].node if not contains(g.cacheSeqs, destKey): g.cacheSeqs[destKey] = newTree(nkStmtList, val) # newNodeI(nkStmtList, c.debug[pc]) else: g.cacheSeqs[destKey].add val recordAdd(c, c.debug[pc], destKey, val) of opcNcsIncl: let g = c.graph let destKey = regs[ra].node.strVal let val = regs[instr.regB].node if not contains(g.cacheSeqs, destKey): g.cacheSeqs[destKey] = newTree(nkStmtList, val) else: block search: for existing in g.cacheSeqs[destKey]: if exprStructuralEquivalent(existing, val, strictSymEquality=true): break search g.cacheSeqs[destKey].add val recordIncl(c, c.debug[pc], destKey, val) of opcNcsLen: let g = c.graph decodeB(rkInt) let destKey = regs[rb].node.strVal regs[ra].intVal = if contains(g.cacheSeqs, destKey): g.cacheSeqs[destKey].len else: 0 of opcNcsAt: let g = c.graph decodeBC(rkNode) let idx = regs[rc].intVal let destKey = regs[rb].node.strVal if contains(g.cacheSeqs, destKey) and idx <% g.cacheSeqs[destKey].len: regs[ra].node = g.cacheSeqs[destKey][idx.int] else: stackTrace(c, tos, pc, formatErrorIndexBound(idx, g.cacheSeqs[destKey].len-1)) of opcNctPut: let g = c.graph let destKey = regs[ra].node.strVal let key = regs[instr.regB].node.strVal let val = regs[instr.regC].node if not contains(g.cacheTables, destKey): g.cacheTables[destKey] = initBTree[string, PNode]() if not contains(g.cacheTables[destKey], key): g.cacheTables[destKey].add(key, val) recordPut(c, c.debug[pc], destKey, key, val) else: stackTrace(c, tos, pc, "key already exists: " & key) of opcNctLen: let g = c.graph decodeB(rkInt) let destKey = regs[rb].node.strVal regs[ra].intVal = if contains(g.cacheTables, destKey): g.cacheTables[destKey].len else: 0 of opcNctGet: let g = c.graph decodeBC(rkNode) let destKey = regs[rb].node.strVal let key = regs[rc].node.strVal if contains(g.cacheTables, destKey): if contains(g.cacheTables[destKey], key): regs[ra].node = getOrDefault(g.cacheTables[destKey], key) else: stackTrace(c, tos, pc, "key does not exist: " & key) else: stackTrace(c, tos, pc, "key does not exist: " & destKey) of opcNctHasNext: let g = c.graph decodeBC(rkInt) let destKey = regs[rb].node.strVal regs[ra].intVal = if g.cacheTables.contains(destKey): ord(btrees.hasNext(g.cacheTables[destKey], regs[rc].intVal.int)) else: 0 of opcNctNext: let g = c.graph decodeBC(rkNode) let destKey = regs[rb].node.strVal let index = regs[rc].intVal if contains(g.cacheTables, destKey): let (k, v, nextIndex) = btrees.next(g.cacheTables[destKey], index.int) regs[ra].node = newTree(nkTupleConstr, newStrNode(k, c.debug[pc]), v, newIntNode(nkIntLit, nextIndex)) else: stackTrace(c, tos, pc, "key does not exist: " & destKey) of opcTypeTrait: # XXX only supports 'name' for now; we can use regC to encode the # type trait operation decodeB(rkNode) var typ = regs[rb].node.typ internalAssert c.config, typ != nil while typ.kind == tyTypeDesc and typ.len > 0: typ = typ.sons[0] createStr regs[ra] regs[ra].node.strVal = typ.typeToString(preferExported) of opcMarshalLoad: let ra = instr.regA let rb = instr.regB inc pc let typ = c.types[c.code[pc].regBx - wordExcess] putIntoReg(regs[ra], loadAny(regs[rb].node.strVal, typ, c.cache, c.config)) of opcMarshalStore: decodeB(rkNode) inc pc let typ = c.types[c.code[pc].regBx - wordExcess] createStrKeepNode(regs[ra]) when not defined(nimNoNilSeqs): if regs[ra].node.strVal.isNil: regs[ra].node.strVal = newStringOfCap(1000) storeAny(regs[ra].node.strVal, typ, regs[rb].regToNode, c.config) of opcToNarrowInt: decodeBC(rkInt) let mask = (1'i64 shl rc) - 1 # 0xFF let signbit = 1'i64 shl (rc - 1) # 0x80 let toggle = mask - signbit # 0x7F # algorithm: -((i8 and 0xFF) xor 0x7F) + 0x7F # mask off higher bits. # uses two's complement to sign-extend integer. # reajust integer into desired range. regs[ra].intVal = -((regs[rb].intVal and mask) xor toggle) + toggle inc pc proc execute(c: PCtx, start: int): PNode = var tos = PStackFrame(prc: nil, comesFrom: 0, next: nil) newSeq(tos.slots, c.prc.maxSlots) result = rawExecute(c, start, tos).regToNode proc execProc*(c: PCtx; sym: PSym; args: openArray[PNode]): PNode = if sym.kind in routineKinds: if sym.typ.len-1 != args.len: localError(c.config, sym.info, "NimScript: expected $# arguments, but got $#" % [ $(sym.typ.len-1), $args.len]) else: let start = genProc(c, sym) var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil) let maxSlots = sym.offset newSeq(tos.slots, maxSlots) # setup parameters: if not isEmptyType(sym.typ.sons[0]) or sym.kind == skMacro: putIntoReg(tos.slots[0], getNullValue(sym.typ.sons[0], sym.info, c.config)) # XXX We could perform some type checking here. for i in 1.. 0: return n let n = transformExpr(g, module, n, noDestructors = true) setupGlobalCtx(module, g) var c = PCtx g.vm let oldMode = c.mode defer: c.mode = oldMode c.mode = mode let start = genExpr(c, n, requiresValue = mode!=emStaticStmt) if c.code[start].opcode == opcEof: return newNodeI(nkEmpty, n.info) assert c.code[start].opcode != opcEof when debugEchoCode: c.echoCode start var tos = PStackFrame(prc: prc, comesFrom: 0, next: nil) newSeq(tos.slots, c.prc.maxSlots) #for i in 0 ..< c.prc.maxSlots: tos.slots[i] = newNode(nkEmpty) result = rawExecute(c, start, tos).regToNode if result.info.col < 0: result.info = n.info proc evalConstExpr*(module: PSym; g: ModuleGraph; e: PNode): PNode = result = evalConstExprAux(module, g, nil, e, emConst) proc evalStaticExpr*(module: PSym; g: ModuleGraph; e: PNode, prc: PSym): PNode = result = evalConstExprAux(module, g, prc, e, emStaticExpr) proc evalStaticStmt*(module: PSym; g: ModuleGraph; e: PNode, prc: PSym) = discard evalConstExprAux(module, g, prc, e, emStaticStmt) proc setupCompileTimeVar*(module: PSym; g: ModuleGraph; n: PNode) = discard evalConstExprAux(module, g, nil, n, emStaticStmt) proc setupMacroParam(x: PNode, typ: PType): TFullReg = case typ.kind of tyStatic: putIntoReg(result, x) of tyTypeDesc: putIntoReg(result, x) else: result.kind = rkNode var n = x if n.kind in {nkHiddenSubConv, nkHiddenStdConv}: n = n.sons[1] n = n.canonValue n.flags.incl nfIsRef n.typ = x.typ result.node = n iterator genericParamsInMacroCall*(macroSym: PSym, call: PNode): (PSym, PNode) = let gp = macroSym.ast[genericParamsPos] for i in 0 ..< gp.len: let genericParam = gp[i].sym let posInCall = macroSym.typ.len + i yield (genericParam, call[posInCall]) # to prevent endless recursion in macro instantiation const evalMacroLimit = 1000 proc evalMacroCall*(module: PSym; g: ModuleGraph; n, nOrig: PNode, sym: PSym): PNode = # XXX globalError() is ugly here, but I don't know a better solution for now inc(g.config.evalMacroCounter) if g.config.evalMacroCounter > evalMacroLimit: globalError(g.config, n.info, "macro instantiation too nested") # immediate macros can bypass any type and arity checking so we check the # arity here too: if sym.typ.len > n.safeLen and sym.typ.len > 1: globalError(g.config, n.info, "in call '$#' got $#, but expected $# argument(s)" % [ n.renderTree, $(n.safeLen-1), $(sym.typ.len-1)]) setupGlobalCtx(module, g) var c = PCtx g.vm c.comesFromHeuristic.line = 0'u16 c.callsite = nOrig let start = genProc(c, sym) var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil) let maxSlots = sym.offset newSeq(tos.slots, maxSlots) # setup arguments: var L = n.safeLen if L == 0: L = 1 # This is wrong for tests/reject/tind1.nim where the passed 'else' part # doesn't end up in the parameter: #InternalAssert tos.slots.len >= L # return value: tos.slots[0].kind = rkNode tos.slots[0].node = newNodeI(nkEmpty, n.info) # setup parameters: for i in 1..