#
#
# Nimrod's Runtime Library
# (c) Copyright 2008 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements the Difference Algorithm published in
## "An O(ND) Difference Algorithm and its Variations" by Eugene Myers
## Algorithmica Vol. 1 No. 2, 1986, p 251.
## This implementation is based on:
##
## diff.cs: A port of the algorythm to C#
## Copyright (c) by Matthias Hertel, http://www.mathertel.de
## This work is licensed under a BSD style license.
## See http://www.mathertel.de/License.aspx
{.push debugger:off .} # the user does not want to trace a part
# of the standard library!
import
strutils
type
TResultItem* = object of TObject
startA*: int ## start of line number in A
startB*: int ## start of line number in B
deletedA*: int ## number of deletions in A
deletedB*: int ## number of deletions in B
SMSRD = tuple[x, y: int] ## shortest middle snake return data
TDiffData {.final.} = object
len: int
data: seq[int]
modified: seq[bool]
proc diffText*(a, b: seq[string],
eq: proc (x, y: string): bool): seq[TResultItem] =
## returns the difference of two texts `a` and `b`. The texts are compared
## line by line with the `eq` proc.
nil
proc diffText*(a, b: string, eq: proc (x, y: string): bool): seq[TResultItem] =
## returns the difference of two texts `a` and `b`. The texts are compared
## line by line with the `eq` proc.
result = diffText(linesSeq(a), linesSeq(b), eq)
/// details of one difference.
public struct Item
{
/// Start Line number in Data A.
public int StartA;
/// Start Line number in Data B.
public int StartB;
/// Number of changes in Data A.
public int deletedA;
/// Number of changes in Data B.
public int insertedB;
} // Item
///
/// Shortest Middle Snake Return Data
///
private struct SMSRD
{
internal int x, y;
// internal int u, v; // 2002.09.20: no need for 2 points
}
///
/// Find the difference in 2 texts, comparing by textlines.
///
/// A-version of the text (usualy the old one)
/// B-version of the text (usualy the new one)
/// Returns a array of Items that describe the differences.
public Item[] DiffText(string TextA, string TextB) {
return (DiffText(TextA, TextB, false, false, false));
} // DiffText
///
/// Find the difference in 2 text documents, comparing by textlines.
/// The algorithm itself is comparing 2 arrays of numbers so when comparing 2 text documents
/// each line is converted into a (hash) number. This hash-value is computed by storing all
/// textlines into a common hashtable so i can find dublicates in there, and generating a
/// new number each time a new textline is inserted.
///
/// A-version of the text (usualy the old one)
/// B-version of the text (usualy the new one)
/// When set to true, all leading and trailing whitespace characters are stripped out before the comparation is done.
/// When set to true, all whitespace characters are converted to a single space character before the comparation is done.
/// When set to true, all characters are converted to their lowercase equivivalence before the comparation is done.
/// Returns a array of Items that describe the differences.
public static Item[] DiffText(string TextA, string TextB, bool trimSpace, bool ignoreSpace, bool ignoreCase) {
// prepare the input-text and convert to comparable numbers.
Hashtable h = new Hashtable(TextA.Length + TextB.Length);
// The A-Version of the data (original data) to be compared.
DiffData DataA = new DiffData(DiffCodes(TextA, h, trimSpace, ignoreSpace, ignoreCase));
// The B-Version of the data (modified data) to be compared.
DiffData DataB = new DiffData(DiffCodes(TextB, h, trimSpace, ignoreSpace, ignoreCase));
h = null; // free up hashtable memory (maybe)
int MAX = DataA.Length + DataB.Length + 1;
/// vector for the (0,0) to (x,y) search
int[] DownVector = new int[2 * MAX + 2];
/// vector for the (u,v) to (N,M) search
int[] UpVector = new int[2 * MAX + 2];
LCS(DataA, 0, DataA.Length, DataB, 0, DataB.Length, DownVector, UpVector);
Optimize(DataA);
Optimize(DataB);
return CreateDiffs(DataA, DataB);
} // DiffText
proc Optimize(d: var TDiffData) =
## If a sequence of modified lines starts with a line that contains the
## same content as the line that appends the changes, the difference sequence
## is modified so that the appended line and not the starting line is marked
## as modified. This leads to more readable diff sequences when comparing
## text files.
var startPos = 0
while startPos < d.len:
while StartPos < d.len and not d.modified[StartPos]: inc(startPos)
var endPos = startPos
while EndPos < d.len and d.modified[EndPos]: inc(endPos)
if EndPos < d.len and d.data[StartPos] == d.data[EndPos]:
d.modified[StartPos] = false
d.modified[EndPos] = true
else:
StartPos = EndPos
///
/// Find the difference in 2 arrays of integers.
///
/// A-version of the numbers (usualy the old one)
/// B-version of the numbers (usualy the new one)
/// Returns a array of Items that describe the differences.
public static Item[] DiffInt(int[] ArrayA, int[] ArrayB) {
// The A-Version of the data (original data) to be compared.
DiffData DataA = new DiffData(ArrayA);
// The B-Version of the data (modified data) to be compared.
DiffData DataB = new DiffData(ArrayB);
int MAX = DataA.Length + DataB.Length + 1;
/// vector for the (0,0) to (x,y) search
int[] DownVector = new int[2 * MAX + 2];
/// vector for the (u,v) to (N,M) search
int[] UpVector = new int[2 * MAX + 2];
LCS(DataA, 0, DataA.Length, DataB, 0, DataB.Length, DownVector, UpVector);
return CreateDiffs(DataA, DataB);
} // Diff
///
/// This function converts all textlines of the text into unique numbers for every unique textline
/// so further work can work only with simple numbers.
///
/// the input text
/// This extern initialized hashtable is used for storing all ever used textlines.
/// ignore leading and trailing space characters
/// a array of integers.
private static int[] DiffCodes(string aText, Hashtable h, bool trimSpace, bool ignoreSpace, bool ignoreCase) {
// get all codes of the text
string[] Lines;
int[] Codes;
int lastUsedCode = h.Count;
object aCode;
string s;
// strip off all cr, only use lf as textline separator.
aText = aText.Replace("\r", "");
Lines = aText.Split('\n');
Codes = new int[Lines.Length];
for (int i = 0; i < Lines.Length; ++i) {
s = Lines[i];
if (trimSpace)
s = s.Trim();
if (ignoreSpace) {
s = Regex.Replace(s, "\\s+", " "); // TODO: optimization: faster blank removal.
}
if (ignoreCase)
s = s.ToLower();
aCode = h[s];
if (aCode == null) {
lastUsedCode++;
h[s] = lastUsedCode;
Codes[i] = lastUsedCode;
} else {
Codes[i] = (int)aCode;
} // if
} // for
return (Codes);
} // DiffCodes
///
/// This is the algorithm to find the Shortest Middle Snake (SMS).
///
/// sequence A
/// lower bound of the actual range in DataA
/// upper bound of the actual range in DataA (exclusive)
/// sequence B
/// lower bound of the actual range in DataB
/// upper bound of the actual range in DataB (exclusive)
/// a vector for the (0,0) to (x,y) search. Passed as a parameter for speed reasons.
/// a vector for the (u,v) to (N,M) search. Passed as a parameter for speed reasons.
/// a MiddleSnakeData record containing x,y and u,v
private static SMSRD SMS(DiffData DataA, int LowerA, int UpperA, DiffData DataB, int LowerB, int UpperB,
int[] DownVector, int[] UpVector) {
SMSRD ret;
int MAX = DataA.Length + DataB.Length + 1;
int DownK = LowerA - LowerB; // the k-line to start the forward search
int UpK = UpperA - UpperB; // the k-line to start the reverse search
int Delta = (UpperA - LowerA) - (UpperB - LowerB);
bool oddDelta = (Delta & 1) != 0;
// The vectors in the publication accepts negative indexes. the vectors implemented here are 0-based
// and are access using a specific offset: UpOffset UpVector and DownOffset for DownVektor
int DownOffset = MAX - DownK;
int UpOffset = MAX - UpK;
int MaxD = ((UpperA - LowerA + UpperB - LowerB) / 2) + 1;
// Debug.Write(2, "SMS", String.Format("Search the box: A[{0}-{1}] to B[{2}-{3}]", LowerA, UpperA, LowerB, UpperB));
// init vectors
DownVector[DownOffset + DownK + 1] = LowerA;
UpVector[UpOffset + UpK - 1] = UpperA;
for (int D = 0; D <= MaxD; D++) {
// Extend the forward path.
for (int k = DownK - D; k <= DownK + D; k += 2) {
// Debug.Write(0, "SMS", "extend forward path " + k.ToString());
// find the only or better starting point
int x, y;
if (k == DownK - D) {
x = DownVector[DownOffset + k + 1]; // down
} else {
x = DownVector[DownOffset + k - 1] + 1; // a step to the right
if ((k < DownK + D) && (DownVector[DownOffset + k + 1] >= x))
x = DownVector[DownOffset + k + 1]; // down
}
y = x - k;
// find the end of the furthest reaching forward D-path in diagonal k.
while ((x < UpperA) && (y < UpperB) && (DataA.data[x] == DataB.data[y])) {
x++; y++;
}
DownVector[DownOffset + k] = x;
// overlap ?
if (oddDelta && (UpK - D < k) && (k < UpK + D)) {
if (UpVector[UpOffset + k] <= DownVector[DownOffset + k]) {
ret.x = DownVector[DownOffset + k];
ret.y = DownVector[DownOffset + k] - k;
// ret.u = UpVector[UpOffset + k]; // 2002.09.20: no need for 2 points
// ret.v = UpVector[UpOffset + k] - k;
return (ret);
} // if
} // if
} // for k
// Extend the reverse path.
for (int k = UpK - D; k <= UpK + D; k += 2) {
// Debug.Write(0, "SMS", "extend reverse path " + k.ToString());
// find the only or better starting point
int x, y;
if (k == UpK + D) {
x = UpVector[UpOffset + k - 1]; // up
} else {
x = UpVector[UpOffset + k + 1] - 1; // left
if ((k > UpK - D) && (UpVector[UpOffset + k - 1] < x))
x = UpVector[UpOffset + k - 1]; // up
} // if
y = x - k;
while ((x > LowerA) && (y > LowerB) && (DataA.data[x - 1] == DataB.data[y - 1])) {
x--; y--; // diagonal
}
UpVector[UpOffset + k] = x;
// overlap ?
if (!oddDelta && (DownK - D <= k) && (k <= DownK + D)) {
if (UpVector[UpOffset + k] <= DownVector[DownOffset + k]) {
ret.x = DownVector[DownOffset + k];
ret.y = DownVector[DownOffset + k] - k;
// ret.u = UpVector[UpOffset + k]; // 2002.09.20: no need for 2 points
// ret.v = UpVector[UpOffset + k] - k;
return (ret);
} // if
} // if
} // for k
} // for D
throw new ApplicationException("the algorithm should never come here.");
} // SMS
///
/// This is the divide-and-conquer implementation of the longes common-subsequence (LCS)
/// algorithm.
/// The published algorithm passes recursively parts of the A and B sequences.
/// To avoid copying these arrays the lower and upper bounds are passed while the sequences stay constant.
///
/// sequence A
/// lower bound of the actual range in DataA
/// upper bound of the actual range in DataA (exclusive)
/// sequence B
/// lower bound of the actual range in DataB
/// upper bound of the actual range in DataB (exclusive)
/// a vector for the (0,0) to (x,y) search. Passed as a parameter for speed reasons.
/// a vector for the (u,v) to (N,M) search. Passed as a parameter for speed reasons.
private static void LCS(DiffData DataA, int LowerA, int UpperA, DiffData DataB, int LowerB, int UpperB, int[] DownVector, int[] UpVector) {
// Debug.Write(2, "LCS", String.Format("Analyse the box: A[{0}-{1}] to B[{2}-{3}]", LowerA, UpperA, LowerB, UpperB));
// Fast walkthrough equal lines at the start
while (LowerA < UpperA && LowerB < UpperB && DataA.data[LowerA] == DataB.data[LowerB]) {
LowerA++; LowerB++;
}
// Fast walkthrough equal lines at the end
while (LowerA < UpperA && LowerB < UpperB && DataA.data[UpperA - 1] == DataB.data[UpperB - 1]) {
--UpperA; --UpperB;
}
if (LowerA == UpperA) {
// mark as inserted lines.
while (LowerB < UpperB)
DataB.modified[LowerB++] = true;
} else if (LowerB == UpperB) {
// mark as deleted lines.
while (LowerA < UpperA)
DataA.modified[LowerA++] = true;
} else {
// Find the middle snakea and length of an optimal path for A and B
SMSRD smsrd = SMS(DataA, LowerA, UpperA, DataB, LowerB, UpperB, DownVector, UpVector);
// Debug.Write(2, "MiddleSnakeData", String.Format("{0},{1}", smsrd.x, smsrd.y));
// The path is from LowerX to (x,y) and (x,y) to UpperX
LCS(DataA, LowerA, smsrd.x, DataB, LowerB, smsrd.y, DownVector, UpVector);
LCS(DataA, smsrd.x, UpperA, DataB, smsrd.y, UpperB, DownVector, UpVector); // 2002.09.20: no need for 2 points
}
} // LCS()
/// Scan the tables of which lines are inserted and deleted,
/// producing an edit script in forward order.
///
/// dynamic array
private static Item[] CreateDiffs(DiffData DataA, DiffData DataB) {
ArrayList a = new ArrayList();
Item aItem;
Item[] result;
int StartA, StartB;
int LineA, LineB;
LineA = 0;
LineB = 0;
while (LineA < DataA.Length || LineB < DataB.Length) {
if ((LineA < DataA.Length) && (!DataA.modified[LineA])
&& (LineB < DataB.Length) && (!DataB.modified[LineB])) {
// equal lines
LineA++;
LineB++;
} else {
// maybe deleted and/or inserted lines
StartA = LineA;
StartB = LineB;
while (LineA < DataA.Length && (LineB >= DataB.Length || DataA.modified[LineA]))
// while (LineA < DataA.Length && DataA.modified[LineA])
LineA++;
while (LineB < DataB.Length && (LineA >= DataA.Length || DataB.modified[LineB]))
// while (LineB < DataB.Length && DataB.modified[LineB])
LineB++;
if ((StartA < LineA) || (StartB < LineB)) {
// store a new difference-item
aItem = new Item();
aItem.StartA = StartA;
aItem.StartB = StartB;
aItem.deletedA = LineA - StartA;
aItem.insertedB = LineB - StartB;
a.Add(aItem);
} // if
} // if
} // while
result = new Item[a.Count];
a.CopyTo(result);
return (result);
}
} // class Diff
/// Data on one input file being compared.
///
internal class DiffData
{
/// Number of elements (lines).
internal int Length;
/// Buffer of numbers that will be compared.
internal int[] data;
///
/// Array of booleans that flag for modified data.
/// This is the result of the diff.
/// This means deletedA in the first Data or inserted in the second Data.
///
internal bool[] modified;
///
/// Initialize the Diff-Data buffer.
///
/// reference to the buffer
internal DiffData(int[] initData) {
data = initData;
Length = initData.Length;
modified = new bool[Length + 2];
} // DiffData
} // class DiffData
{.pop.}