# # # Nimrod's Runtime Library # (c) Copyright 2012 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This module contains the interface to the compiler's abstract syntax ## tree (`AST`:idx:). Macros operate on this tree. ## .. include:: ../doc/astspec.txt type TNimrodNodeKind* = enum nnkNone, nnkEmpty, nnkIdent, nnkSym, nnkType, nnkCharLit, nnkIntLit, nnkInt8Lit, nnkInt16Lit, nnkInt32Lit, nnkInt64Lit, nnkUIntLit, nnkUInt8Lit, nnkUInt16Lit, nnkUInt32Lit, nnkUInt64Lit, nnkFloatLit, nnkFloat32Lit, nnkFloat64Lit, nnkFloat128Lit, nnkStrLit, nnkRStrLit, nnkTripleStrLit, nnkNilLit, nnkMetaNode, nnkDotCall, nnkCommand, nnkCall, nnkCallStrLit, nnkExprEqExpr, nnkExprColonExpr, nnkIdentDefs, nnkVarTuple, nnkInfix, nnkPrefix, nnkPostfix, nnkPar, nnkCurly, nnkCurlyExpr, nnkBracket, nnkBracketExpr, nnkPragmaExpr, nnkRange, nnkDotExpr, nnkCheckedFieldExpr, nnkDerefExpr, nnkIfExpr, nnkElifExpr, nnkElseExpr, nnkLambda, nnkDo, nnkAccQuoted, nnkTableConstr, nnkBind, nnkClosedSymChoice, nnkOpenSymChoice, nnkHiddenStdConv, nnkHiddenSubConv, nnkHiddenCallConv, nnkConv, nnkCast, nnkStaticExpr, nnkAddr, nnkHiddenAddr, nnkHiddenDeref, nnkObjDownConv, nnkObjUpConv, nnkChckRangeF, nnkChckRange64, nnkChckRange, nnkStringToCString, nnkCStringToString, nnkAsgn, nnkFastAsgn, nnkGenericParams, nnkFormalParams, nnkOfInherit, nnkModule, nnkProcDef, nnkMethodDef, nnkConverterDef, nnkMacroDef, nnkTemplateDef, nnkIteratorDef, nnkOfBranch, nnkElifBranch, nnkExceptBranch, nnkElse, nnkAsmStmt, nnkPragma, nnkPragmaBlock, nnkIfStmt, nnkWhenStmt, nnkForStmt, nnkParForStmt, nnkWhileStmt, nnkCaseStmt, nnkTypeSection, nnkVarSection, nnkLetSection, nnkConstSection, nnkConstDef, nnkTypeDef, nnkYieldStmt, nnkTryStmt, nnkFinally, nnkRaiseStmt, nnkReturnStmt, nnkBreakStmt, nnkContinueStmt, nnkBlockStmt, nnkStaticStmt, nnkDiscardStmt, nnkStmtList, nnkImportStmt, nnkFromStmt, nnkIncludeStmt, nnkBindStmt, nnkMixinStmt, nnkCommentStmt, nnkStmtListExpr, nnkBlockExpr, nnkStmtListType, nnkBlockType, nnkTypeOfExpr, nnkObjectTy, nnkTupleTy, nnkRecList, nnkRecCase, nnkRecWhen, nnkRefTy, nnkPtrTy, nnkVarTy, nnkConstTy, nnkMutableTy, nnkDistinctTy, nnkProcTy, nnkEnumTy, nnkEnumFieldDef, nnkArglist, nnkPattern nnkReturnToken TNimNodeKinds* = set[TNimrodNodeKind] TNimrodTypeKind* = enum ntyNone, ntyBool, ntyChar, ntyEmpty, ntyArrayConstr, ntyNil, ntyExpr, ntyStmt, ntyTypeDesc, ntyGenericInvokation, ntyGenericBody, ntyGenericInst, ntyGenericParam, ntyDistinct, ntyEnum, ntyOrdinal, ntyArray, ntyObject, ntyTuple, ntySet, ntyRange, ntyPtr, ntyRef, ntyVar, ntySequence, ntyProc, ntyPointer, ntyOpenArray, ntyString, ntyCString, ntyForward, ntyInt, ntyInt8, ntyInt16, ntyInt32, ntyInt64, ntyFloat, ntyFloat32, ntyFloat64, ntyFloat128 TNimTypeKinds* = set[TNimrodTypeKind] TNimrodSymKind* = enum nskUnknown, nskConditional, nskDynLib, nskParam, nskGenericParam, nskTemp, nskType, nskConst, nskVar, nskProc, nskMethod, nskIterator, nskConverter, nskMacro, nskTemplate, nskField, nskEnumField, nskForVar, nskModule, nskLabel, nskStub TNimSymKinds* = set[TNimrodSymKind] type TNimrodIdent* = object of TObject ## represents a Nimrod identifier in the AST TNimrodSymbol {.final.} = object # hidden PNimrodSymbol* {.compilerproc.} = ref TNimrodSymbol ## represents a Nimrod *symbol* in the compiler; a *symbol* is a looked-up ## *ident*. const nnkLiterals* = {nnkCharLit..nnkNilLit} nnkCallKinds* = {nnkCall, nnkInfix, nnkPrefix, nnkPostfix, nnkCommand, nnkCallStrLit} proc `[]`*(n: PNimrodNode, i: int): PNimrodNode {.magic: "NChild".} ## get `n`'s `i`'th child. proc `[]=`*(n: PNimrodNode, i: int, child: PNimrodNode) {.magic: "NSetChild".} ## set `n`'s `i`'th child to `child`. proc `!`*(s: string): TNimrodIdent {.magic: "StrToIdent".} ## constructs an identifier from the string `s` proc `$`*(i: TNimrodIdent): string {.magic: "IdentToStr".} ## converts a Nimrod identifier to a string proc `$`*(s: PNimrodSymbol): string {.magic: "IdentToStr".} ## converts a Nimrod symbol to a string proc `==`*(a, b: TNimrodIdent): bool {.magic: "EqIdent", noSideEffect.} ## compares two Nimrod identifiers proc `==`*(a, b: PNimrodNode): bool {.magic: "EqNimrodNode", noSideEffect.} ## compares two Nimrod nodes proc len*(n: PNimrodNode): int {.magic: "NLen".} ## returns the number of children of `n`. proc add*(father, child: PNimrodNode) {.magic: "NAdd".} ## adds the `child` to the `father` node proc add*(father: PNimrodNode, children: varargs[PNimrodNode]) {. magic: "NAddMultiple".} ## adds each child of `children` to the `father` node proc del*(father: PNimrodNode, idx = 0, n = 1) {.magic: "NDel".} ## deletes `n` children of `father` starting at index `idx`. proc kind*(n: PNimrodNode): TNimrodNodeKind {.magic: "NKind".} ## returns the `kind` of the node `n`. proc intVal*(n: PNimrodNode): biggestInt {.magic: "NIntVal".} proc floatVal*(n: PNimrodNode): biggestFloat {.magic: "NFloatVal".} proc symbol*(n: PNimrodNode): PNimrodSymbol {.magic: "NSymbol".} proc ident*(n: PNimrodNode): TNimrodIdent {.magic: "NIdent".} proc typ*(n: PNimrodNode): typedesc {.magic: "NGetType".} proc strVal*(n: PNimrodNode): string {.magic: "NStrVal".} proc `intVal=`*(n: PNimrodNode, val: biggestInt) {.magic: "NSetIntVal".} proc `floatVal=`*(n: PNimrodNode, val: biggestFloat) {.magic: "NSetFloatVal".} proc `symbol=`*(n: PNimrodNode, val: PNimrodSymbol) {.magic: "NSetSymbol".} proc `ident=`*(n: PNimrodNode, val: TNimrodIdent) {.magic: "NSetIdent".} proc `typ=`*(n: PNimrodNode, typ: typedesc) {.magic: "NSetType".} proc `strVal=`*(n: PNimrodNode, val: string) {.magic: "NSetStrVal".} proc newNimNode*(kind: TNimrodNodeKind, n: PNimrodNode=nil): PNimrodNode {.magic: "NNewNimNode".} proc copyNimNode*(n: PNimrodNode): PNimrodNode {.magic: "NCopyNimNode".} proc copyNimTree*(n: PNimrodNode): PNimrodNode {.magic: "NCopyNimTree".} proc error*(msg: string) {.magic: "NError".} ## writes an error message at compile time proc warning*(msg: string) {.magic: "NWarning".} ## writes a warning message at compile time proc hint*(msg: string) {.magic: "NHint".} ## writes a hint message at compile time proc newStrLitNode*(s: string): PNimrodNode {.compileTime.} = ## creates a string literal node from `s` result = newNimNode(nnkStrLit) result.strVal = s proc newIntLitNode*(i: biggestInt): PNimrodNode {.compileTime.} = ## creates a int literal node from `i` result = newNimNode(nnkIntLit) result.intVal = i proc newFloatLitNode*(f: biggestFloat): PNimrodNode {.compileTime.} = ## creates a float literal node from `f` result = newNimNode(nnkFloatLit) result.floatVal = f proc newIdentNode*(i: TNimrodIdent): PNimrodNode {.compileTime.} = ## creates an identifier node from `i` result = newNimNode(nnkIdent) result.ident = i proc newIdentNode*(i: string): PNimrodNode {.compileTime.} = ## creates an identifier node from `i` result = newNimNode(nnkIdent) result.ident = !i type TBindSymRule* = enum ## specifies how ``bindSym`` behaves brClosed, ## only the symbols in current scope are bound brOpen, ## open wrt overloaded symbols, but may be a single ## symbol if not ambiguous (the rules match that of ## binding in generics) brForceOpen ## same as brOpen, but it will always be open even ## if not ambiguous (this cannot be achieved with ## any other means in the language currently) proc bindSym*(ident: string, rule: TBindSymRule = brClosed): PNimrodNode {. magic: "NBindSym".} ## creates a node that binds `ident` to a symbol node. The bound symbol ## may be an overloaded symbol. ## If ``rule == brClosed`` either an ``nkClosedSymChoice`` tree is ## returned or ``nkSym`` if the symbol is not ambiguous. ## If ``rule == brOpen`` either an ``nkOpenSymChoice`` tree is ## returned or ``nkSym`` if the symbol is not ambiguous. ## If ``rule == brForceOpen`` always an ``nkOpenSymChoice`` tree is ## returned even if the symbol is not ambiguous. proc callsite*(): PNimrodNode {.magic: "NCallSite".} ## returns the AST if the invokation expression that invoked this macro. proc toStrLit*(n: PNimrodNode): PNimrodNode {.compileTime.} = ## converts the AST `n` to the concrete Nimrod code and wraps that ## in a string literal node return newStrLitNode(repr(n)) proc lineinfo*(n: PNimrodNode): string {.magic: "NLineInfo".} ## returns the position the node appears in the original source file ## in the form filename(line, col) proc parseExpr*(s: string): PNimrodNode {.magic: "ParseExprToAst".} ## Compiles the passed string to its AST representation. ## Expects a single expression. proc parseStmt*(s: string): PNimrodNode {.magic: "ParseStmtToAst".} ## Compiles the passed string to its AST representation. ## Expects one or more statements. proc getAst*(macroOrTemplate: expr): PNimrodNode {.magic: "ExpandToAst".} ## Obtains the AST nodes returned from a macro or template invocation. ## Example: ## ## .. code-block:: nimrod ## ## macro FooMacro() = ## var ast = getAst(BarTemplate()) template emit*(s: expr): stmt = ## accepts a single string argument and treats it as nimrod code ## that should be inserted verbatim in the program ## Example: ## ## emit("echo " & '"' & "hello world".toUpper & '"') ## block: const evaluated = s eval: result = evaluated.parseStmt proc expectKind*(n: PNimrodNode, k: TNimrodNodeKind) {.compileTime.} = ## checks that `n` is of kind `k`. If this is not the case, ## compilation aborts with an error message. This is useful for writing ## macros that check the AST that is passed to them. if n.kind != k: error("macro expects a node of kind: " & repr(k)) proc expectMinLen*(n: PNimrodNode, min: int) {.compileTime.} = ## checks that `n` has at least `min` children. If this is not the case, ## compilation aborts with an error message. This is useful for writing ## macros that check its number of arguments. if n.len < min: error("macro expects a node with " & $min & " children") proc expectLen*(n: PNimrodNode, len: int) {.compileTime.} = ## checks that `n` has exactly `len` children. If this is not the case, ## compilation aborts with an error message. This is useful for writing ## macros that check its number of arguments. if n.len != len: error("macro expects a node with " & $len & " children") proc newCall*(theProc: PNimrodNode, args: varargs[PNimrodNode]): PNimrodNode {.compileTime.} = ## produces a new call node. `theProc` is the proc that is called with ## the arguments ``args[0..]``. result = newNimNode(nnkCall) result.add(theProc) result.add(args) proc newCall*(theProc: TNimrodIdent, args: varargs[PNimrodNode]): PNimrodNode {.compileTime.} = ## produces a new call node. `theProc` is the proc that is called with ## the arguments ``args[0..]``. result = newNimNode(nnkCall) result.add(newIdentNode(theProc)) result.add(args) proc newCall*(theProc: string, args: varargs[PNimrodNode]): PNimrodNode {.compileTime.} = ## produces a new call node. `theProc` is the proc that is called with ## the arguments ``args[0..]``. result = newNimNode(nnkCall) result.add(newIdentNode(theProc)) result.add(args) proc nestList*(theProc: TNimrodIdent, x: PNimrodNode): PNimrodNode {.compileTime.} = ## nests the list `x` into a tree of call expressions: ## ``[a, b, c]`` is transformed into ``theProc(a, theProc(c, d))``. var L = x.len result = newCall(theProc, x[L-2], x[L-1]) var a = result for i in countdown(L-3, 0): a = newCall(theProc, x[i], copyNimTree(a)) proc treeRepr*(n: PNimrodNode): string {.compileTime.} = ## Convert the AST `n` to a human-readable tree-like string. ## ## See also `repr` and `lispRepr`. proc traverse(res: var string, level: int, n: PNimrodNode) = for i in 0..level-1: res.add " " res.add(($n.kind).substr(3)) case n.kind of nnkEmpty: nil # same as nil node in this representation of nnkNilLit: res.add(" nil") of nnkCharLit..nnkInt64Lit: res.add(" " & $n.intVal) of nnkFloatLit..nnkFloat64Lit: res.add(" " & $n.floatVal) of nnkStrLit..nnkTripleStrLit: res.add(" " & $n.strVal) of nnkIdent: res.add(" !\"" & $n.ident & '"') of nnkSym: res.add(" \"" & $n.symbol & '"') of nnkNone: assert false else: for j in 0..n.len-1: res.add "\n" traverse(res, level + 1, n[j]) result = "" traverse(result, 0, n) proc lispRepr*(n: PNimrodNode): string {.compileTime.} = ## Convert the AST `n` to a human-readable lisp-like string, ## ## See also `repr` and `treeRepr`. result = ($n.kind).substr(3) add(result, "(") case n.kind of nnkEmpty: nil # same as nil node in this representation of nnkNilLit: add(result, "nil") of nnkCharLit..nnkInt64Lit: add(result, $n.intVal) of nnkFloatLit..nnkFloat64Lit: add(result, $n.floatVal) of nnkStrLit..nnkTripleStrLit: add(result, $n.strVal) of nnkIdent: add(result, "!\"" & $n.ident & '"') of nnkSym, nnkNone: assert false else: add(result, lispRepr(n[0])) for j in 1..n.len-1: add(result, ", ") add(result, lispRepr(n[j])) add(result, ")") macro dumpTree*(s: stmt): stmt = echo s.treeRepr ## Accepts a block of nimrod code and prints the parsed abstract syntax ## tree using the `toTree` function. Printing is done *at compile time*. ## ## You can use this as a tool to explore the Nimrod's abstract syntax ## tree and to discover what kind of nodes must be created to represent ## a certain expression/statement. macro dumpLisp*(s: stmt): stmt = echo s.lispRepr ## Accepts a block of nimrod code and prints the parsed abstract syntax ## tree using the `toLisp` function. Printing is done *at compile time*. ## ## See `dumpTree`.