# # # The Nim Compiler # (c) Copyright 2015 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # import ast, types, msgs, options, idents, lineinfos from pathutils import AbsoluteFile import std/os when defined(nimPreviewSlimSystem): import std/syncio proc opSlurp*(file: string, info: TLineInfo, module: PSym; conf: ConfigRef): string = try: var filename = parentDir(toFullPath(conf, info)) / file if not fileExists(filename): filename = findFile(conf, file).string result = readFile(filename) # we produce a fake include statement for every slurped filename, so that # the module dependencies are accurate: discard conf.fileInfoIdx(AbsoluteFile filename) appendToModule(module, newTreeI(nkIncludeStmt, info, newStrNode(nkStrLit, filename))) except IOError: localError(conf, info, "cannot open file: " & file) result = "" proc atomicTypeX(cache: IdentCache; name: string; m: TMagic; t: PType; info: TLineInfo; idgen: IdGenerator): PNode = let sym = newSym(skType, getIdent(cache, name), idgen, t.owner, info) sym.magic = m sym.typ = t result = newSymNode(sym) result.typ = t proc atomicTypeX(s: PSym; info: TLineInfo): PNode = result = newSymNode(s) result.info = info proc mapTypeToAstX(cache: IdentCache; t: PType; info: TLineInfo; idgen: IdGenerator; inst=false; allowRecursionX=false): PNode proc mapTypeToBracketX(cache: IdentCache; name: string; m: TMagic; t: PType; info: TLineInfo; idgen: IdGenerator; inst=false): PNode = result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t) result.add atomicTypeX(cache, name, m, t, info, idgen) for a in t.kids: if a == nil: let voidt = atomicTypeX(cache, "void", mVoid, t, info, idgen) voidt.typ = newType(tyVoid, idgen, t.owner) result.add voidt else: result.add mapTypeToAstX(cache, a, info, idgen, inst) proc objectNode(cache: IdentCache; n: PNode; idgen: IdGenerator): PNode = if n.kind == nkSym: result = newNodeI(nkIdentDefs, n.info) result.add n # name result.add mapTypeToAstX(cache, n.sym.typ, n.info, idgen, true, false) # type result.add newNodeI(nkEmpty, n.info) # no assigned value else: result = copyNode(n) for i in 0.. 0: result.add objectNode(cache, t.n, idgen) else: result.add newNodeI(nkEmpty, info) else: if allowRecursion or t.sym == nil: result = newNodeIT(nkObjectTy, if t.n.isNil: info else: t.n.info, t) result.add newNodeI(nkEmpty, info) if t.baseClass == nil: result.add newNodeI(nkEmpty, info) else: result.add mapTypeToAst(t.baseClass, info) result.add copyTree(t.n) else: result = atomicType(t.sym) of tyEnum: result = newNodeIT(nkEnumTy, if t.n.isNil: info else: t.n.info, t) result.add newNodeI(nkEmpty, info) # pragma node, currently always empty for enum for c in t.n.sons: result.add copyTree(c) of tyTuple: if inst: # only named tuples have a node, unnamed tuples don't if t.n.isNil: result = newNodeX(nkTupleConstr) for subType in t.kids: result.add mapTypeToAst(subType, info) else: result = newNodeX(nkTupleTy) for s in t.n.sons: result.add newIdentDefs(s) else: result = mapTypeToBracket("tuple", mTuple, t, info) of tySet: result = mapTypeToBracket("set", mSet, t, info) of tyPtr: if inst: result = newNodeX(nkPtrTy) result.add mapTypeToAst(t.elementType, info) else: result = mapTypeToBracket("ptr", mPtr, t, info) of tyRef: if inst: result = newNodeX(nkRefTy) result.add mapTypeToAst(t.elementType, info) else: result = mapTypeToBracket("ref", mRef, t, info) of tyVar: if inst: result = newNodeX(nkVarTy) result.add mapTypeToAst(t.elementType, info) else: result = mapTypeToBracket("var", mVar, t, info) of tyLent: result = mapTypeToBracket("lent", mBuiltinType, t, info) of tySink: result = mapTypeToBracket("sink", mBuiltinType, t, info) of tySequence: result = mapTypeToBracket("seq", mSeq, t, info) of tyProc: if inst: result = newNodeX(if tfIterator in t.flags: nkIteratorTy else: nkProcTy) var fp = newNodeX(nkFormalParams) if t.returnType == nil: fp.add newNodeI(nkEmpty, info) else: fp.add mapTypeToAst(t.returnType, t.n[0].info) for i in FirstParamAt.. 0: t.n[0][pragmasEffects].copyTree else: newNodeI(nkEmpty, info) if t.callConv != ccClosure or tfExplicitCallConv in t.flags: if prag.kind == nkEmpty: prag = newNodeI(nkPragma, info) prag.add newIdentNode(getIdent(cache, $t.callConv), info) result.add prag else: result = mapTypeToBracket("proc", mNone, t, info) of tyOpenArray: result = mapTypeToBracket("openArray", mOpenArray, t, info) of tyRange: result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t) result.add atomicType("range", mRange) if inst and t.n.len == 2: let rng = newNodeX(nkInfix) rng.add newIdentNode(getIdent(cache, ".."), info) rng.add t.n[0].copyTree rng.add t.n[1].copyTree result.add rng else: result.add t.n[0].copyTree if t.n.len > 1: result.add t.n[1].copyTree of tyPointer: result = atomicType("pointer", mPointer) of tyString: result = atomicType("string", mString) of tyCstring: result = atomicType("cstring", mCstring) of tyInt: result = atomicType("int", mInt) of tyInt8: result = atomicType("int8", mInt8) of tyInt16: result = atomicType("int16", mInt16) of tyInt32: result = atomicType("int32", mInt32) of tyInt64: result = atomicType("int64", mInt64) of tyFloat: result = atomicType("float", mFloat) of tyFloat32: result = atomicType("float32", mFloat32) of tyFloat64: result = atomicType("float64", mFloat64) of tyFloat128: result = atomicType("float128", mFloat128) of tyUInt: result = atomicType("uint", mUInt) of tyUInt8: result = atomicType("uint8", mUInt8) of tyUInt16: result = atomicType("uint16", mUInt16) of tyUInt32: result = atomicType("uint32", mUInt32) of tyUInt64: result = atomicType("uint64", mUInt64) of tyVarargs: result = mapTypeToBracket("varargs", mVarargs, t, info) of tyError: result = atomicType("error", mNone) of tyBuiltInTypeClass: result = mapTypeToBracket("builtinTypeClass", mNone, t, info) of tyUserTypeClass, tyUserTypeClassInst: if t.isResolvedUserTypeClass: result = mapTypeToAst(t.last, info) else: result = mapTypeToBracket("concept", mNone, t, info) result.add t.n.copyTree of tyCompositeTypeClass: result = mapTypeToBracket("compositeTypeClass", mNone, t, info) of tyAnd: result = mapTypeToBracket("and", mAnd, t, info) of tyOr: result = mapTypeToBracket("or", mOr, t, info) of tyNot: result = mapTypeToBracket("not", mNot, t, info) of tyIterable: result = mapTypeToBracket("iterable", mIterableType, t, info) of tyAnything: result = atomicType("anything", mNone) of tyInferred: result = mapTypeToAstX(cache, t.skipModifier, info, idgen, inst, allowRecursion) of tyStatic, tyFromExpr: if inst: if t.n != nil: result = t.n.copyTree else: result = atomicType("void", mVoid) else: result = newNodeIT(nkBracketExpr, if t.n.isNil: info else: t.n.info, t) result.add atomicType("static", mNone) if t.n != nil: result.add t.n.copyTree of tyOwned: result = mapTypeToBracket("owned", mBuiltinType, t, info) of tyConcept: result = mapTypeToBracket("concept", mNone, t, info) result.add t.n.copyTree proc opMapTypeToAst*(cache: IdentCache; t: PType; info: TLineInfo; idgen: IdGenerator): PNode = result = mapTypeToAstX(cache, t, info, idgen, inst=false, allowRecursionX=true) # the "Inst" version includes generic parameters in the resulting type tree # and also tries to look like the corresponding Nim type declaration proc opMapTypeInstToAst*(cache: IdentCache; t: PType; info: TLineInfo; idgen: IdGenerator): PNode = result = mapTypeToAstX(cache, t, info, idgen, inst=true, allowRecursionX=false) # the "Impl" version includes generic parameters in the resulting type tree # and also tries to look like the corresponding Nim type implementation proc opMapTypeImplToAst*(cache: IdentCache; t: PType; info: TLineInfo; idgen: IdGenerator): PNode = result = mapTypeToAstX(cache, t, info, idgen, inst=true, allowRecursionX=true)