# # # Nimrod's Runtime Library # (c) Copyright 2008 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This module implements the Difference Algorithm published in ## "An O(ND) Difference Algorithm and its Variations" by Eugene Myers ## Algorithmica Vol. 1 No. 2, 1986, p 251. ## This implementation is based on: ## ## diff.cs: A port of the algorythm to C# ## Copyright (c) by Matthias Hertel, http://www.mathertel.de ## This work is licensed under a BSD style license. ## See http://www.mathertel.de/License.aspx {.push debugger:off .} # the user does not want to trace a part # of the standard library! import strutils type TResultItem* = object of TObject startA*: int ## start of line number in A startB*: int ## start of line number in B deletedA*: int ## number of deletions in A deletedB*: int ## number of deletions in B SMSRD = tuple[x, y: int] ## shortest middle snake return data TDiffData {.final.} = object len: int data: seq[int] modified: seq[bool] proc diffText*(a, b: seq[string], eq: proc (x, y: string): bool): seq[TResultItem] = ## returns the difference of two texts `a` and `b`. The texts are compared ## line by line with the `eq` proc. nil proc diffText*(a, b: string, eq: proc (x, y: string): bool): seq[TResultItem] = ## returns the difference of two texts `a` and `b`. The texts are compared ## line by line with the `eq` proc. result = diffText(linesSeq(a), linesSeq(b), eq) /// details of one difference. public struct Item { /// Start Line number in Data A. public int StartA; /// Start Line number in Data B. public int StartB; /// Number of changes in Data A. public int deletedA; /// Number of changes in Data B. public int insertedB; } // Item /// /// Shortest Middle Snake Return Data /// private struct SMSRD { internal int x, y; // internal int u, v; // 2002.09.20: no need for 2 points } /// /// Find the difference in 2 texts, comparing by textlines. /// /// A-version of the text (usualy the old one) /// B-version of the text (usualy the new one) /// Returns a array of Items that describe the differences. public Item[] DiffText(string TextA, string TextB) { return (DiffText(TextA, TextB, false, false, false)); } // DiffText /// /// Find the difference in 2 text documents, comparing by textlines. /// The algorithm itself is comparing 2 arrays of numbers so when comparing 2 text documents /// each line is converted into a (hash) number. This hash-value is computed by storing all /// textlines into a common hashtable so i can find dublicates in there, and generating a /// new number each time a new textline is inserted. /// /// A-version of the text (usualy the old one) /// B-version of the text (usualy the new one) /// When set to true, all leading and trailing whitespace characters are stripped out before the comparation is done. /// When set to true, all whitespace characters are converted to a single space character before the comparation is done. /// When set to true, all characters are converted to their lowercase equivivalence before the comparation is done. /// Returns a array of Items that describe the differences. public static Item[] DiffText(string TextA, string TextB, bool trimSpace, bool ignoreSpace, bool ignoreCase) { // prepare the input-text and convert to comparable numbers. Hashtable h = new Hashtable(TextA.Length + TextB.Length); // The A-Version of the data (original data) to be compared. DiffData DataA = new DiffData(DiffCodes(TextA, h, trimSpace, ignoreSpace, ignoreCase)); // The B-Version of the data (modified data) to be compared. DiffData DataB = new DiffData(DiffCodes(TextB, h, trimSpace, ignoreSpace, ignoreCase)); h = null; // free up hashtable memory (maybe) int MAX = DataA.Length + DataB.Length + 1; /// vector for the (0,0) to (x,y) search int[] DownVector = new int[2 * MAX + 2]; /// vector for the (u,v) to (N,M) search int[] UpVector = new int[2 * MAX + 2]; LCS(DataA, 0, DataA.Length, DataB, 0, DataB.Length, DownVector, UpVector); Optimize(DataA); Optimize(DataB); return CreateDiffs(DataA, DataB); } // DiffText proc Optimize(d: var TDiffData) = ## If a sequence of modified lines starts with a line that contains the ## same content as the line that appends the changes, the difference sequence ## is modified so that the appended line and not the starting line is marked ## as modified. This leads to more readable diff sequences when comparing ## text files. var startPos = 0 while startPos < d.len: while StartPos < d.len and not d.modified[StartPos]: inc(startPos) var endPos = startPos while EndPos < d.len and d.modified[EndPos]: inc(endPos) if EndPos < d.len and d.data[StartPos] == d.data[EndPos]: d.modified[StartPos] = false d.modified[EndPos] = true else: StartPos = EndPos /// /// Find the difference in 2 arrays of integers. /// /// A-version of the numbers (usualy the old one) /// B-version of the numbers (usualy the new one) /// Returns a array of Items that describe the differences. public static Item[] DiffInt(int[] ArrayA, int[] ArrayB) { // The A-Version of the data (original data) to be compared. DiffData DataA = new DiffData(ArrayA); // The B-Version of the data (modified data) to be compared. DiffData DataB = new DiffData(ArrayB); int MAX = DataA.Length + DataB.Length + 1; /// vector for the (0,0) to (x,y) search int[] DownVector = new int[2 * MAX + 2]; /// vector for the (u,v) to (N,M) search int[] UpVector = new int[2 * MAX + 2]; LCS(DataA, 0, DataA.Length, DataB, 0, DataB.Length, DownVector, UpVector); return CreateDiffs(DataA, DataB); } // Diff /// /// This function converts all textlines of the text into unique numbers for every unique textline /// so further work can work only with simple numbers. /// /// the input text /// This extern initialized hashtable is used for storing all ever used textlines. /// ignore leading and trailing space characters /// a array of integers. private static int[] DiffCodes(string aText, Hashtable h, bool trimSpace, bool ignoreSpace, bool ignoreCase) { // get all codes of the text string[] Lines; int[] Codes; int lastUsedCode = h.Count; object aCode; string s; // strip off all cr, only use lf as textline separator. aText = aText.Replace("\r", ""); Lines = aText.Split('\n'); Codes = new int[Lines.Length]; for (int i = 0; i < Lines.Length; ++i) { s = Lines[i]; if (trimSpace) s = s.Trim(); if (ignoreSpace) { s = Regex.Replace(s, "\\s+", " "); // TODO: optimization: faster blank removal. } if (ignoreCase) s = s.ToLower(); aCode = h[s]; if (aCode == null) { lastUsedCode++; h[s] = lastUsedCode; Codes[i] = lastUsedCode; } else { Codes[i] = (int)aCode; } // if } // for return (Codes); } // DiffCodes /// /// This is the algorithm to find the Shortest Middle Snake (SMS). /// /// sequence A /// lower bound of the actual range in DataA /// upper bound of the actual range in DataA (exclusive) /// sequence B /// lower bound of the actual range in DataB /// upper bound of the actual range in DataB (exclusive) /// a vector for the (0,0) to (x,y) search. Passed as a parameter for speed reasons. /// a vector for the (u,v) to (N,M) search. Passed as a parameter for speed reasons. /// a MiddleSnakeData record containing x,y and u,v private static SMSRD SMS(DiffData DataA, int LowerA, int UpperA, DiffData DataB, int LowerB, int UpperB, int[] DownVector, int[] UpVector) { SMSRD ret; int MAX = DataA.Length + DataB.Length + 1; int DownK = LowerA - LowerB; // the k-line to start the forward search int UpK = UpperA - UpperB; // the k-line to start the reverse search int Delta = (UpperA - LowerA) - (UpperB - LowerB); bool oddDelta = (Delta & 1) != 0; // The vectors in the publication accepts negative indexes. the vectors implemented here are 0-based // and are access using a specific offset: UpOffset UpVector and DownOffset for DownVektor int DownOffset = MAX - DownK; int UpOffset = MAX - UpK; int MaxD = ((UpperA - LowerA + UpperB - LowerB) / 2) + 1; // Debug.Write(2, "SMS", String.Format("Search the box: A[{0}-{1}] to B[{2}-{3}]", LowerA, UpperA, LowerB, UpperB)); // init vectors DownVector[DownOffset + DownK + 1] = LowerA; UpVector[UpOffset + UpK - 1] = UpperA; for (int D = 0; D <= MaxD; D++) { // Extend the forward path. for (int k = DownK - D; k <= DownK + D; k += 2) { // Debug.Write(0, "SMS", "extend forward path " + k.ToString()); // find the only or better starting point int x, y; if (k == DownK - D) { x = DownVector[DownOffset + k + 1]; // down } else { x = DownVector[DownOffset + k - 1] + 1; // a step to the right if ((k < DownK + D) && (DownVector[DownOffset + k + 1] >= x)) x = DownVector[DownOffset + k + 1]; // down } y = x - k; // find the end of the furthest reaching forward D-path in diagonal k. while ((x < UpperA) && (y < UpperB) && (DataA.data[x] == DataB.data[y])) { x++; y++; } DownVector[DownOffset + k] = x; // overlap ? if (oddDelta && (UpK - D < k) && (k < UpK + D)) { if (UpVector[UpOffset + k] <= DownVector[DownOffset + k]) { ret.x = DownVector[DownOffset + k]; ret.y = DownVector[DownOffset + k] - k; // ret.u = UpVector[UpOffset + k]; // 2002.09.20: no need for 2 points // ret.v = UpVector[UpOffset + k] - k; return (ret); } // if } // if } // for k // Extend the reverse path. for (int k = UpK - D; k <= UpK + D; k += 2) { // Debug.Write(0, "SMS", "extend reverse path " + k.ToString()); // find the only or better starting point int x, y; if (k == UpK + D) { x = UpVector[UpOffset + k - 1]; // up } else { x = UpVector[UpOffset + k + 1] - 1; // left if ((k > UpK - D) && (UpVector[UpOffset + k - 1] < x)) x = UpVector[UpOffset + k - 1]; // up } // if y = x - k; while ((x > LowerA) && (y > LowerB) && (DataA.data[x - 1] == DataB.data[y - 1])) { x--; y--; // diagonal } UpVector[UpOffset + k] = x; // overlap ? if (!oddDelta && (DownK - D <= k) && (k <= DownK + D)) { if (UpVector[UpOffset + k] <= DownVector[DownOffset + k]) { ret.x = DownVector[DownOffset + k]; ret.y = DownVector[DownOffset + k] - k; // ret.u = UpVector[UpOffset + k]; // 2002.09.20: no need for 2 points // ret.v = UpVector[UpOffset + k] - k; return (ret); } // if } // if } // for k } // for D throw new ApplicationException("the algorithm should never come here."); } // SMS /// /// This is the divide-and-conquer implementation of the longes common-subsequence (LCS) /// algorithm. /// The published algorithm passes recursively parts of the A and B sequences. /// To avoid copying these arrays the lower and upper bounds are passed while the sequences stay constant. /// /// sequence A /// lower bound of the actual range in DataA /// upper bound of the actual range in DataA (exclusive) /// sequence B /// lower bound of the actual range in DataB /// upper bound of the actual range in DataB (exclusive) /// a vector for the (0,0) to (x,y) search. Passed as a parameter for speed reasons. /// a vector for the (u,v) to (N,M) search. Passed as a parameter for speed reasons. private static void LCS(DiffData DataA, int LowerA, int UpperA, DiffData DataB, int LowerB, int UpperB, int[] DownVector, int[] UpVector) { // Debug.Write(2, "LCS", String.Format("Analyse the box: A[{0}-{1}] to B[{2}-{3}]", LowerA, UpperA, LowerB, UpperB)); // Fast walkthrough equal lines at the start while (LowerA < UpperA && LowerB < UpperB && DataA.data[LowerA] == DataB.data[LowerB]) { LowerA++; LowerB++; } // Fast walkthrough equal lines at the end while (LowerA < UpperA && LowerB < UpperB && DataA.data[UpperA - 1] == DataB.data[UpperB - 1]) { --UpperA; --UpperB; } if (LowerA == UpperA) { // mark as inserted lines. while (LowerB < UpperB) DataB.modified[LowerB++] = true; } else if (LowerB == UpperB) { // mark as deleted lines. while (LowerA < UpperA) DataA.modified[LowerA++] = true; } else { // Find the middle snakea and length of an optimal path for A and B SMSRD smsrd = SMS(DataA, LowerA, UpperA, DataB, LowerB, UpperB, DownVector, UpVector); // Debug.Write(2, "MiddleSnakeData", String.Format("{0},{1}", smsrd.x, smsrd.y)); // The path is from LowerX to (x,y) and (x,y) to UpperX LCS(DataA, LowerA, smsrd.x, DataB, LowerB, smsrd.y, DownVector, UpVector); LCS(DataA, smsrd.x, UpperA, DataB, smsrd.y, UpperB, DownVector, UpVector); // 2002.09.20: no need for 2 points } } // LCS() /// Scan the tables of which lines are inserted and deleted, /// producing an edit script in forward order. /// /// dynamic array private static Item[] CreateDiffs(DiffData DataA, DiffData DataB) { ArrayList a = new ArrayList(); Item aItem; Item[] result; int StartA, StartB; int LineA, LineB; LineA = 0; LineB = 0; while (LineA < DataA.Length || LineB < DataB.Length) { if ((LineA < DataA.Length) && (!DataA.modified[LineA]) && (LineB < DataB.Length) && (!DataB.modified[LineB])) { // equal lines LineA++; LineB++; } else { // maybe deleted and/or inserted lines StartA = LineA; StartB = LineB; while (LineA < DataA.Length && (LineB >= DataB.Length || DataA.modified[LineA])) // while (LineA < DataA.Length && DataA.modified[LineA]) LineA++; while (LineB < DataB.Length && (LineA >= DataA.Length || DataB.modified[LineB])) // while (LineB < DataB.Length && DataB.modified[LineB]) LineB++; if ((StartA < LineA) || (StartB < LineB)) { // store a new difference-item aItem = new Item(); aItem.StartA = StartA; aItem.StartB = StartB; aItem.deletedA = LineA - StartA; aItem.insertedB = LineB - StartB; a.Add(aItem); } // if } // if } // while result = new Item[a.Count]; a.CopyTo(result); return (result); } } // class Diff /// Data on one input file being compared. /// internal class DiffData { /// Number of elements (lines). internal int Length; /// Buffer of numbers that will be compared. internal int[] data; /// /// Array of booleans that flag for modified data. /// This is the result of the diff. /// This means deletedA in the first Data or inserted in the second Data. /// internal bool[] modified; /// /// Initialize the Diff-Data buffer. /// /// reference to the buffer internal DiffData(int[] initData) { data = initData; Length = initData.Length; modified = new bool[Length + 2]; } // DiffData } // class DiffData {.pop.}