# # # Nim's Runtime Library # (c) Copyright 2015 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This module implements some common generic algorithms. type SortOrder* = enum ## sort order Descending, Ascending {.deprecated: [TSortOrder: SortOrder].} proc `*`*(x: int, order: SortOrder): int {.inline.} = ## flips `x` if ``order == Descending``; ## if ``order == Ascending`` then `x` is returned. ## `x` is supposed to be the result of a comparator, ie ``< 0`` for ## *less than*, ``== 0`` for *equal*, ``> 0`` for *greater than*. var y = order.ord - 1 result = (x xor y) - y proc fill*[T](a: var openArray[T], first, last: Natural, value: T) = ## fills the array ``a[first..last]`` with `value`. var x = first while x <= last: a[x] = value inc(x) proc fill*[T](a: var openArray[T], value: T) = ## fills the array `a` with `value`. fill(a, 0, a.high, value) proc reverse*[T](a: var openArray[T], first, last: Natural) = ## reverses the array ``a[first..last]``. var x = first var y = last while x < y: swap(a[x], a[y]) dec(y) inc(x) proc reverse*[T](a: var openArray[T]) = ## reverses the array `a`. reverse(a, 0, a.high) proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T] = ## returns the reverse of the array `a[first..last]`. assert last >= first-1 var i = last - first var x = first.int result = newSeq[T](i + 1) while i >= 0: result[i] = a[x] dec(i) inc(x) proc reversed*[T](a: openArray[T]): seq[T] = ## returns the reverse of the array `a`. reversed(a, 0, a.high) proc binarySearch*[T](a: openArray[T], key: T): int = ## binary search for `key` in `a`. Returns -1 if not found. var b = len(a) while result < b: var mid = (result + b) div 2 if a[mid] < key: result = mid + 1 else: b = mid if result >= len(a) or a[result] != key: result = -1 proc smartBinarySearch*[T](a: openArray[T], key: T): int = ## ``a.len`` must be a power of 2 for this to work. var step = a.len div 2 while step > 0: if a[result or step] <= key: result = result or step step = step shr 1 if a[result] != key: result = -1 const onlySafeCode = true proc lowerBound*[T](a: openArray[T], key: T, cmp: proc(x,y: T): int {.closure.}): int = ## same as binarySearch except that if key is not in `a` then this ## returns the location where `key` would be if it were. In other ## words if you have a sorted sequence and you call ## insert(thing, elm, lowerBound(thing, elm)) ## the sequence will still be sorted. ## ## `cmp` is the comparator function to use, the expected return values are ## the same as that of system.cmp. ## ## example:: ## ## var arr = @[1,2,3,5,6,7,8,9] ## arr.insert(4, arr.lowerBound(4)) ## # after running the above arr is `[1,2,3,4,5,6,7,8,9]` result = a.low var count = a.high - a.low + 1 var step, pos: int while count != 0: step = count div 2 pos = result + step if cmp(a[pos], key) < 0: result = pos + 1 count -= step + 1 else: count = step proc lowerBound*[T](a: openArray[T], key: T): int = lowerBound(a, key, cmp[T]) proc merge[T](a, b: var openArray[T], lo, m, hi: int, cmp: proc (x, y: T): int {.closure.}, order: SortOrder) = template `<-` (a, b: expr) = when false: a = b elif onlySafeCode: shallowCopy(a, b) else: copyMem(addr(a), addr(b), sizeof(T)) # optimization: If max(left) <= min(right) there is nothing to do! # 1 2 3 4 ## 5 6 7 8 # -> O(n) for sorted arrays. # On random data this safes up to 40% of merge calls if cmp(a[m], a[m+1]) * order <= 0: return var j = lo # copy a[j..m] into b: assert j <= m when onlySafeCode: var bb = 0 while j <= m: b[bb] <- a[j] inc(bb) inc(j) else: copyMem(addr(b[0]), addr(a[j]), sizeof(T)*(m-j+1)) j = m+1 var i = 0 var k = lo # copy proper element back: while k < j and j <= hi: if cmp(b[i], a[j]) * order <= 0: a[k] <- b[i] inc(i) else: a[k] <- a[j] inc(j) inc(k) # copy rest of b: when onlySafeCode: while k < j: a[k] <- b[i] inc(k) inc(i) else: if k < j: copyMem(addr(a[k]), addr(b[i]), sizeof(T)*(j-k)) proc sort*[T](a: var openArray[T], cmp: proc (x, y: T): int {.closure.}, order = SortOrder.Ascending) = ## Default Nim sort (an implementation of merge sort). The sorting ## is guaranteed to be stable and the worst case is guaranteed to ## be O(n log n). ## The current implementation uses an iterative ## mergesort to achieve this. It uses a temporary sequence of ## length ``a.len div 2``. Currently Nim does not support a ## sensible default argument for ``cmp``, so you have to provide one ## of your own. However, the ``system.cmp`` procs can be used: ## ## .. code-block:: nim ## ## sort(myIntArray, system.cmp[int]) ## ## # do not use cmp[string] here as we want to use the specialized ## # overload: ## sort(myStrArray, system.cmp) ## ## You can inline adhoc comparison procs with the `do notation ## `_. Example: ## ## .. code-block:: nim ## ## people.sort do (x, y: Person) -> int: ## result = cmp(x.surname, y.surname) ## if result == 0: ## result = cmp(x.name, y.name) var n = a.len var b: seq[T] newSeq(b, n div 2) var s = 1 while s < n: var m = n-1-s while m >= 0: merge(a, b, max(m-s+1, 0), m, m+s, cmp, order) dec(m, s*2) s = s*2 proc sorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.}, order = SortOrder.Ascending): seq[T] = ## returns `a` sorted by `cmp` in the specified `order`. result = newSeq[T](a.len) for i in 0 .. a.high: result[i] = a[i] sort(result, cmp, order) template sortedByIt*(seq1, op: expr): expr = ## Convenience template around the ``sorted`` proc to reduce typing. ## ## The template injects the ``it`` variable which you can use directly in an ## expression. Example: ## ## .. code-block:: nim ## ## type Person = tuple[name: string, age: int] ## var ## p1: Person = (name: "p1", age: 60) ## p2: Person = (name: "p2", age: 20) ## p3: Person = (name: "p3", age: 30) ## p4: Person = (name: "p4", age: 30) ## people = @[p1,p2,p4,p3] ## ## echo people.sortedByIt(it.name) ## ## Because the underlying ``cmp()`` is defined for tuples you can do ## a nested sort like in the following example: ## ## .. code-block:: nim ## ## echo people.sortedByIt((it.age, it.name)) ## var result {.gensym.} = sorted(seq1, proc(x, y: type(seq1[0])): int = var it {.inject.} = x let a = op it = y let b = op result = cmp(a, b)) result proc isSorted*[T](a: openarray[T], cmp: proc(x, y: T): int {.closure.}, order = SortOrder.Ascending): bool = ## Checks to see whether `a` is already sorted in `order` ## using `cmp` for the comparison. Parameters identical ## to `sort` result = true for i in 0.. 0: return false proc product*[T](x: openArray[seq[T]]): seq[seq[T]] = ## produces the Cartesian product of the array. Warning: complexity ## may explode. result = newSeq[seq[T]]() if x.len == 0: return if x.len == 1: result = @x return var indexes = newSeq[int](x.len) initial = newSeq[int](x.len) index = 0 var next = newSeq[T]() next.setLen(x.len) for i in 0..(x.len-1): if len(x[i]) == 0: return initial[i] = len(x[i])-1 indexes = initial while true: while indexes[index] == -1: indexes[index] = initial[index] index += 1 if index == x.len: return indexes[index] -= 1 for ni, i in indexes: next[ni] = x[ni][i] var res: seq[T] shallowCopy(res, next) result.add(res) index = 0 indexes[index] -= 1 proc nextPermutation*[T](x: var openarray[T]): bool {.discardable.} = ## Calculates the next lexicographic permutation, directly modifying ``x``. ## The result is whether a permutation happened, otherwise we have reached ## the last-ordered permutation. ## ## .. code-block:: nim ## ## var v = @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] ## v.nextPermutation() ## echo v # @[0, 1, 2, 3, 4, 5, 6, 7, 9, 8] if x.len < 2: return false var i = x.high while i > 0 and x[i-1] >= x[i]: dec i if i == 0: return false var j = x.high while j >= i and x[j] <= x[i-1]: dec j swap x[j], x[i-1] x.reverse(i, x.high) result = true proc prevPermutation*[T](x: var openarray[T]): bool {.discardable.} = ## Calculates the previous lexicographic permutation, directly modifying ## ``x``. The result is whether a permutation happened, otherwise we have ## reached the first-ordered permutation. ## ## .. code-block:: nim ## ## var v = @[0, 1, 2, 3, 4, 5, 6, 7, 9, 8] ## v.prevPermutation() ## echo v # @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] if x.len < 2: return false var i = x.high while i > 0 and x[i-1] <= x[i]: dec i if i == 0: return false x.reverse(i, x.high) var j = x.high while j >= i and x[j-1] < x[i-1]: dec j swap x[i-1], x[j] result = true when isMainModule: # Tests for lowerBound var arr = @[1,2,3,5,6,7,8,9] assert arr.lowerBound(0) == 0 assert arr.lowerBound(4) == 3 assert arr.lowerBound(5) == 3 assert arr.lowerBound(10) == 8 arr = @[1,5,10] assert arr.lowerBound(4) == 1 assert arr.lowerBound(5) == 1 assert arr.lowerBound(6) == 2 # Tests for isSorted var srt1 = [1,2,3,4,4,4,4,5] var srt2 = ["iello","hello"] var srt3 = [1.0,1.0,1.0] var srt4: seq[int] = @[] assert srt1.isSorted(cmp) == true assert srt2.isSorted(cmp) == false assert srt3.isSorted(cmp) == true var srtseq = newSeq[int]() assert srtseq.isSorted(cmp) == true # Tests for reversed var arr1 = @[0,1,2,3,4] assert arr1.reversed() == @[4,3,2,1,0] for i in 0 .. high(arr1): assert arr1.reversed(0, i) == arr1.reversed()[high(arr1) - i .. high(arr1)] assert arr1.reversed(i, high(arr1)) == arr1.reversed()[0 .. high(arr1) - i]