# # # Nim's Runtime Library # (c) Copyright 2015 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This module implements some common generic algorithms. ## ## Basic usage ## =========== ## ## .. code-block:: ## import algorithm ## ## type People = tuple ## year: int ## name: string ## ## var a: seq[People] ## ## a.add((2000, "John")) ## a.add((2005, "Marie")) ## a.add((2010, "Jane")) ## ## # Sorting with default system.cmp ## a.sort() ## assert a == @[(year: 2000, name: "John"), (year: 2005, name: "Marie"), ## (year: 2010, name: "Jane")] ## ## proc myCmp(x, y: People): int = ## if x.name < y.name: -1 else: 1 ## ## # Sorting with custom proc ## a.sort(myCmp) ## assert a == @[(year: 2010, name: "Jane"), (year: 2000, name: "John"), ## (year: 2005, name: "Marie")] ## ## ## See also ## ======== ## * `sequtils module`_ for working with the built-in seq type ## * `tables module`_ for sorting tables type SortOrder* = enum Descending, Ascending proc `*`*(x: int, order: SortOrder): int {.inline.} = ## Flips ``x`` if ``order == Descending``. ## If ``order == Ascending`` then ``x`` is returned. ## ## ``x`` is supposed to be the result of a comparator, i.e. ## | ``< 0`` for *less than*, ## | ``== 0`` for *equal*, ## | ``> 0`` for *greater than*. runnableExamples: assert `*`(-123, Descending) == 123 assert `*`(123, Descending) == -123 assert `*`(-123, Ascending) == -123 assert `*`(123, Ascending) == 123 var y = order.ord - 1 result = (x xor y) - y template fillImpl[T](a: var openArray[T], first, last: int, value: T) = var x = first while x <= last: a[x] = value inc(x) proc fill*[T](a: var openArray[T], first, last: Natural, value: T) = ## Fills the slice ``a[first..last]`` with ``value``. ## ## If an invalid range is passed, it raises IndexError. runnableExamples: var a: array[6, int] a.fill(1, 3, 9) assert a == [0, 9, 9, 9, 0, 0] a.fill(3, 5, 7) assert a == [0, 9, 9, 7, 7, 7] doAssertRaises(IndexError, a.fill(1, 7, 9)) fillImpl(a, first, last, value) proc fill*[T](a: var openArray[T], value: T) = ## Fills the container ``a`` with ``value``. runnableExamples: var a: array[6, int] a.fill(9) assert a == [9, 9, 9, 9, 9, 9] a.fill(4) assert a == [4, 4, 4, 4, 4, 4] fillImpl(a, 0, a.high, value) proc reverse*[T](a: var openArray[T], first, last: Natural) = ## Reverses the slice ``a[first..last]``. ## ## If an invalid range is passed, it raises IndexError. ## ## **See also:** ## * `reversed proc<#reversed,openArray[T],Natural,int>`_ reverse a slice and returns a ``seq[T]`` ## * `reversed proc<#reversed,openArray[T]>`_ reverse and returns a ``seq[T]`` runnableExamples: var a = [1, 2, 3, 4, 5, 6] a.reverse(1, 3) assert a == [1, 4, 3, 2, 5, 6] a.reverse(1, 3) assert a == [1, 2, 3, 4, 5, 6] doAssertRaises(IndexError, a.reverse(1, 7)) var x = first var y = last while x < y: swap(a[x], a[y]) dec(y) inc(x) proc reverse*[T](a: var openArray[T]) = ## Reverses the contents of the container ``a``. ## ## **See also:** ## * `reversed proc<#reversed,openArray[T],Natural,int>`_ reverse a slice and returns a ``seq[T]`` ## * `reversed proc<#reversed,openArray[T]>`_ reverse and returns a ``seq[T]`` runnableExamples: var a = [1, 2, 3, 4, 5, 6] a.reverse() assert a == [6, 5, 4, 3, 2, 1] a.reverse() assert a == [1, 2, 3, 4, 5, 6] reverse(a, 0, max(0, a.high)) proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T] = ## Returns the reverse of the slice ``a[first..last]``. ## ## If an invalid range is passed, it raises IndexError. ## ## **See also:** ## * `reverse proc<#reverse,openArray[T],Natural,Natural>`_ reverse a slice ## * `reverse proc<#reverse,openArray[T]>`_ runnableExamples: let a = [1, 2, 3, 4, 5, 6] b = a.reversed(1, 3) assert b == @[4, 3, 2] assert last >= first-1 var i = last - first var x = first.int result = newSeq[T](i + 1) while i >= 0: result[i] = a[x] dec(i) inc(x) proc reversed*[T](a: openArray[T]): seq[T] = ## Returns the reverse of the container ``a``. ## ## **See also:** ## * `reverse proc<#reverse,openArray[T],Natural,Natural>`_ reverse a slice ## * `reverse proc<#reverse,openArray[T]>`_ runnableExamples: let a = [1, 2, 3, 4, 5, 6] b = reversed(a) assert b == @[6, 5, 4, 3, 2, 1] reversed(a, 0, a.high) proc binarySearch*[T, K](a: openArray[T], key: K, cmp: proc (x: T, y: K): int {.closure.}): int = ## Binary search for ``key`` in ``a``. Returns -1 if not found. ## ## ``cmp`` is the comparator function to use, the expected return values are ## the same as that of system.cmp. runnableExamples: assert binarySearch(["a","b","c","d"], "d", system.cmp[string]) == 3 assert binarySearch(["a","b","d","c"], "d", system.cmp[string]) == 2 if a.len == 0: return -1 let len = a.len if len == 1: if cmp(a[0], key) == 0: return 0 else: return -1 if (len and (len - 1)) == 0: # when `len` is a power of 2, a faster shr can be used. var step = len shr 1 var cmpRes: int while step > 0: let i = result or step cmpRes = cmp(a[i], key) if cmpRes == 0: return i if cmpRes < 1: result = i step = step shr 1 if cmp(a[result], key) != 0: result = -1 else: var b = len var cmpRes: int while result < b: var mid = (result + b) shr 1 cmpRes = cmp(a[mid], key) if cmpRes == 0: return mid if cmpRes < 0: result = mid + 1 else: b = mid if result >= len or cmp(a[result], key) != 0: result = -1 proc binarySearch*[T](a: openArray[T], key: T): int = ## Binary search for ``key`` in ``a``. Returns -1 if not found. runnableExamples: assert binarySearch([0, 1, 2, 3, 4], 4) == 4 assert binarySearch([0, 1, 4, 2, 3], 4) == 2 binarySearch(a, key, cmp[T]) proc smartBinarySearch*[T](a: openArray[T], key: T): int {.deprecated.} = ## **Deprecated since version 0.18.1**; Use `binarySearch proc ## <#binarySearch,openArray[T],T>`_ instead. binarySearch(a, key, cmp[T]) const onlySafeCode = true proc lowerBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {.closure.}): int = ## Returns a position to the first element in the ``a`` that is greater than ## ``key``, or last if no such element is found. ## In other words if you have a sorted sequence and you call ## ``insert(thing, elm, lowerBound(thing, elm))`` ## the sequence will still be sorted. ## ## If an invalid range is passed, it raises IndexError. ## ## The version uses ``cmp`` to compare the elements. ## The expected return values are the same as that of ``system.cmp``. ## ## **See also:** ## * `upperBound proc<#upperBound,openArray[T],K,proc(T,K)>`_ sorted by ``cmp`` in the specified order ## * `upperBound proc<#upperBound,openArray[T],T>`_ runnableExamples: var arr = @[1,2,3,5,6,7,8,9] assert arr.lowerBound(3, system.cmp[int]) == 2 assert arr.lowerBound(4, system.cmp[int]) == 3 assert arr.lowerBound(5, system.cmp[int]) == 3 arr.insert(4, arr.lowerBound(4, system.cmp[int])) assert arr == [1,2,3,4,5,6,7,8,9] result = a.low var count = a.high - a.low + 1 var step, pos: int while count != 0: step = count shr 1 pos = result + step if cmp(a[pos], key) < 0: result = pos + 1 count -= step + 1 else: count = step proc lowerBound*[T](a: openArray[T], key: T): int = lowerBound(a, key, cmp[T]) ## Returns a position to the first element in the ``a`` that is greater than ## ``key``, or last if no such element is found. ## In other words if you have a sorted sequence and you call ## ``insert(thing, elm, lowerBound(thing, elm))`` ## the sequence will still be sorted. ## ## The version uses the default comparison function ``cmp``. ## ## **See also:** ## * `upperBound proc<#upperBound,openArray[T],K,proc(T,K)>`_ sorted by ``cmp`` in the specified order ## * `upperBound proc<#upperBound,openArray[T],T>`_ proc upperBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {.closure.}): int = ## Returns a position to the first element in the ``a`` that is not less ## (i.e. greater or equal to) than ``key``, or last if no such element is found. ## In other words if you have a sorted sequence and you call ## ``insert(thing, elm, upperBound(thing, elm))`` ## the sequence will still be sorted. ## ## If an invalid range is passed, it raises IndexError. ## ## The version uses ``cmp`` to compare the elements. The expected ## return values are the same as that of ``system.cmp``. ## ## **See also:** ## * `lowerBound proc<#lowerBound,openArray[T],K,proc(T,K)>`_ sorted by ``cmp`` in the specified order ## * `lowerBound proc<#lowerBound,openArray[T],T>`_ runnableExamples: var arr = @[1,2,3,5,6,7,8,9] assert arr.upperBound(2, system.cmp[int]) == 2 assert arr.upperBound(3, system.cmp[int]) == 3 assert arr.upperBound(4, system.cmp[int]) == 3 arr.insert(4, arr.upperBound(3, system.cmp[int])) assert arr == [1,2,3,4,5,6,7,8,9] result = a.low var count = a.high - a.low + 1 var step, pos: int while count != 0: step = count shr 1 pos = result + step if cmp(a[pos], key) <= 0: result = pos + 1 count -= step + 1 else: count = step proc upperBound*[T](a: openArray[T], key: T): int = upperBound(a, key, cmp[T]) ## Returns a position to the first element in the ``a`` that is not less ## (i.e. greater or equal to) than ``key``, or last if no such element is found. ## In other words if you have a sorted sequence and you call ## ``insert(thing, elm, upperBound(thing, elm))`` ## the sequence will still be sorted. ## ## The version uses the default comparison function ``cmp``. ## ## **See also:** ## * `lowerBound proc<#lowerBound,openArray[T],K,proc(T,K)>`_ sorted by ``cmp`` in the specified order ## * `lowerBound proc<#lowerBound,openArray[T],T>`_ template `<-` (a, b) = when false: a = b elif onlySafeCode: shallowCopy(a, b) else: copyMem(addr(a), addr(b), sizeof(T)) proc merge[T](a, b: var openArray[T], lo, m, hi: int, cmp: proc (x, y: T): int {.closure.}, order: SortOrder) = # optimization: If max(left) <= min(right) there is nothing to do! # 1 2 3 4 ## 5 6 7 8 # -> O(n) for sorted arrays. # On random data this safes up to 40% of merge calls if cmp(a[m], a[m+1]) * order <= 0: return var j = lo # copy a[j..m] into b: assert j <= m when onlySafeCode: var bb = 0 while j <= m: b[bb] <- a[j] inc(bb) inc(j) else: copyMem(addr(b[0]), addr(a[j]), sizeof(T)*(m-j+1)) j = m+1 var i = 0 var k = lo # copy proper element back: while k < j and j <= hi: if cmp(b[i], a[j]) * order <= 0: a[k] <- b[i] inc(i) else: a[k] <- a[j] inc(j) inc(k) # copy rest of b: when onlySafeCode: while k < j: a[k] <- b[i] inc(k) inc(i) else: if k < j: copyMem(addr(a[k]), addr(b[i]), sizeof(T)*(j-k)) func sort*[T](a: var openArray[T], cmp: proc (x, y: T): int {.closure.}, order = SortOrder.Ascending) = ## Default Nim sort (an implementation of merge sort). The sorting ## is guaranteed to be stable and the worst case is guaranteed to ## be O(n log n). ## ## The current implementation uses an iterative ## mergesort to achieve this. It uses a temporary sequence of ## length ``a.len div 2``. If you do not wish to provide your own ## ``cmp``, you may use ``system.cmp`` or instead call the overloaded ## version of ``sort``, which uses ``system.cmp``. ## ## .. code-block:: nim ## ## sort(myIntArray, system.cmp[int]) ## # do not use cmp[string] here as we want to use the specialized ## # overload: ## sort(myStrArray, system.cmp) ## ## You can inline adhoc comparison procs with the `do notation ## `_. Example: ## ## .. code-block:: nim ## ## people.sort do (x, y: Person) -> int: ## result = cmp(x.surname, y.surname) ## if result == 0: ## result = cmp(x.name, y.name) ## ## **See also:** ## * `sort proc<#sort,openArray[T]>`_ ## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by ``cmp`` in the specified order ## * `sorted proc<#sorted,openArray[T]>`_ ## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_ runnableExamples: var d = ["boo", "fo", "barr", "qux"] proc myCmp(x, y: string): int = if x.len() > y.len() or x.len() == y.len(): 1 else: -1 sort(d, myCmp) assert d == ["fo", "qux", "boo", "barr"] var n = a.len var b: seq[T] newSeq(b, n div 2) var s = 1 while s < n: var m = n-1-s while m >= 0: merge(a, b, max(m-s+1, 0), m, m+s, cmp, order) dec(m, s*2) s = s*2 proc sort*[T](a: var openArray[T], order = SortOrder.Ascending) = sort[T](a, system.cmp[T], order) ## Shortcut version of ``sort`` that uses ``system.cmp[T]`` as the comparison function. ## ## **See also:** ## * `sort func<#sort,openArray[T],proc(T,T)>`_ ## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by ``cmp`` in the specified order ## * `sorted proc<#sorted,openArray[T]>`_ ## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_ proc sorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.}, order = SortOrder.Ascending): seq[T] = ## Returns ``a`` sorted by ``cmp`` in the specified ``order``. ## ## **See also:** ## * `sort func<#sort,openArray[T],proc(T,T)>`_ ## * `sort proc<#sort,openArray[T]>`_ ## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_ runnableExamples: let a = [2, 3, 1, 5, 4] b = sorted(a, system.cmp[int]) c = sorted(a, system.cmp[int], Descending) d = sorted(["adam", "dande", "brian", "cat"], system.cmp[string]) assert b == @[1, 2, 3, 4, 5] assert c == @[5, 4, 3, 2, 1] assert d == @["adam", "brian", "cat", "dande"] result = newSeq[T](a.len) for i in 0 .. a.high: result[i] = a[i] sort(result, cmp, order) proc sorted*[T](a: openArray[T], order = SortOrder.Ascending): seq[T] = ## Shortcut version of ``sorted`` that uses ``system.cmp[T]`` as the comparison function. ## ## **See also:** ## * `sort func<#sort,openArray[T],proc(T,T)>`_ ## * `sort proc<#sort,openArray[T]>`_ ## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_ runnableExamples: let a = [2, 3, 1, 5, 4] b = sorted(a) c = sorted(a, Descending) d = sorted(["adam", "dande", "brian", "cat"]) assert b == @[1, 2, 3, 4, 5] assert c == @[5, 4, 3, 2, 1] assert d == @["adam", "brian", "cat", "dande"] sorted[T](a, system.cmp[T], order) template sortedByIt*(seq1, op: untyped): untyped = ## Convenience template around the ``sorted`` proc to reduce typing. ## ## The template injects the ``it`` variable which you can use directly in an ## expression. ## ## Because the underlying ``cmp()`` is defined for tuples you can do ## a nested sort. ## ## **See also:** ## * `sort func<#sort,openArray[T],proc(T,T)>`_ ## * `sort proc<#sort,openArray[T]>`_ ## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by ``cmp`` in the specified order ## * `sorted proc<#sorted,openArray[T]>`_ runnableExamples: type Person = tuple[name: string, age: int] var p1: Person = (name: "p1", age: 60) p2: Person = (name: "p2", age: 20) p3: Person = (name: "p3", age: 30) p4: Person = (name: "p4", age: 30) people = @[p1,p2,p4,p3] assert people.sortedByIt(it.name) == @[(name: "p1", age: 60), (name: "p2", age: 20), (name: "p3", age: 30), (name: "p4", age: 30)] # Nested sort assert people.sortedByIt((it.age, it.name)) == @[(name: "p2", age: 20), (name: "p3", age: 30), (name: "p4", age: 30), (name: "p1", age: 60)] var result = sorted(seq1, proc(x, y: type(seq1[0])): int = var it {.inject.} = x let a = op it = y let b = op result = cmp(a, b)) result func isSorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.}, order = SortOrder.Ascending): bool = ## Checks to see whether ``a`` is already sorted in ``order`` ## using ``cmp`` for the comparison. Parameters identical ## to ``sort``. Requires O(n) time. ## ## **See also:** ## * `isSorted proc<#isSorted,openArray[T]>`_ runnableExamples: let a = [2, 3, 1, 5, 4] b = [1, 2, 3, 4, 5] c = [5, 4, 3, 2, 1] d = ["adam", "brian", "cat", "dande"] e = ["adam", "dande", "brian", "cat"] assert isSorted(a) == false assert isSorted(b) == true assert isSorted(c) == false assert isSorted(c, Descending) == true assert isSorted(d) == true assert isSorted(e) == false result = true for i in 0.. 0: return false proc isSorted*[T](a: openarray[T], order = SortOrder.Ascending): bool = ## Shortcut version of ``isSorted`` that uses ``system.cmp[T]`` as the comparison function. ## ## **See also:** ## * `isSorted func<#isSorted,openArray[T],proc(T,T)>`_ runnableExamples: let a = [2, 3, 1, 5, 4] b = [1, 2, 3, 4, 5] c = [5, 4, 3, 2, 1] d = ["adam", "brian", "cat", "dande"] e = ["adam", "dande", "brian", "cat"] assert isSorted(a) == false assert isSorted(b) == true assert isSorted(c) == false assert isSorted(c, Descending) == true assert isSorted(d) == true assert isSorted(e) == false isSorted(a, system.cmp[T], order) proc product*[T](x: openArray[seq[T]]): seq[seq[T]] = ## Produces the Cartesian product of the array. Warning: complexity ## may explode. runnableExamples: assert product(@[@[1], @[2]]) == @[@[1, 2]] assert product(@[@["A", "K"], @["Q"]]) == @[@["K", "Q"], @["A", "Q"]] result = newSeq[seq[T]]() if x.len == 0: return if x.len == 1: result = @x return var indexes = newSeq[int](x.len) initial = newSeq[int](x.len) index = 0 var next = newSeq[T]() next.setLen(x.len) for i in 0..(x.len-1): if len(x[i]) == 0: return initial[i] = len(x[i])-1 indexes = initial while true: while indexes[index] == -1: indexes[index] = initial[index] index += 1 if index == x.len: return indexes[index] -= 1 for ni, i in indexes: next[ni] = x[ni][i] var res: seq[T] shallowCopy(res, next) result.add(res) index = 0 indexes[index] -= 1 proc nextPermutation*[T](x: var openarray[T]): bool {.discardable.} = ## Calculates the next lexicographic permutation, directly modifying ``x``. ## The result is whether a permutation happened, otherwise we have reached ## the last-ordered permutation. ## ## If you start with an unsorted array/seq, the repeated permutations ## will **not** give you all permutations but stop with last. ## ## **See also:** ## * `prevPermutation proc<#prevPermutation,openArray[T]>`_ runnableExamples: var v = @[0, 1, 2, 3] assert v.nextPermutation() == true assert v == @[0, 1, 3, 2] assert v.nextPermutation() == true assert v == @[0, 2, 1, 3] assert v.prevPermutation() == true assert v == @[0, 1, 3, 2] v = @[3, 2, 1, 0] assert v.nextPermutation() == false assert v == @[3, 2, 1, 0] if x.len < 2: return false var i = x.high while i > 0 and x[i-1] >= x[i]: dec i if i == 0: return false var j = x.high while j >= i and x[j] <= x[i-1]: dec j swap x[j], x[i-1] x.reverse(i, x.high) result = true proc prevPermutation*[T](x: var openarray[T]): bool {.discardable.} = ## Calculates the previous lexicographic permutation, directly modifying ## ``x``. The result is whether a permutation happened, otherwise we have ## reached the first-ordered permutation. ## ## **See also:** ## * `nextPermutation proc<#nextPermutation,openArray[T]>`_ runnableExamples: var v = @[0, 1, 2, 3] assert v.prevPermutation() == false assert v == @[0, 1, 2, 3] assert v.nextPermutation() == true assert v == @[0, 1, 3, 2] assert v.prevPermutation() == true assert v == @[0, 1, 2, 3] if x.len < 2: return false var i = x.high while i > 0 and x[i-1] <= x[i]: dec i if i == 0: return false x.reverse(i, x.high) var j = x.high while j >= i and x[j-1] < x[i-1]: dec j swap x[i-1], x[j] result = true when isMainModule: # Tests for lowerBound var arr = @[1,2,3,5,6,7,8,9] assert arr.lowerBound(0) == 0 assert arr.lowerBound(4) == 3 assert arr.lowerBound(5) == 3 assert arr.lowerBound(10) == 8 arr = @[1,5,10] assert arr.lowerBound(4) == 1 assert arr.lowerBound(5) == 1 assert arr.lowerBound(6) == 2 # Tests for isSorted var srt1 = [1,2,3,4,4,4,4,5] var srt2 = ["iello","hello"] var srt3 = [1.0,1.0,1.0] var srt4: seq[int] assert srt1.isSorted(cmp) == true assert srt2.isSorted(cmp) == false assert srt3.isSorted(cmp) == true assert srt4.isSorted(cmp) == true var srtseq = newSeq[int]() assert srtseq.isSorted(cmp) == true # Tests for reversed var arr1 = @[0,1,2,3,4] assert arr1.reversed() == @[4,3,2,1,0] for i in 0 .. high(arr1): assert arr1.reversed(0, i) == arr1.reversed()[high(arr1) - i .. high(arr1)] assert arr1.reversed(i, high(arr1)) == arr1.reversed()[0 .. high(arr1) - i] proc rotateInternal[T](arg: var openarray[T]; first, middle, last: int): int = ## A port of std::rotate from c++. Ported from `this reference `_. result = first + last - middle if first == middle or middle == last: return assert first < middle assert middle < last # m prefix for mutable var mFirst = first mMiddle = middle next = middle swap(arg[mFirst], arg[next]) mFirst += 1 next += 1 if mFirst == mMiddle: mMiddle = next while next != last: swap(arg[mFirst], arg[next]) mFirst += 1 next += 1 if mFirst == mMiddle: mMiddle = next next = mMiddle while next != last: swap(arg[mFirst], arg[next]) mFirst += 1 next += 1 if mFirst == mMiddle: mMiddle = next elif next == last: next = mMiddle proc rotatedInternal[T](arg: openarray[T]; first, middle, last: int): seq[T] = result = newSeq[T](arg.len) for i in 0 ..< first: result[i] = arg[i] let N = last - middle let M = middle - first for i in 0 ..< N: result[first+i] = arg[middle+i] for i in 0 ..< M: result[first+N+i] = arg[first+i] for i in last ..< arg.len: result[i] = arg[i] proc rotateLeft*[T](arg: var openarray[T]; slice: HSlice[int, int]; dist: int): int {.discardable.} = ## Performs a left rotation on a range of elements. If you want to rotate ## right, use a negative ``dist``. Specifically, ``rotateLeft`` rotates ## the elements at ``slice`` by ``dist`` positions. ## ## | The element at index ``slice.a + dist`` will be at index ``slice.a``. ## | The element at index ``slice.b`` will be at ``slice.a + dist -1``. ## | The element at index ``slice.a`` will be at ``slice.b + 1 - dist``. ## | The element at index ``slice.a + dist - 1`` will be at ``slice.b``. ## ## Elements outside of ``slice`` will be left unchanged. ## The time complexity is linear to ``slice.b - slice.a + 1``. ## If an invalid range (``HSlice``) is passed, it raises IndexError. ## ## ``slice`` ## The indices of the element range that should be rotated. ## ## ``dist`` ## The distance in amount of elements that the data should be rotated. ## Can be negative, can be any number. ## ## **See also:** ## * `rotateLeft proc<#rotateLeft,openArray[T],int>`_ for a version which rotates the whole container ## * `rotatedLeft proc<#rotatedLeft,openArray[T],HSlice[int,int],int>`_ for a version which returns a ``seq[T]`` runnableExamples: var a = [0, 1, 2, 3, 4, 5] a.rotateLeft(1 .. 4, 3) assert a == [0, 4, 1, 2, 3, 5] a.rotateLeft(1 .. 4, 3) assert a == [0, 3, 4, 1, 2, 5] a.rotateLeft(1 .. 4, -3) assert a == [0, 4, 1, 2, 3, 5] doAssertRaises(IndexError, a.rotateLeft(1 .. 7, 2)) let sliceLen = slice.b + 1 - slice.a let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen arg.rotateInternal(slice.a, slice.a+distLeft, slice.b + 1) proc rotateLeft*[T](arg: var openarray[T]; dist: int): int {.discardable.} = ## Default arguments for slice, so that this procedure operates on the entire ## ``arg``, and not just on a part of it. ## ## **See also:** ## * `rotateLeft proc<#rotateLeft,openArray[T],HSlice[int,int],int>`_ for a version which rotates a range ## * `rotatedLeft proc<#rotatedLeft,openArray[T],int>`_ for a version which returns a ``seq[T]`` runnableExamples: var a = [1, 2, 3, 4, 5] a.rotateLeft(2) assert a == [3, 4, 5, 1, 2] a.rotateLeft(4) assert a == [2, 3, 4, 5, 1] a.rotateLeft(-6) assert a == [1, 2, 3, 4, 5] let arglen = arg.len let distLeft = ((dist mod arglen) + arglen) mod arglen arg.rotateInternal(0, distLeft, arglen) proc rotatedLeft*[T](arg: openarray[T]; slice: HSlice[int, int], dist: int): seq[T] = ## Same as ``rotateLeft``, just with the difference that it does ## not modify the argument. It creates a new ``seq`` instead. ## ## Elements outside of ``slice`` will be left unchanged. ## If an invalid range (``HSlice``) is passed, it raises IndexError. ## ## ``slice`` ## The indices of the element range that should be rotated. ## ## ``dist`` ## The distance in amount of elements that the data should be rotated. ## Can be negative, can be any number. ## ## **See also:** ## * `rotateLeft proc<#rotateLeft,openArray[T],HSlice[int,int],int>`_ for the in-place version of this proc ## * `rotatedLeft proc<#rotatedLeft,openArray[T],int>`_ for a version which rotates the whole container runnableExamples: var a = @[1, 2, 3, 4, 5] a = rotatedLeft(a, 1 .. 4, 3) assert a == @[1, 5, 2, 3, 4] a = rotatedLeft(a, 1 .. 3, 2) assert a == @[1, 3, 5, 2, 4] a = rotatedLeft(a, 1 .. 3, -2) assert a == @[1, 5, 2, 3, 4] let sliceLen = slice.b + 1 - slice.a let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen arg.rotatedInternal(slice.a, slice.a+distLeft, slice.b+1) proc rotatedLeft*[T](arg: openarray[T]; dist: int): seq[T] = ## Same as ``rotateLeft``, just with the difference that it does ## not modify the argument. It creates a new ``seq`` instead. ## ## **See also:** ## * `rotateLeft proc<#rotateLeft,openArray[T],int>`_ for the in-place version of this proc ## * `rotatedLeft proc<#rotatedLeft,openArray[T],HSlice[int,int],int>`_ for a version which rotates a range runnableExamples: var a = @[1, 2, 3, 4, 5] a = rotatedLeft(a, 2) assert a == @[3, 4, 5, 1, 2] a = rotatedLeft(a, 4) assert a == @[2, 3, 4, 5, 1] a = rotatedLeft(a, -6) assert a == @[1, 2, 3, 4, 5] let arglen = arg.len let distLeft = ((dist mod arglen) + arglen) mod arglen arg.rotatedInternal(0, distLeft, arg.len) when isMainModule: var list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] let list2 = list.rotatedLeft(1 ..< 9, 3) let expected = [0, 4, 5, 6, 7, 8, 1, 2, 3, 9, 10] doAssert list.rotateLeft(1 ..< 9, 3) == 6 doAssert list == expected doAssert list2 == @expected var s0,s1,s2,s3,s4,s5 = "xxxabcdefgxxx" doAssert s0.rotateLeft(3 ..< 10, 3) == 7 doAssert s0 == "xxxdefgabcxxx" doAssert s1.rotateLeft(3 ..< 10, 2) == 8 doAssert s1 == "xxxcdefgabxxx" doAssert s2.rotateLeft(3 ..< 10, 4) == 6 doAssert s2 == "xxxefgabcdxxx" doAssert s3.rotateLeft(3 ..< 10, -3) == 6 doAssert s3 == "xxxefgabcdxxx" doAssert s4.rotateLeft(3 ..< 10, -10) == 6 doAssert s4 == "xxxefgabcdxxx" doAssert s5.rotateLeft(3 ..< 10, 11) == 6 doAssert s5 == "xxxefgabcdxxx" block product: doAssert product(newSeq[seq[int]]()) == newSeq[seq[int]](), "empty input" doAssert product(@[newSeq[int](), @[], @[]]) == newSeq[seq[int]](), "bit more empty input" doAssert product(@[@[1,2]]) == @[@[1,2]], "a simple case of one element" doAssert product(@[@[1,2], @[3,4]]) == @[@[2,4],@[1,4],@[2,3],@[1,3]], "two elements" doAssert product(@[@[1,2], @[3,4], @[5,6]]) == @[@[2,4,6],@[1,4,6],@[2,3,6],@[1,3,6], @[2,4,5],@[1,4,5],@[2,3,5],@[1,3,5]], "three elements" doAssert product(@[@[1,2], @[]]) == newSeq[seq[int]](), "two elements, but one empty" block lowerBound: doAssert lowerBound([1,2,4], 3, system.cmp[int]) == 2 doAssert lowerBound([1,2,2,3], 4, system.cmp[int]) == 4 doAssert lowerBound([1,2,3,10], 11) == 4 block upperBound: doAssert upperBound([1,2,4], 3, system.cmp[int]) == 2 doAssert upperBound([1,2,2,3], 3, system.cmp[int]) == 4 doAssert upperBound([1,2,3,5], 3) == 3 block fillEmptySeq: var s = newSeq[int]() s.fill(0) block testBinarySearch: var noData: seq[int] doAssert binarySearch(noData, 7) == -1 let oneData = @[1] doAssert binarySearch(oneData, 1) == 0 doAssert binarySearch(onedata, 7) == -1 let someData = @[1,3,4,7] doAssert binarySearch(someData, 1) == 0 doAssert binarySearch(somedata, 7) == 3 doAssert binarySearch(someData, -1) == -1 doAssert binarySearch(someData, 5) == -1 doAssert binarySearch(someData, 13) == -1 let moreData = @[1,3,5,7,4711] doAssert binarySearch(moreData, -1) == -1 doAssert binarySearch(moreData, 1) == 0 doAssert binarySearch(moreData, 5) == 2 doAssert binarySearch(moreData, 6) == -1 doAssert binarySearch(moreData, 4711) == 4 doAssert binarySearch(moreData, 4712) == -1