# # # Nim's Runtime Library # (c) Copyright 2015 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This module implements some common generic algorithms on `openArray`s. ## ## Basic usage ## =========== ## runnableExamples: type People = tuple year: int name: string var a: seq[People] a.add((2000, "John")) a.add((2005, "Marie")) a.add((2010, "Jane")) # Sorting with default system.cmp a.sort() assert a == @[(year: 2000, name: "John"), (year: 2005, name: "Marie"), (year: 2010, name: "Jane")] proc myCmp(x, y: People): int = cmp(x.name, y.name) # Sorting with custom proc a.sort(myCmp) assert a == @[(year: 2010, name: "Jane"), (year: 2000, name: "John"), (year: 2005, name: "Marie")] ## See also ## ======== ## * `sequtils module`_ for working with the built-in seq type ## * `tables module`_ for sorting tables import std/private/since type SortOrder* = enum Descending, Ascending proc `*`*(x: int, order: SortOrder): int {.inline.} = ## Flips the sign of `x` if `order == Descending`. ## If `order == Ascending` then `x` is returned. ## ## `x` is supposed to be the result of a comparator, i.e. ## | `< 0` for *less than*, ## | `== 0` for *equal*, ## | `> 0` for *greater than*. runnableExamples: assert -123 * Descending == 123 assert 123 * Descending == -123 assert -123 * Ascending == -123 assert 123 * Ascending == 123 var y = order.ord - 1 result = (x xor y) - y template fillImpl[T](a: var openArray[T], first, last: int, value: T) = var x = first while x <= last: a[x] = value inc(x) proc fill*[T](a: var openArray[T], first, last: Natural, value: T) = ## Assigns `value` to all elements of the slice `a[first..last]`. ## ## If an invalid range is passed, it raises `IndexDefect`. runnableExamples: var a: array[6, int] a.fill(1, 3, 9) assert a == [0, 9, 9, 9, 0, 0] a.fill(3, 5, 7) assert a == [0, 9, 9, 7, 7, 7] doAssertRaises(IndexDefect, a.fill(1, 7, 9)) fillImpl(a, first, last, value) proc fill*[T](a: var openArray[T], value: T) = ## Assigns `value` to all elements of the container `a`. runnableExamples: var a: array[6, int] a.fill(9) assert a == [9, 9, 9, 9, 9, 9] a.fill(4) assert a == [4, 4, 4, 4, 4, 4] fillImpl(a, 0, a.high, value) proc reverse*[T](a: var openArray[T], first, last: Natural) = ## Reverses the slice `a[first..last]`. ## ## If an invalid range is passed, it raises `IndexDefect`. ## ## **See also:** ## * `reversed proc<#reversed,openArray[T],Natural,int>`_ reverse a slice and returns a `seq[T]` ## * `reversed proc<#reversed,openArray[T]>`_ reverse and returns a `seq[T]` runnableExamples: var a = [1, 2, 3, 4, 5, 6] a.reverse(1, 3) assert a == [1, 4, 3, 2, 5, 6] a.reverse(1, 3) assert a == [1, 2, 3, 4, 5, 6] doAssertRaises(IndexDefect, a.reverse(1, 7)) var x = first var y = last while x < y: swap(a[x], a[y]) dec(y) inc(x) proc reverse*[T](a: var openArray[T]) = ## Reverses the contents of the container `a`. ## ## **See also:** ## * `reversed proc<#reversed,openArray[T],Natural,int>`_ reverse a slice and returns a `seq[T]` ## * `reversed proc<#reversed,openArray[T]>`_ reverse and returns a `seq[T]` runnableExamples: var a = [1, 2, 3, 4, 5, 6] a.reverse() assert a == [6, 5, 4, 3, 2, 1] a.reverse() assert a == [1, 2, 3, 4, 5, 6] # the max is needed, since a.high is -1 if a is empty reverse(a, 0, max(0, a.high)) proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T] = ## Returns the reverse of the slice `a[first..last]`. ## ## If an invalid range is passed, it raises `IndexDefect`. ## ## **See also:** ## * `reverse proc<#reverse,openArray[T],Natural,Natural>`_ reverse a slice ## * `reverse proc<#reverse,openArray[T]>`_ runnableExamples: let a = [1, 2, 3, 4, 5, 6] b = a.reversed(1, 3) assert b == @[4, 3, 2] assert last >= first - 1 var i = last - first var x = first.int result = newSeq[T](i + 1) while i >= 0: result[i] = a[x] dec(i) inc(x) proc reversed*[T](a: openArray[T]): seq[T] = ## Returns the reverse of the container `a`. ## ## **See also:** ## * `reverse proc<#reverse,openArray[T],Natural,Natural>`_ reverse a slice ## * `reverse proc<#reverse,openArray[T]>`_ runnableExamples: let a = [1, 2, 3, 4, 5, 6] b = reversed(a) assert b == @[6, 5, 4, 3, 2, 1] reversed(a, 0, a.high) proc binarySearch*[T, K](a: openArray[T], key: K, cmp: proc (x: T, y: K): int {.closure.}): int = ## Binary search for `key` in `a`. Return the index of `key` or -1 if not found. ## Assumes that `a` is sorted according to `cmp`. ## ## `cmp` is the comparator function to use, the expected return values are ## the same as those of system.cmp. runnableExamples: assert binarySearch(["a", "b", "c", "d"], "d", system.cmp[string]) == 3 assert binarySearch(["a", "b", "c", "d"], "c", system.cmp[string]) == 2 let len = a.len if len == 0: return -1 if len == 1: if cmp(a[0], key) == 0: return 0 else: return -1 result = 0 if (len and (len - 1)) == 0: # when `len` is a power of 2, a faster shr can be used. var step = len shr 1 var cmpRes: int while step > 0: let i = result or step cmpRes = cmp(a[i], key) if cmpRes == 0: return i if cmpRes < 0: result = i step = step shr 1 if cmp(a[result], key) != 0: result = -1 else: var b = len var cmpRes: int while result < b: var mid = (result + b) shr 1 cmpRes = cmp(a[mid], key) if cmpRes == 0: return mid if cmpRes < 0: result = mid + 1 else: b = mid if result >= len or cmp(a[result], key) != 0: result = -1 proc binarySearch*[T](a: openArray[T], key: T): int = ## Binary search for `key` in `a`. Return the index of `key` or -1 if not found. ## Assumes that `a` is sorted. runnableExamples: assert binarySearch([0, 1, 2, 3, 4], 4) == 4 assert binarySearch([0, 1, 2, 3, 4], 2) == 2 binarySearch(a, key, cmp[T]) const onlySafeCode = true proc lowerBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {.closure.}): int = ## Returns the index of the first element in `a` that is not less than ## (i.e. greater or equal to) `key`, or last if no such element is found. ## In other words if you have a sorted sequence and you call ## `insert(thing, elm, lowerBound(thing, elm))` ## the sequence will still be sorted. ## Assumes that `a` is sorted according to `cmp`. ## ## If an invalid range is passed, it raises `IndexDefect`. ## ## This version uses `cmp` to compare the elements. ## The expected return values are the same as those of `system.cmp`. ## ## **See also:** ## * `upperBound proc<#upperBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order ## * `upperBound proc<#upperBound,openArray[T],T>`_ runnableExamples: var arr = @[1, 2, 3, 5, 6, 7, 8, 9] assert arr.lowerBound(3, system.cmp[int]) == 2 assert arr.lowerBound(4, system.cmp[int]) == 3 assert arr.lowerBound(5, system.cmp[int]) == 3 arr.insert(4, arr.lowerBound(4, system.cmp[int])) assert arr == [1, 2, 3, 4, 5, 6, 7, 8, 9] result = a.low var count = a.high - a.low + 1 var step, pos: int while count != 0: step = count shr 1 pos = result + step if cmp(a[pos], key) < 0: result = pos + 1 count -= step + 1 else: count = step proc lowerBound*[T](a: openArray[T], key: T): int = lowerBound(a, key, cmp[T]) ## Returns the index of the first element in `a` that is not less than ## (i.e. greater or equal to) `key`, or last if no such element is found. ## In other words if you have a sorted sequence and you call ## `insert(thing, elm, lowerBound(thing, elm))` ## the sequence will still be sorted. ## Assumes that `a` is sorted. ## ## This version uses the default comparison function `cmp`. ## ## **See also:** ## * `upperBound proc<#upperBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order ## * `upperBound proc<#upperBound,openArray[T],T>`_ proc upperBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {.closure.}): int = ## Returns the index of the first element in `a` that is greater than ## `key`, or last if no such element is found. ## In other words if you have a sorted sequence and you call ## `insert(thing, elm, upperBound(thing, elm))` ## the sequence will still be sorted. ## Assumes that `a` is sorted according to `cmp`. ## ## If an invalid range is passed, it raises `IndexDefect`. ## ## This version uses `cmp` to compare the elements. The expected ## return values are the same as those of `system.cmp`. ## ## **See also:** ## * `lowerBound proc<#lowerBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order ## * `lowerBound proc<#lowerBound,openArray[T],T>`_ runnableExamples: var arr = @[1, 2, 3, 5, 6, 7, 8, 9] assert arr.upperBound(2, system.cmp[int]) == 2 assert arr.upperBound(3, system.cmp[int]) == 3 assert arr.upperBound(4, system.cmp[int]) == 3 arr.insert(4, arr.upperBound(3, system.cmp[int])) assert arr == [1, 2, 3, 4, 5, 6, 7, 8, 9] result = a.low var count = a.high - a.low + 1 var step, pos: int while count != 0: step = count shr 1 pos = result + step if cmp(a[pos], key) <= 0: result = pos + 1 count -= step + 1 else: count = step proc upperBound*[T](a: openArray[T], key: T): int = upperBound(a, key, cmp[T]) ## Returns the index of the first element in `a` that is greater than ## `key`, or last if no such element is found. ## In other words if you have a sorted sequence and you call ## `insert(thing, elm, upperBound(thing, elm))` ## the sequence will still be sorted. ## Assumes that `a` is sorted. ## ## This version uses the default comparison function `cmp`. ## ## **See also:** ## * `lowerBound proc<#lowerBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order ## * `lowerBound proc<#lowerBound,openArray[T],T>`_ template `<-`(a, b) = when defined(gcDestructors): a = move b elif onlySafeCode: shallowCopy(a, b) else: copyMem(addr(a), addr(b), sizeof(T)) proc mergeAlt[T](a, b: var openArray[T], lo, m, hi: int, cmp: proc (x, y: T): int {.closure.}, order: SortOrder) = # Optimization: If max(left) <= min(right) there is nothing to do! # 1 2 3 4 ## 5 6 7 8 # -> O(n) for sorted arrays. # On random data this saves up to 40% of mergeAlt calls. if cmp(a[m], a[m+1]) * order <= 0: return var j = lo # copy a[j..m] into b: assert j <= m when onlySafeCode: var bb = 0 while j <= m: b[bb] <- a[j] inc(bb) inc(j) else: copyMem(addr(b[0]), addr(a[j]), sizeof(T)*(m-j+1)) j = m+1 var i = 0 var k = lo # copy proper element back: while k < j and j <= hi: if cmp(b[i], a[j]) * order <= 0: a[k] <- b[i] inc(i) else: a[k] <- a[j] inc(j) inc(k) # copy rest of b: when onlySafeCode: while k < j: a[k] <- b[i] inc(k) inc(i) else: if k < j: copyMem(addr(a[k]), addr(b[i]), sizeof(T)*(j-k)) func sort*[T](a: var openArray[T], cmp: proc (x, y: T): int {.closure.}, order = SortOrder.Ascending) = ## Default Nim sort (an implementation of merge sort). The sorting ## is guaranteed to be stable (that is, equal elements stay in the same order) ## and the worst case is guaranteed to be O(n log n). ## Sorts by `cmp` in the specified `order`. ## ## The current implementation uses an iterative ## mergesort to achieve this. It uses a temporary sequence of ## length `a.len div 2`. If you do not wish to provide your own ## `cmp`, you may use `system.cmp` or instead call the overloaded ## version of `sort`, which uses `system.cmp`. ## ## .. code-block:: nim ## ## sort(myIntArray, system.cmp[int]) ## # do not use cmp[string] here as we want to use the specialized ## # overload: ## sort(myStrArray, system.cmp) ## ## You can inline adhoc comparison procs with the `do notation ## `_. Example: ## ## .. code-block:: nim ## ## people.sort do (x, y: Person) -> int: ## result = cmp(x.surname, y.surname) ## if result == 0: ## result = cmp(x.name, y.name) ## ## **See also:** ## * `sort proc<#sort,openArray[T]>`_ ## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by `cmp` in the specified order ## * `sorted proc<#sorted,openArray[T]>`_ ## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_ runnableExamples: var d = ["boo", "fo", "barr", "qux"] proc myCmp(x, y: string): int = if x.len() > y.len() or x.len() == y.len(): 1 else: -1 sort(d, myCmp) assert d == ["fo", "qux", "boo", "barr"] var n = a.len var b = newSeq[T](n div 2) var s = 1 while s < n: var m = n-1-s while m >= 0: mergeAlt(a, b, max(m-s+1, 0), m, m+s, cmp, order) dec(m, s*2) s = s*2 proc sort*[T](a: var openArray[T], order = SortOrder.Ascending) = sort[T](a, system.cmp[T], order) ## Shortcut version of `sort` that uses `system.cmp[T]` as the comparison function. ## ## **See also:** ## * `sort func<#sort,openArray[T],proc(T,T)>`_ ## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by `cmp` in the specified order ## * `sorted proc<#sorted,openArray[T]>`_ ## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_ proc sorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.}, order = SortOrder.Ascending): seq[T] = ## Returns `a` sorted by `cmp` in the specified `order`. ## ## **See also:** ## * `sort func<#sort,openArray[T],proc(T,T)>`_ ## * `sort proc<#sort,openArray[T]>`_ ## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_ runnableExamples: let a = [2, 3, 1, 5, 4] b = sorted(a, system.cmp[int]) c = sorted(a, system.cmp[int], Descending) d = sorted(["adam", "dande", "brian", "cat"], system.cmp[string]) assert b == @[1, 2, 3, 4, 5] assert c == @[5, 4, 3, 2, 1] assert d == @["adam", "brian", "cat", "dande"] result = newSeq[T](a.len) for i in 0 .. a.high: result[i] = a[i] sort(result, cmp, order) proc sorted*[T](a: openArray[T], order = SortOrder.Ascending): seq[T] = ## Shortcut version of `sorted` that uses `system.cmp[T]` as the comparison function. ## ## **See also:** ## * `sort func<#sort,openArray[T],proc(T,T)>`_ ## * `sort proc<#sort,openArray[T]>`_ ## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_ runnableExamples: let a = [2, 3, 1, 5, 4] b = sorted(a) c = sorted(a, Descending) d = sorted(["adam", "dande", "brian", "cat"]) assert b == @[1, 2, 3, 4, 5] assert c == @[5, 4, 3, 2, 1] assert d == @["adam", "brian", "cat", "dande"] sorted[T](a, system.cmp[T], order) template sortedByIt*(seq1, op: untyped): untyped = ## Convenience template around the `sorted` proc to reduce typing. ## ## The template injects the `it` variable which you can use directly in an ## expression. ## ## Because the underlying `cmp()` is defined for tuples you can also do ## a nested sort. ## ## **See also:** ## * `sort func<#sort,openArray[T],proc(T,T)>`_ ## * `sort proc<#sort,openArray[T]>`_ ## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by `cmp` in the specified order ## * `sorted proc<#sorted,openArray[T]>`_ runnableExamples: type Person = tuple[name: string, age: int] var p1: Person = (name: "p1", age: 60) p2: Person = (name: "p2", age: 20) p3: Person = (name: "p3", age: 30) p4: Person = (name: "p4", age: 30) people = @[p1, p2, p4, p3] assert people.sortedByIt(it.name) == @[(name: "p1", age: 60), (name: "p2", age: 20), (name: "p3", age: 30), (name: "p4", age: 30)] # Nested sort assert people.sortedByIt((it.age, it.name)) == @[(name: "p2", age: 20), (name: "p3", age: 30), (name: "p4", age: 30), (name: "p1", age: 60)] var result = sorted(seq1, proc(x, y: typeof(items(seq1), typeOfIter)): int = var it {.inject.} = x let a = op it = y let b = op result = cmp(a, b)) result func isSorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.}, order = SortOrder.Ascending): bool = ## Checks to see whether `a` is already sorted in `order` ## using `cmp` for the comparison. The parameters are identical ## to `sort`. Requires O(n) time. ## ## **See also:** ## * `isSorted proc<#isSorted,openArray[T]>`_ runnableExamples: let a = [2, 3, 1, 5, 4] b = [1, 2, 3, 4, 5] c = [5, 4, 3, 2, 1] d = ["adam", "brian", "cat", "dande"] e = ["adam", "dande", "brian", "cat"] assert isSorted(a) == false assert isSorted(b) == true assert isSorted(c) == false assert isSorted(c, Descending) == true assert isSorted(d) == true assert isSorted(e) == false result = true for i in 0.. 0: return false proc isSorted*[T](a: openArray[T], order = SortOrder.Ascending): bool = ## Shortcut version of `isSorted` that uses `system.cmp[T]` as the comparison function. ## ## **See also:** ## * `isSorted func<#isSorted,openArray[T],proc(T,T)>`_ runnableExamples: let a = [2, 3, 1, 5, 4] b = [1, 2, 3, 4, 5] c = [5, 4, 3, 2, 1] d = ["adam", "brian", "cat", "dande"] e = ["adam", "dande", "brian", "cat"] assert isSorted(a) == false assert isSorted(b) == true assert isSorted(c) == false assert isSorted(c, Descending) == true assert isSorted(d) == true assert isSorted(e) == false isSorted(a, system.cmp[T], order) proc merge*[T]( result: var seq[T], x, y: openArray[T], cmp: proc(x, y: T): int {.closure.} ) {.since: (1, 5, 1).} = ## Merges two sorted `openArray`. `x` and `y` are assumed to be sorted. ## If you do not wish to provide your own `cmp`, ## you may use `system.cmp` or instead call the overloaded ## version of `merge`, which uses `system.cmp`. ## ## .. note:: The original data of `result` is not cleared, ## new data is appended to `result`. ## ## **See also:** ## * `merge proc<#merge,seq[T],openArray[T],openArray[T]>`_ runnableExamples: let x = @[1, 3, 6] let y = @[2, 3, 4] block: var merged = @[7] # new data is appended to merged sequence merged.merge(x, y, system.cmp[int]) assert merged == @[7, 1, 2, 3, 3, 4, 6] block: var merged = @[7] # if you only want new data, clear merged sequence first merged.setLen(0) merged.merge(x, y, system.cmp[int]) assert merged.isSorted assert merged == @[1, 2, 3, 3, 4, 6] import std/sugar var res: seq[(int, int)] res.merge([(1, 1)], [(1, 2)], (a, b) => a[0] - b[0]) assert res == @[(1, 1), (1, 2)] assert seq[int].default.dup(merge([1, 3], [2, 4])) == @[1, 2, 3, 4] let sizeX = x.len sizeY = y.len oldLen = result.len result.setLen(oldLen + sizeX + sizeY) var ix = 0 iy = 0 i = oldLen while true: if ix == sizeX: while iy < sizeY: result[i] = y[iy] inc i inc iy return if iy == sizeY: while ix < sizeX: result[i] = x[ix] inc i inc ix return let itemX = x[ix] let itemY = y[iy] if cmp(itemX, itemY) > 0: # to have a stable sort result[i] = itemY inc iy else: result[i] = itemX inc ix inc i proc merge*[T](result: var seq[T], x, y: openArray[T]) {.inline, since: (1, 5, 1).} = ## Shortcut version of `merge` that uses `system.cmp[T]` as the comparison function. ## ## **See also:** ## * `merge proc<#merge,seq[T],openArray[T],openArray[T],proc(T,T)>`_ runnableExamples: let x = [5, 10, 15, 20, 25] let y = [50, 40, 30, 20, 10].sorted var merged: seq[int] merged.merge(x, y) assert merged.isSorted assert merged == @[5, 10, 10, 15, 20, 20, 25, 30, 40, 50] merge(result, x, y, system.cmp) proc product*[T](x: openArray[seq[T]]): seq[seq[T]] = ## Produces the Cartesian product of the array. ## Every element of the result is a combination of one element from each seq in `x`, ## with the ith element coming from `x[i]`. ## ## .. warning:: complexity may explode. runnableExamples: assert product(@[@[1], @[2]]) == @[@[1, 2]] assert product(@[@["A", "K"], @["Q"]]) == @[@["K", "Q"], @["A", "Q"]] let xLen = x.len result = newSeq[seq[T]]() if xLen == 0: return if xLen == 1: result = @x return var indices = newSeq[int](xLen) initial = newSeq[int](xLen) index = 0 var next = newSeq[T](xLen) for i in 0 ..< xLen: if len(x[i]) == 0: return initial[i] = len(x[i]) - 1 indices = initial while true: while indices[index] == -1: indices[index] = initial[index] index += 1 if index == xLen: return indices[index] -= 1 for ni, i in indices: next[ni] = x[ni][i] result.add(next) index = 0 indices[index] -= 1 proc nextPermutation*[T](x: var openArray[T]): bool {.discardable.} = ## Calculates the next lexicographic permutation, directly modifying `x`. ## The result is whether a permutation happened, otherwise we have reached ## the last-ordered permutation. ## ## If you start with an unsorted array/seq, the repeated permutations ## will **not** give you all permutations but stop with the last. ## ## **See also:** ## * `prevPermutation proc<#prevPermutation,openArray[T]>`_ runnableExamples: var v = @[0, 1, 2, 3] assert v.nextPermutation() == true assert v == @[0, 1, 3, 2] assert v.nextPermutation() == true assert v == @[0, 2, 1, 3] assert v.prevPermutation() == true assert v == @[0, 1, 3, 2] v = @[3, 2, 1, 0] assert v.nextPermutation() == false assert v == @[3, 2, 1, 0] if x.len < 2: return false var i = x.high while i > 0 and x[i-1] >= x[i]: dec i if i == 0: return false var j = x.high while j >= i and x[j] <= x[i-1]: dec j swap x[j], x[i-1] x.reverse(i, x.high) result = true proc prevPermutation*[T](x: var openArray[T]): bool {.discardable.} = ## Calculates the previous lexicographic permutation, directly modifying ## `x`. The result is whether a permutation happened, otherwise we have ## reached the first-ordered permutation. ## ## **See also:** ## * `nextPermutation proc<#nextPermutation,openArray[T]>`_ runnableExamples: var v = @[0, 1, 2, 3] assert v.prevPermutation() == false assert v == @[0, 1, 2, 3] assert v.nextPermutation() == true assert v == @[0, 1, 3, 2] assert v.prevPermutation() == true assert v == @[0, 1, 2, 3] if x.len < 2: return false var i = x.high while i > 0 and x[i-1] <= x[i]: dec i if i == 0: return false x.reverse(i, x.high) var j = x.high while j >= i and x[j-1] < x[i-1]: dec j swap x[i-1], x[j] result = true proc rotateInternal[T](arg: var openArray[T]; first, middle, last: int): int = ## A port of std::rotate from C++. ## Ported from [this reference](http://www.cplusplus.com/reference/algorithm/rotate/). result = first + last - middle if first == middle or middle == last: return assert first < middle assert middle < last # m prefix for mutable var mFirst = first mMiddle = middle next = middle swap(arg[mFirst], arg[next]) mFirst += 1 next += 1 if mFirst == mMiddle: mMiddle = next while next != last: swap(arg[mFirst], arg[next]) mFirst += 1 next += 1 if mFirst == mMiddle: mMiddle = next next = mMiddle while next != last: swap(arg[mFirst], arg[next]) mFirst += 1 next += 1 if mFirst == mMiddle: mMiddle = next elif next == last: next = mMiddle proc rotatedInternal[T](arg: openArray[T]; first, middle, last: int): seq[T] = let argLen = arg.len result = newSeq[T](argLen) for i in 0 ..< first: result[i] = arg[i] let n = last - middle let m = middle - first for i in 0 ..< n: result[first+i] = arg[middle+i] for i in 0 ..< m: result[first+n+i] = arg[first+i] for i in last ..< argLen: result[i] = arg[i] proc rotateLeft*[T](arg: var openArray[T]; slice: HSlice[int, int]; dist: int): int {.discardable.} = ## Performs a left rotation on a range of elements. If you want to rotate ## right, use a negative `dist`. Specifically, `rotateLeft` rotates ## the elements at `slice` by `dist` positions. ## ## | The element at index `slice.a + dist` will be at index `slice.a`. ## | The element at index `slice.b` will be at `slice.a + dist - 1`. ## | The element at index `slice.a` will be at `slice.b + 1 - dist`. ## | The element at index `slice.a + dist - 1` will be at `slice.b`. ## ## Elements outside of `slice` will be left unchanged. ## The time complexity is linear to `slice.b - slice.a + 1`. ## If an invalid range (`HSlice`) is passed, it raises `IndexDefect`. ## ## `slice` ## The indices of the element range that should be rotated. ## ## `dist` ## The distance in amount of elements that the data should be rotated. ## Can be negative, can be any number. ## ## **See also:** ## * `rotateLeft proc<#rotateLeft,openArray[T],int>`_ for a version which rotates the whole container ## * `rotatedLeft proc<#rotatedLeft,openArray[T],HSlice[int,int],int>`_ for a version which returns a `seq[T]` runnableExamples: var a = [0, 1, 2, 3, 4, 5] a.rotateLeft(1 .. 4, 3) assert a == [0, 4, 1, 2, 3, 5] a.rotateLeft(1 .. 4, 3) assert a == [0, 3, 4, 1, 2, 5] a.rotateLeft(1 .. 4, -3) assert a == [0, 4, 1, 2, 3, 5] doAssertRaises(IndexDefect, a.rotateLeft(1 .. 7, 2)) let sliceLen = slice.b + 1 - slice.a let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen arg.rotateInternal(slice.a, slice.a + distLeft, slice.b + 1) proc rotateLeft*[T](arg: var openArray[T]; dist: int): int {.discardable.} = ## Same as `rotateLeft`, but with default arguments for slice, ## so that this procedure operates on the entire ## `arg`, and not just on a part of it. ## ## **See also:** ## * `rotateLeft proc<#rotateLeft,openArray[T],HSlice[int,int],int>`_ for a version which rotates a range ## * `rotatedLeft proc<#rotatedLeft,openArray[T],int>`_ for a version which returns a `seq[T]` runnableExamples: var a = [1, 2, 3, 4, 5] a.rotateLeft(2) assert a == [3, 4, 5, 1, 2] a.rotateLeft(4) assert a == [2, 3, 4, 5, 1] a.rotateLeft(-6) assert a == [1, 2, 3, 4, 5] let argLen = arg.len let distLeft = ((dist mod argLen) + argLen) mod argLen arg.rotateInternal(0, distLeft, argLen) proc rotatedLeft*[T](arg: openArray[T]; slice: HSlice[int, int], dist: int): seq[T] = ## Same as `rotateLeft`, just with the difference that it does ## not modify the argument. It creates a new `seq` instead. ## ## Elements outside of `slice` will be left unchanged. ## If an invalid range (`HSlice`) is passed, it raises `IndexDefect`. ## ## `slice` ## The indices of the element range that should be rotated. ## ## `dist` ## The distance in amount of elements that the data should be rotated. ## Can be negative, can be any number. ## ## **See also:** ## * `rotateLeft proc<#rotateLeft,openArray[T],HSlice[int,int],int>`_ for the in-place version of this proc ## * `rotatedLeft proc<#rotatedLeft,openArray[T],int>`_ for a version which rotates the whole container runnableExamples: var a = @[1, 2, 3, 4, 5] a = rotatedLeft(a, 1 .. 4, 3) assert a == @[1, 5, 2, 3, 4] a = rotatedLeft(a, 1 .. 3, 2) assert a == @[1, 3, 5, 2, 4] a = rotatedLeft(a, 1 .. 3, -2) assert a == @[1, 5, 2, 3, 4] let sliceLen = slice.b + 1 - slice.a let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen arg.rotatedInternal(slice.a, slice.a + distLeft, slice.b + 1) proc rotatedLeft*[T](arg: openArray[T]; dist: int): seq[T] = ## Same as `rotateLeft`, just with the difference that it does ## not modify the argument. It creates a new `seq` instead. ## ## **See also:** ## * `rotateLeft proc<#rotateLeft,openArray[T],int>`_ for the in-place version of this proc ## * `rotatedLeft proc<#rotatedLeft,openArray[T],HSlice[int,int],int>`_ for a version which rotates a range runnableExamples: var a = @[1, 2, 3, 4, 5] a = rotatedLeft(a, 2) assert a == @[3, 4, 5, 1, 2] a = rotatedLeft(a, 4) assert a == @[2, 3, 4, 5, 1] a = rotatedLeft(a, -6) assert a == @[1, 2, 3, 4, 5] let argLen = arg.len let distLeft = ((dist mod argLen) + argLen) mod argLen arg.rotatedInternal(0, distLeft, argLen)