# # # Nimrod's Runtime Library # (c) Copyright 2008 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # # simple integer arithmetic with overflow checking proc raiseOverflow {.compilerproc, noinline.} = # a single proc to reduce code size to a minimum raise newException(EOverflow, "over- or underflow") proc raiseDivByZero {.compilerproc, noinline.} = raise newException(EDivByZero, "divison by zero") proc addInt64(a, b: int64): int64 {.compilerProc, inline.} = result = a +% b if (result xor a) >= int64(0) or (result xor b) >= int64(0): return result raiseOverflow() proc subInt64(a, b: int64): int64 {.compilerProc, inline.} = result = a -% b if (result xor a) >= int64(0) or (result xor not b) >= int64(0): return result raiseOverflow() proc negInt64(a: int64): int64 {.compilerProc, inline.} = if a != low(int64): return -a raiseOverflow() proc absInt64(a: int64): int64 {.compilerProc, inline.} = if a != low(int64): if a >= 0: return a else: return -a raiseOverflow() proc divInt64(a, b: int64): int64 {.compilerProc, inline.} = if b == int64(0): raiseDivByZero() if a == low(int64) and b == int64(-1): raiseOverflow() return a div b proc modInt64(a, b: int64): int64 {.compilerProc, inline.} = if b == int64(0): raiseDivByZero() return a mod b # # This code has been inspired by Python's source code. # The native int product x*y is either exactly right or *way* off, being # just the last n bits of the true product, where n is the number of bits # in an int (the delivered product is the true product plus i*2**n for # some integer i). # # The native float64 product x*y is subject to three # rounding errors: on a sizeof(int)==8 box, each cast to double can lose # info, and even on a sizeof(int)==4 box, the multiplication can lose info. # But, unlike the native int product, it's not in *range* trouble: even # if sizeof(int)==32 (256-bit ints), the product easily fits in the # dynamic range of a float64. So the leading 50 (or so) bits of the float64 # product are correct. # # We check these two ways against each other, and declare victory if they're # approximately the same. Else, because the native int product is the only # one that can lose catastrophic amounts of information, it's the native int # product that must have overflowed. # proc mulInt64(a, b: int64): int64 {.compilerproc.} = var resAsFloat, floatProd: float64 result = a *% b floatProd = toBiggestFloat(a) # conversion floatProd = floatProd * toBiggestFloat(b) resAsFloat = toBiggestFloat(result) # Fast path for normal case: small multiplicands, and no info # is lost in either method. if resAsFloat == floatProd: return result # Somebody somewhere lost info. Close enough, or way off? Note # that a != 0 and b != 0 (else resAsFloat == floatProd == 0). # The difference either is or isn't significant compared to the # true value (of which floatProd is a good approximation). # abs(diff)/abs(prod) <= 1/32 iff # 32 * abs(diff) <= abs(prod) -- 5 good bits is "close enough" if 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd): return result raiseOverflow() proc absInt(a: int): int {.compilerProc, inline.} = if a != low(int): if a >= 0: return a else: return -a raiseOverflow() const asmVersion = defined(I386) and (defined(vcc) or defined(wcc) or defined(dmc)) # my Version of Borland C++Builder does not have # tasm32, which is needed for assembler blocks # this is why Borland is not included in the 'when' useInline = not asmVersion when asmVersion and defined(gcc): proc addInt(a, b: int): int {.compilerProc, pure, inline.} proc subInt(a, b: int): int {.compilerProc, pure, inline.} proc mulInt(a, b: int): int {.compilerProc, pure, inline.} proc divInt(a, b: int): int {.compilerProc, pure, inline.} proc modInt(a, b: int): int {.compilerProc, pure, inline.} proc negInt(a: int): int {.compilerProc, pure, inline.} elif asmVersion: proc addInt(a, b: int): int {.compilerProc, pure.} proc subInt(a, b: int): int {.compilerProc, pure.} proc mulInt(a, b: int): int {.compilerProc, pure.} proc divInt(a, b: int): int {.compilerProc, pure.} proc modInt(a, b: int): int {.compilerProc, pure.} proc negInt(a: int): int {.compilerProc, pure.} elif useInline: proc addInt(a, b: int): int {.compilerProc, inline.} proc subInt(a, b: int): int {.compilerProc, inline.} proc mulInt(a, b: int): int {.compilerProc.} # mulInt is to large for inlining? proc divInt(a, b: int): int {.compilerProc, inline.} proc modInt(a, b: int): int {.compilerProc, inline.} proc negInt(a: int): int {.compilerProc, inline.} else: proc addInt(a, b: int): int {.compilerProc.} proc subInt(a, b: int): int {.compilerProc.} proc mulInt(a, b: int): int {.compilerProc.} proc divInt(a, b: int): int {.compilerProc.} proc modInt(a, b: int): int {.compilerProc.} proc negInt(a: int): int {.compilerProc.} # implementation: when asmVersion and not defined(gcc): # assembler optimized versions for compilers that # have an intel syntax assembler: proc addInt(a, b: int): int = # a in eax, and b in edx asm """ mov eax, `a` add eax, `b` jno theEnd call raiseOverflow theEnd: """ proc subInt(a, b: int): int = asm """ mov eax, `a` sub eax, `b` jno theEnd call raiseOverflow theEnd: """ proc negInt(a: int): int = asm """ mov eax, `a` neg eax jno theEnd call raiseOverflow theEnd: """ proc divInt(a, b: int): int = asm """ mov eax, `a` mov ecx, `b` xor edx, edx idiv ecx jno theEnd call raiseOverflow theEnd: """ proc modInt(a, b: int): int = asm """ mov eax, `a` mov ecx, `b` xor edx, edx idiv ecx jno theEnd call raiseOverflow theEnd: mov eax, edx """ proc mulInt(a, b: int): int = asm """ mov eax, `a` mov ecx, `b` xor edx, edx imul ecx jno theEnd call raiseOverflow theEnd: """ elif asmVersion and defined(gcc): proc addInt(a, b: int): int = asm """ "addl %1,%%eax\n" "jno 1\n" "call _raiseOverflow\n" "1: \n" :"=a"(`a`) :"a"(`a`), "r"(`b`) """ proc subInt(a, b: int): int = asm """ "subl %1,%%eax\n" "jno 1\n" "call _raiseOverflow\n" "1: \n" :"=a"(`a`) :"a"(`a`), "r"(`b`) """ proc negInt(a: int): int = asm """ "negl %%eax\n" "jno 1\n" "call _raiseOverflow\n" "1: \n" :"=a"(`a`) :"a"(`a`) """ proc divInt(a, b: int): int = asm """ "xorl %%edx, %%edx\n" "idivl %%ecx\n" "jno 1\n" "call _raiseOverflow\n" "1: \n" :"=a"(`a`) :"a"(`a`), "c"(`b`) :"%edx" """ proc modInt(a, b: int): int = asm """ "xorl %%edx, %%edx\n" "idivl %%ecx\n" "jno 1\n" "call _raiseOverflow\n" "1: \n" "movl %%edx, %%eax" :"=a"(`a`) :"a"(`a`), "c"(`b`) :"%edx" """ proc mulInt(a, b: int): int = asm """ "xorl %%edx, %%edx\n" "imull %%ecx\n" "jno 1\n" "call _raiseOverflow\n" "1: \n" :"=a"(`a`) :"a"(`a`), "c"(`b`) :"%edx" """ else: # Platform independant versions of the above (slower!) proc addInt(a, b: int): int = result = a +% b if (result xor a) >= 0 or (result xor b) >= 0: return result raiseOverflow() proc subInt(a, b: int): int = result = a -% b if (result xor a) >= 0 or (result xor not b) >= 0: return result raiseOverflow() proc negInt(a: int): int = if a != low(int): return -a raiseOverflow() proc divInt(a, b: int): int = if b == 0: raiseDivByZero() if a == low(int) and b == -1: raiseOverflow() return a div b proc modInt(a, b: int): int = if b == 0: raiseDivByZero() return a mod b # # This code has been inspired by Python's source code. # The native int product x*y is either exactly right or *way* off, being # just the last n bits of the true product, where n is the number of bits # in an int (the delivered product is the true product plus i*2**n for # some integer i). # # The native float64 product x*y is subject to three # rounding errors: on a sizeof(int)==8 box, each cast to double can lose # info, and even on a sizeof(int)==4 box, the multiplication can lose info. # But, unlike the native int product, it's not in *range* trouble: even # if sizeof(int)==32 (256-bit ints), the product easily fits in the # dynamic range of a float64. So the leading 50 (or so) bits of the float64 # product are correct. # # We check these two ways against each other, and declare victory if # they're approximately the same. Else, because the native int product is # the only one that can lose catastrophic amounts of information, it's the # native int product that must have overflowed. # proc mulInt(a, b: int): int = var resAsFloat, floatProd: float result = a *% b floatProd = toFloat(a) * toFloat(b) resAsFloat = toFloat(result) # Fast path for normal case: small multiplicands, and no info # is lost in either method. if resAsFloat == floatProd: return result # Somebody somewhere lost info. Close enough, or way off? Note # that a != 0 and b != 0 (else resAsFloat == floatProd == 0). # The difference either is or isn't significant compared to the # true value (of which floatProd is a good approximation). # abs(diff)/abs(prod) <= 1/32 iff # 32 * abs(diff) <= abs(prod) -- 5 good bits is "close enough" if 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd): return result raiseOverflow()