# # # The Nim Compiler # (c) Copyright 2015 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # import ast, types, msgs, os, streams, options, idents, lineinfos proc opSlurp*(file: string, info: TLineInfo, module: PSym; conf: ConfigRef): string = try: var filename = parentDir(toFullPath(conf, info)) / file if not fileExists(filename): filename = findFile(conf, file).string result = readFile(filename) # we produce a fake include statement for every slurped filename, so that # the module dependencies are accurate: appendToModule(module, newNode(nkIncludeStmt, info, @[ newStrNode(nkStrLit, filename)])) except IOError: localError(conf, info, "cannot open file: " & file) result = "" proc atomicTypeX(cache: IdentCache; name: string; m: TMagic; t: PType; info: TLineInfo): PNode = let sym = newSym(skType, getIdent(cache, name), t.owner, info) sym.magic = m sym.typ = t result = newSymNode(sym) result.typ = t proc atomicTypeX(s: PSym; info: TLineInfo): PNode = result = newSymNode(s) result.info = info proc mapTypeToAstX(cache: IdentCache; t: PType; info: TLineInfo; inst=false; allowRecursionX=false): PNode proc mapTypeToBracketX(cache: IdentCache; name: string; m: TMagic; t: PType; info: TLineInfo; inst=false): PNode = result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t) result.add atomicTypeX(cache, name, m, t, info) for i in 0 ..< t.len: if t.sons[i] == nil: let void = atomicTypeX(cache, "void", mVoid, t, info) void.typ = newType(tyVoid, t.owner) result.add void else: result.add mapTypeToAstX(cache, t.sons[i], info, inst) proc objectNode(cache: IdentCache; n: PNode): PNode = if n.kind == nkSym: result = newNodeI(nkIdentDefs, n.info) result.add n # name result.add mapTypeToAstX(cache, n.sym.typ, n.info, true, false) # type result.add newNodeI(nkEmpty, n.info) # no assigned value else: result = copyNode(n) for i in 0 ..< n.safeLen: result.add objectNode(cache, n[i]) proc mapTypeToAstX(cache: IdentCache; t: PType; info: TLineInfo; inst=false; allowRecursionX=false): PNode = var allowRecursion = allowRecursionX template atomicType(name, m): untyped = atomicTypeX(cache, name, m, t, info) template atomicType(s): untyped = atomicTypeX(s, info) template mapTypeToAst(t,info): untyped = mapTypeToAstX(cache, t, info, inst) template mapTypeToAstR(t,info): untyped = mapTypeToAstX(cache, t, info, inst, true) template mapTypeToAst(t,i,info): untyped = if i<t.len and t.sons[i]!=nil: mapTypeToAstX(cache, t.sons[i], info, inst) else: newNodeI(nkEmpty, info) template mapTypeToBracket(name, m, t, info): untyped = mapTypeToBracketX(cache, name, m, t, info, inst) template newNodeX(kind): untyped = newNodeIT(kind, if t.n.isNil: info else: t.n.info, t) template newIdentDefs(n,t): untyped = var id = newNodeX(nkIdentDefs) id.add n # name id.add mapTypeToAst(t, info) # type id.add newNodeI(nkEmpty, info) # no assigned value id template newIdentDefs(s): untyped = newIdentDefs(s, s.typ) if inst and not allowRecursion and t.sym != nil: # getTypeInst behavior: return symbol return atomicType(t.sym) case t.kind of tyNone: result = atomicType("none", mNone) of tyBool: result = atomicType("bool", mBool) of tyChar: result = atomicType("char", mChar) of tyNil: result = atomicType("nil", mNil) of tyExpr: result = atomicType("expr", mExpr) of tyStmt: result = atomicType("stmt", mStmt) of tyVoid: result = atomicType("void", mVoid) of tyEmpty: result = atomicType("empty", mNone) of tyUncheckedArray: result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t) result.add atomicType("UncheckedArray", mUncheckedArray) result.add mapTypeToAst(t.sons[0], info) of tyArray: result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t) result.add atomicType("array", mArray) if inst and t.sons[0].kind == tyRange: var rng = newNodeX(nkInfix) rng.add newIdentNode(getIdent(cache, ".."), info) rng.add t.sons[0].n.sons[0].copyTree rng.add t.sons[0].n.sons[1].copyTree result.add rng else: result.add mapTypeToAst(t.sons[0], info) result.add mapTypeToAst(t.sons[1], info) of tyTypeDesc: if t.base != nil: result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t) result.add atomicType("typeDesc", mTypeDesc) result.add mapTypeToAst(t.base, info) else: result = atomicType("typeDesc", mTypeDesc) of tyGenericInvocation: result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t) for i in 0 ..< t.len: result.add mapTypeToAst(t.sons[i], info) of tyGenericInst: if inst: if allowRecursion: result = mapTypeToAstR(t.lastSon, info) else: result = newNodeX(nkBracketExpr) #result.add mapTypeToAst(t.lastSon, info) result.add mapTypeToAst(t[0], info) for i in 1 ..< t.len-1: result.add mapTypeToAst(t.sons[i], info) else: result = mapTypeToAstX(cache, t.lastSon, info, inst, allowRecursion) of tyGenericBody: if inst: result = mapTypeToAstR(t.lastSon, info) else: result = mapTypeToAst(t.lastSon, info) of tyAlias: result = mapTypeToAstX(cache, t.lastSon, info, inst, allowRecursion) of tyOrdinal: result = mapTypeToAst(t.lastSon, info) of tyDistinct: if inst: result = newNodeX(nkDistinctTy) result.add mapTypeToAst(t.sons[0], info) else: if allowRecursion or t.sym == nil: result = mapTypeToBracket("distinct", mDistinct, t, info) else: result = atomicType(t.sym) of tyGenericParam, tyForward: result = atomicType(t.sym) of tyObject: if inst: result = newNodeX(nkObjectTy) if t.sym.ast != nil: result.add t.sym.ast[2][0].copyTree # copy object pragmas else: result.add newNodeI(nkEmpty, info) if t.sons[0] == nil: result.add newNodeI(nkEmpty, info) else: # handle parent object var nn = newNodeX(nkOfInherit) nn.add mapTypeToAst(t.sons[0], info) result.add nn if t.n.len > 0: result.add objectNode(cache, t.n) else: result.add newNodeI(nkEmpty, info) else: if allowRecursion or t.sym == nil: result = newNodeIT(nkObjectTy, if t.n.isNil: info else: t.n.info, t) result.add newNodeI(nkEmpty, info) if t.sons[0] == nil: result.add newNodeI(nkEmpty, info) else: result.add mapTypeToAst(t.sons[0], info) result.add copyTree(t.n) else: result = atomicType(t.sym) of tyEnum: result = newNodeIT(nkEnumTy, if t.n.isNil: info else: t.n.info, t) result.add newNodeI(nkEmpty, info) # pragma node, currently always empty for enum for c in t.n.sons: result.add copyTree(c) of tyTuple: if inst: # only named tuples have a node, unnamed tuples don't if t.n.isNil: result = newNodeX(nkTupleConstr) for subType in t.sons: result.add mapTypeToAst(subType, info) else: result = newNodeX(nkTupleTy) for s in t.n.sons: result.add newIdentDefs(s) else: result = mapTypeToBracket("tuple", mTuple, t, info) of tySet: result = mapTypeToBracket("set", mSet, t, info) of tyPtr: if inst: result = newNodeX(nkPtrTy) result.add mapTypeToAst(t.sons[0], info) else: result = mapTypeToBracket("ptr", mPtr, t, info) of tyRef: if inst: result = newNodeX(nkRefTy) result.add mapTypeToAst(t.sons[0], info) else: result = mapTypeToBracket("ref", mRef, t, info) of tyVar: if inst: result = newNodeX(nkVarTy) result.add mapTypeToAst(t.sons[0], info) else: result = mapTypeToBracket("var", mVar, t, info) of tyLent: result = mapTypeToBracket("lent", mBuiltinType, t, info) of tySink: result = mapTypeToBracket("sink", mBuiltinType, t, info) of tySequence: result = mapTypeToBracket("seq", mSeq, t, info) of tyOpt: result = mapTypeToBracket("opt", mOpt, t, info) of tyProc: if inst: result = newNodeX(nkProcTy) var fp = newNodeX(nkFormalParams) if t.sons[0] == nil: fp.add newNodeI(nkEmpty, info) else: fp.add mapTypeToAst(t.sons[0], t.n[0].info) for i in 1..<t.sons.len: fp.add newIdentDefs(t.n[i], t.sons[i]) result.add fp result.add if t.n[0].len > 0: t.n[0][pragmasEffects].copyTree else: newNodeI(nkEmpty, info) else: result = mapTypeToBracket("proc", mNone, t, info) of tyOpenArray: result = mapTypeToBracket("openArray", mOpenArray, t, info) of tyRange: result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t) result.add atomicType("range", mRange) if inst: let rng = newNodeX(nkInfix) rng.add newIdentNode(getIdent(cache, ".."), info) rng.add t.n.sons[0].copyTree rng.add t.n.sons[1].copyTree result.add rng else: result.add t.n.sons[0].copyTree result.add t.n.sons[1].copyTree of tyPointer: result = atomicType("pointer", mPointer) of tyString: result = atomicType("string", mString) of tyCString: result = atomicType("cstring", mCString) of tyInt: result = atomicType("int", mInt) of tyInt8: result = atomicType("int8", mInt8) of tyInt16: result = atomicType("int16", mInt16) of tyInt32: result = atomicType("int32", mInt32) of tyInt64: result = atomicType("int64", mInt64) of tyFloat: result = atomicType("float", mFloat) of tyFloat32: result = atomicType("float32", mFloat32) of tyFloat64: result = atomicType("float64", mFloat64) of tyFloat128: result = atomicType("float128", mFloat128) of tyUInt: result = atomicType("uint", mUint) of tyUInt8: result = atomicType("uint8", mUint8) of tyUInt16: result = atomicType("uint16", mUint16) of tyUInt32: result = atomicType("uint32", mUint32) of tyUInt64: result = atomicType("uint64", mUint64) of tyVarargs: result = mapTypeToBracket("varargs", mVarargs, t, info) of tyProxy: result = atomicType("error", mNone) of tyBuiltInTypeClass: result = mapTypeToBracket("builtinTypeClass", mNone, t, info) of tyUserTypeClass, tyUserTypeClassInst: if t.isResolvedUserTypeClass: result = mapTypeToAst(t.lastSon, info) else: result = mapTypeToBracket("concept", mNone, t, info) result.add t.n.copyTree of tyCompositeTypeClass: result = mapTypeToBracket("compositeTypeClass", mNone, t, info) of tyAnd: result = mapTypeToBracket("and", mAnd, t, info) of tyOr: result = mapTypeToBracket("or", mOr, t, info) of tyNot: result = mapTypeToBracket("not", mNot, t, info) of tyAnything: result = atomicType("anything", mNone) of tyInferred: assert false of tyStatic, tyFromExpr: if inst: if t.n != nil: result = t.n.copyTree else: result = atomicType("void", mVoid) else: result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t) result.add atomicType("static", mNone) if t.n != nil: result.add t.n.copyTree of tyOptAsRef: assert(false, "mapTypeToAstX") proc opMapTypeToAst*(cache: IdentCache; t: PType; info: TLineInfo): PNode = result = mapTypeToAstX(cache, t, info, false, true) # the "Inst" version includes generic parameters in the resulting type tree # and also tries to look like the corresponding Nim type declaration proc opMapTypeInstToAst*(cache: IdentCache; t: PType; info: TLineInfo): PNode = result = mapTypeToAstX(cache, t, info, true, false) # the "Impl" version includes generic parameters in the resulting type tree # and also tries to look like the corresponding Nim type implementation proc opMapTypeImplToAst*(cache: IdentCache; t: PType; info: TLineInfo): PNode = result = mapTypeToAstX(cache, t, info, true, true)