# # # Nimrod's Runtime Library # (c) Copyright 2013 Robert Persson # # See the file "copying.txt", included in this # distribution, for details about the copyright. # import math import strutils ## Basic 2d support with vectors, points, matrices and some basic utilities. ## Vectors are implemented as direction vectors, ie. when transformed with a matrix ## the translation part of matrix is ignored. ## Operators `+` , `-` , `*` , `/` , `+=` , `-=` , `*=` and `/=` are implemented for vectors and scalars. ## ## Quick start example: ## ## # Create a matrix wich first rotates, then scales and at last translates ## ## var m:TMatrix2d=rotate(DEG90) & scale(2.0) & move(100.0,200.0) ## ## # Create a 2d point at (100,0) and a vector (5,2) ## ## var pt:TPoint2d=point2d(100.0,0.0) ## ## var vec:TVector2d=vector2d(5.0,2.0) ## ## ## pt &= m # transforms pt in place ## ## var pt2:TPoint2d=pt & m #concatenates pt with m and returns a new point ## ## var vec2:TVector2d=vec & m #concatenates vec with m and returns a new vector const DEG360* = PI * 2.0 ## 360 degrees in radians. DEG270* = PI * 1.5 ## 270 degrees in radians. DEG180* = PI ## 180 degrees in radians. DEG90* = PI / 2.0 ## 90 degrees in radians. DEG60* = PI / 3.0 ## 60 degrees in radians. DEG45* = PI / 4.0 ## 45 degrees in radians. DEG30* = PI / 6.0 ## 30 degrees in radians. DEG15* = PI / 12.0 ## 15 degrees in radians. RAD2DEGCONST = 180.0 / PI ## used internally by DegToRad and RadToDeg type TMatrix2d* = object ## Implements a row major 2d matrix, which means ## transformations are applied the order they are concatenated. ## The rightmost column of the 3x3 matrix is left out since normally ## not used for geometric transformations in 2d. ax*,ay*,bx*,by*,tx*,ty*:float TPoint2d* = object ## Implements a non-homegeneous 2d point stored as ## an `x` coordinate and an `y` coordinate. x*,y*:float TVector2d* = object ## Implements a 2d **direction vector** stored as ## an `x` coordinate and an `y` coordinate. Direction vector means, ## that when transforming a vector with a matrix, the translational ## part of the matrix is ignored. x*,y*:float # Some forward declarations... proc matrix2d*(ax,ay,bx,by,tx,ty:float):TMatrix2d {.noInit.} ## Creates a new matrix. ## `ax`,`ay` is the local x axis ## `bx`,`by` is the local y axis ## `tx`,`ty` is the translation proc vector2d*(x,y:float):TVector2d {.noInit,inline.} ## Returns a new vector (`x`,`y`) proc point2d*(x,y:float):TPoint2d {.noInit,inline.} ## Returns a new point (`x`,`y`) let IDMATRIX*:TMatrix2d=matrix2d(1.0,0.0,0.0,1.0,0.0,0.0) ## Quick access to an identity matrix ORIGO*:TPoint2d=Point2d(0.0,0.0) ## Quick acces to point (0,0) XAXIS*:TVector2d=vector2d(1.0,0.0) ## Quick acces to an 2d x-axis unit vector YAXIS*:TVector2d=vector2d(0.0,1.0) ## Quick acces to an 2d y-axis unit vector # *************************************** # Private utils # *************************************** proc rtos(val:float):string= return formatFloat(val,ffDefault,0) proc safeArccos(v:float):float= ## assumes v is in range 0.0-1.0, but clamps ## the value to avoid out of domain errors ## due to rounding issues return arccos(clamp(v,-1.0,1.0)) template makeBinOpVector(s:expr)= ## implements binary operators + , - , * and / for vectors proc s*(a,b:TVector2d):TVector2d {.inline,noInit.} = vector2d(s(a.x,b.x),s(a.y,b.y)) proc s*(a:TVector2d,b:float):TVector2d {.inline,noInit.} = vector2d(s(a.x,b),s(a.y,b)) proc s*(a:float,b:TVector2d):TVector2d {.inline,noInit.} = vector2d(s(a,b.x),s(a,b.y)) template makeBinOpAssignVector(s:expr)= ## implements inplace binary operators += , -= , /= and *= for vectors proc s*(a:var TVector2d,b:TVector2d) {.inline.} = s(a.x,b.x) ; s(a.y,b.y) proc s*(a:var TVector2d,b:float) {.inline.} = s(a.x,b) ; s(a.y,b) # *************************************** # TMatrix2d implementation # *************************************** proc setElements*(t:var TMatrix2d,ax,ay,bx,by,tx,ty:float) {.inline.}= ## Sets arbitrary elements in an existing matrix. t.ax=ax t.ay=ay t.bx=bx t.by=by t.tx=tx t.ty=ty proc matrix2d*(ax,ay,bx,by,tx,ty:float):TMatrix2d = result.setElements(ax,ay,bx,by,tx,ty) proc `&`*(a,b:TMatrix2d):TMatrix2d {.noInit.} = #concatenate matrices ## Concatenates matrices returning a new matrix. # | a.AX a.AY 0 | | b.AX b.AY 0 | # | a.BX a.BY 0 | * | b.BX b.BY 0 | # | a.TX a.TY 1 | | b.TX b.TY 1 | result.setElements( a.ax * b.ax + a.ay * b.bx, a.ax * b.ay + a.ay * b.by, a.bx * b.ax + a.by * b.bx, a.bx * b.ay + a.by * b.by, a.tx * b.ax + a.ty * b.bx + b.tx, a.tx * b.ay + a.ty * b.by + b.ty) proc scale*(s:float):TMatrix2d {.noInit.} = ## Returns a new scale matrix. result.setElements(s,0,0,s,0,0) proc scale*(s:float,org:TPoint2d):TMatrix2d {.noInit.} = ## Returns a new scale matrix using, `org` as scale origin. result.setElements(s,0,0,s,org.x-s*org.x,org.y-s*org.y) proc stretch*(sx,sy:float):TMatrix2d {.noInit.} = ## Returns new a stretch matrix, which is a ## scale matrix with non uniform scale in x and y. result.setElements(sx,0,0,sy,0,0) proc stretch*(sx,sy:float,org:TPoint2d):TMatrix2d {.noInit.} = ## Returns a new stretch matrix, which is a ## scale matrix with non uniform scale in x and y. ## `org` is used as stretch origin. result.setElements(sx,0,0,sy,org.x-sx*org.x,org.y-sy*org.y) proc move*(dx,dy:float):TMatrix2d {.noInit.} = ## Returns a new translation matrix. result.setElements(1,0,0,1,dx,dy) proc move*(v:TVector2d):TMatrix2d {.noInit.} = ## Returns a new translation matrix from a vector. result.setElements(1,0,0,1,v.x,v.y) proc rotate*(rad:float):TMatrix2d {.noInit.} = ## Returns a new rotation matrix, which ## represents a rotation by `rad` radians let s=sin(rad) c=cos(rad) result.setElements(c,s,-s,c,0,0) proc rotate*(rad:float,org:TPoint2d):TMatrix2d {.noInit.} = ## Returns a new rotation matrix, which ## represents a rotation by `rad` radians around ## the origin `org` let s=sin(rad) c=cos(rad) result.setElements(c,s,-s,c,org.x+s*org.y-c*org.x,org.y-c*org.y-s*org.x) proc mirror*(v:TVector2d):TMatrix2d {.noInit.} = ## Returns a new mirror matrix, mirroring ## around the line that passes through origo and ## has the direction of `v` let sqx=v.x*v.x sqy=v.y*v.y nd=1.0/(sqx+sqy) #used to normalize invector xy2=v.x*v.y*2.0*nd sqd=nd*(sqx-sqy) if nd==inf or nd==neginf: return IDMATRIX #mirroring around a zero vector is arbitrary=>just use identity result.setElements( sqd,xy2, xy2,-sqd, 0.0,0.0) proc mirror*(org:TPoint2d,v:TVector2d):TMatrix2d {.noInit.} = ## Returns a new mirror matrix, mirroring ## around the line that passes through `org` and ## has the direction of `v` let sqx=v.x*v.x sqy=v.y*v.y nd=1.0/(sqx+sqy) #used to normalize invector xy2=v.x*v.y*2.0*nd sqd=nd*(sqx-sqy) if nd==inf or nd==neginf: return IDMATRIX #mirroring around a zero vector is arbitrary=>just use identity result.setElements( sqd,xy2, xy2,-sqd, org.x-org.y*xy2-org.x*sqd,org.y-org.x*xy2+org.y*sqd) proc skew*(xskew,yskew:float):TMatrix2d {.noInit.} = ## Returns a new skew matrix, which has its ## x axis rotated `xskew` radians from the local x axis, and ## y axis rotated `yskew` radians from the local y axis result.setElements(cos(yskew),sin(yskew),-sin(xskew),cos(xskew),0,0) proc `$`* (t:TMatrix2d):string {.noInit.} = ## Returns a string representation of the matrix return rtos(t.ax) & "," & rtos(t.ay) & "," & rtos(t.bx) & "," & rtos(t.by) & "," & rtos(t.tx) & "," & rtos(t.ty) proc isUniform*(t:TMatrix2d,tol=1.0e-6):bool= ## Checks if the transform is uniform, that is ## perpendicular axes of equal lenght, which means (for example) ## it cannot transform a circle into an ellipse. ## `tol` is used as tolerance for both equal length comparison ## and perp. comparison. #dot product=0 means perpendicular coord. system: if abs(t.ax*t.bx+t.ay*t.by)<=tol: #subtract squared lengths of axes to check if uniform scaling: if abs((t.ax*t.ax+t.ay*t.ay)-(t.bx*t.bx+t.by*t.by))<=tol: return true return false proc determinant*(t:TMatrix2d):float= ## Computes the determinant of the matrix. #NOTE: equivalent with perp.dot product for two 2d vectors return t.ax*t.by-t.bx*t.ay proc isMirroring* (m:TMatrix2d):bool= ## Checks if the `m` is a mirroring matrix, ## which means it will reverse direction of a curve transformed with it return m.determinant<0.0 proc inverse*(m:TMatrix2d):TMatrix2d {.noInit.} = ## Returns a new matrix, which is the inverse of the matrix ## If the matrix is not invertible (determinant=0), an EDivByZero ## will be raised. let d=m.determinant if d==0.0: raise newException(EDivByZero,"Cannot invert a zero determinant matrix") result.setElements( m.by/d,-m.ay/d, -m.bx/d,m.ax/d, (m.bx*m.ty-m.by*m.tx)/d, (m.ay*m.tx-m.ax*m.ty)/d) proc equals*(m1:TMatrix2d,m2:TMatrix2d,tol=1.0e-6):bool= ## Checks if all elements of `m1`and `m2` is equal within ## a given tolerance `tol`. return abs(m1.ax-m2.ax)<=tol and abs(m1.ay-m2.ay)<=tol and abs(m1.bx-m2.bx)<=tol and abs(m1.by-m2.by)<=tol and abs(m1.tx-m2.tx)<=tol and abs(m1.ty-m2.ty)<=tol proc `=~`*(m1,m2:TMatrix2d):bool= ## Checks if `m1`and `m2` is aproximately equal, using a ## tolerance of 1e-6. equals(m1,m2) proc isIdentity*(m:TMatrix2d,tol=1.0e-6):bool= ## Checks is a matrix is approximately an identity matrix, ## using `tol` as tolerance for each element. return equals(m,IDMATRIX,tol) proc apply*(m:TMatrix2d,x,y:var float,translate=false)= ## Applies transformation `m` onto `x`,`y`, optionally ## using the translation part of the matrix. if translate: # positional style transform let newx=x*m.ax+y*m.bx+m.tx y=x*m.ay+y*m.by+m.ty x=newx else: # delta style transform let newx=x*m.ax+y*m.bx y=x*m.ay+y*m.by x=newx # *************************************** # TVector2d implementation # *************************************** proc vector2d*(x,y:float):TVector2d = #forward decl. result.x=x result.y=y proc polarVector2d*(ang:float,len:float):TVector2d {.noInit.} = ## Returns a new vector with angle `ang` and magnitude `len` result.x=cos(ang)*len result.y=sin(ang)*len proc slopeVector2d*(slope:float,len:float):TVector2d {.noInit.} = ## Returns a new vector having slope (dy/dx) given by ## `slope`, and a magnitude of `len` let ang=arctan(slope) result.x=cos(ang)*len result.y=sin(ang)*len proc len*(v:TVector2d):float {.inline.}= ## Returns the length of the vector. sqrt(v.x*v.x+v.y*v.y) proc `len=`*(v:var TVector2d,newlen:float) {.noInit.} = ## Sets the length of the vector, keeping its angle. let fac=newlen/v.len if newlen==0.0: v.x=0.0 v.y=0.0 return if fac==inf or fac==neginf: #to short for float accuracy #do as good as possible: v.x=newlen v.y=0.0 else: v.x*=fac v.y*=fac proc sqrLen*(v:TVector2d):float {.inline.}= ## Computes the squared length of the vector, which is ## faster than computing the absolute length. v.x*v.x+v.y*v.y proc angle*(v:TVector2d):float= ## Returns the angle of the vector. ## (The counter clockwise plane angle between posetive x axis and `v`) result=arctan2(v.y,v.x) if result<0.0: result+=DEG360 proc `$` *(v:TVector2d):string= ## String representation of `v` result=rtos(v.x) result.add(",") result.add(rtos(v.y)) proc `&` *(v:TVector2d,m:TMatrix2d):TVector2d {.noInit.} = ## Concatenate vector `v` with a transformation matrix. ## Transforming a vector ignores the translational part ## of the matrix. # | AX AY 0 | # | X Y 1 | * | BX BY 0 | # | 0 0 1 | result.x=v.x*m.ax+v.y*m.bx result.y=v.x*m.ay+v.y*m.by proc `&=`*(v:var TVector2d,m:TMatrix2d) {.inline.}= ## Applies transformation `m` onto `v` in place. ## Transforming a vector ignores the translational part ## of the matrix. # | AX AY 0 | # | X Y 1 | * | BX BY 0 | # | 0 0 1 | let newx=v.x*m.ax+v.y*m.bx v.y=v.x*m.ay+v.y*m.by v.x=newx proc tryNormalize*(v:var TVector2d):bool= ## Modifies `v` to have a length of 1.0, keeping its angle. ## If `v` has zero length (and thus no angle), it is left unmodified and ## false is returned, otherwise true is returned. let mag=v.len if mag==0.0: return false v.x/=mag v.y/=mag return true proc normalize*(v:var TVector2d) {.inline.}= ## Modifies `v` to have a length of 1.0, keeping its angle. ## If `v` has zero length, an EDivByZero will be raised. if not tryNormalize(v): raise newException(EDivByZero,"Cannot normalize zero length vector") proc transformNorm*(v:var TVector2d,t:TMatrix2d)= ## Applies a normal direction transformation `t` onto `v` in place. ## The resulting vector is *not* normalized. Transforming a vector ignores the ## translational part of the matrix. If the matrix is not invertible ## (determinant=0), an EDivByZero will be raised. # transforming a normal is done by transforming # by the transpose of the inverse of the original matrix # this can be heavily optimized by precompute and inline # | | AX AY 0 | ^-1| ^T # | X Y 1 | * | | BX BY 0 | | # | | 0 0 1 | | let d=t.determinant if(d==0.0): raise newException(EDivByZero,"Matrix is not invertible") let newx = (t.by*v.x-t.ay*v.y)/d v.y = (t.ax*v.y-t.bx*v.x)/d v.x = newx proc transformInv*(v:var TVector2d,t:TMatrix2d)= ## Applies inverse of a transformation `t` to `v` in place. ## This is faster than creating an inverse matrix and apply() it. ## Transforming a vector ignores the translational part ## of the matrix. If the matrix is not invertible (determinant=0), an EDivByZero ## will be raised. let d=t.determinant if(d==0.0): raise newException(EDivByZero,"Matrix is not invertible") let newx=(t.by*v.x-t.bx*v.y)/d v.y = (t.ax*v.y-t.ay*v.x)/d v.x = newx proc transformNormInv*(v:var TVector2d,t:TMatrix2d)= ## Applies an inverse normal direction transformation `t` onto `v` in place. ## This is faster than creating an inverse ## matrix and transformNorm(...) it. Transforming a vector ignores the ## translational part of the matrix. # normal inverse transform is done by transforming # by the inverse of the transpose of the inverse of the org. matrix # which is equivalent with transforming with the transpose. # | | | AX AY 0 |^-1|^T|^-1 | AX BX 0 | # | X Y 1 | * | | | BX BY 0 | | | = | X Y 1 | * | AY BY 0 | # | | | 0 0 1 | | | | 0 0 1 | # This can be heavily reduced to: let newx=t.ay*v.y+t.ax*v.x v.y=t.by*v.y+t.bx*v.x v.x=newx proc rotate90*(v:var TVector2d) {.inline.}= ## Quickly rotates vector `v` 90 degrees counter clockwise, ## without using any trigonometrics. swap(v.x,v.y) v.x= -v.x proc rotate180*(v:var TVector2d){.inline.}= ## Quickly rotates vector `v` 180 degrees counter clockwise, ## without using any trigonometrics. v.x= -v.x v.y= -v.y proc rotate270*(v:var TVector2d) {.inline.}= ## Quickly rotates vector `v` 270 degrees counter clockwise, ## without using any trigonometrics. swap(v.x,v.y) v.y= -v.y proc rotate*(v:var TVector2d,rad:float) = ## Rotates vector `v` `rad` radians in place. let s=sin(rad) c=cos(rad) newx=c*v.x-s*v.y v.y=c*v.y+s*v.x v.x=newx proc scale*(v:var TVector2d,fac:float){.inline.}= ## Scales vector `v` `rad` radians in place. v.x*=fac v.y*=fac proc stretch*(v:var TVector2d,facx,facy:float){.inline.}= ## Stretches vector `v` `facx` times horizontally, ## and `facy` times vertically. v.x*=facx v.y*=facy proc mirror*(v:var TVector2d,mirrvec:TVector2d)= ## Mirrors vector `v` using `mirrvec` as mirror direction. let sqx=mirrvec.x*mirrvec.x sqy=mirrvec.y*mirrvec.y nd=1.0/(sqx+sqy) #used to normalize invector xy2=mirrvec.x*mirrvec.y*2.0*nd sqd=nd*(sqx-sqy) if nd==inf or nd==neginf: return #mirroring around a zero vector is arbitrary=>keep as is is fastest let newx=xy2*v.y+sqd*v.x v.y=v.x*xy2-sqd*v.y v.x=newx proc `-` *(v:TVector2d):TVector2d= ## Negates a vector result.x= -v.x result.y= -v.y # declare templated binary operators makeBinOpVector(`+`) makeBinOpVector(`-`) makeBinOpVector(`*`) makeBinOpVector(`/`) makeBinOpAssignVector(`+=`) makeBinOpAssignVector(`-=`) makeBinOpAssignVector(`*=`) makeBinOpAssignVector(`/=`) proc dot*(v1,v2:TVector2d):float= ## Computes the dot product of two vectors. ## Returns 0.0 if the vectors are perpendicular. return v1.x*v2.x+v1.y*v2.y proc cross*(v1,v2:TVector2d):float= ## Computes the cross product of two vectors, also called ## the 'perpendicular dot product' in 2d. Returns 0.0 if the vectors ## are parallel. return v1.x*v2.y-v1.y*v2.x proc equals*(v1,v2:TVector2d,tol=1.0e-6):bool= ## Checks if two vectors approximately equals with a tolerance. return abs(v2.x-v1.x)<=tol and abs(v2.y-v1.y)<=tol proc `=~` *(v1,v2:TVector2d):bool= ## Checks if two vectors approximately equals with a ## hardcoded tolerance 1e-6 equals(v1,v2) proc angleTo*(v1,v2:TVector2d):float= ## Returns the smallest of the two possible angles ## between `v1` and `v2` in radians. var nv1=v1 nv2=v2 if not nv1.tryNormalize or not nv2.tryNormalize: return 0.0 # zero length vector has zero angle to any other vector return safeArccos(dot(nv1,nv2)) proc angleCCW*(v1,v2:TVector2d):float= ## Returns the counter clockwise plane angle from `v1` to `v2`, ## in range 0 - 2*PI let a=v1.angleTo(v2) if v1.cross(v2)>=0.0: return a return DEG360-a proc angleCW*(v1,v2:TVector2d):float= ## Returns the clockwise plane angle from `v1` to `v2`, ## in range 0 - 2*PI let a=v1.angleTo(v2) if v1.cross(v2)<=0.0: return a return DEG360-a proc turnAngle*(v1,v2:TVector2d):float= ## Returns the amount v1 should be rotated (in radians) to equal v2, ## in range -PI to PI let a=v1.angleTo(v2) if v1.cross(v2)<=0.0: return -a return a proc bisect*(v1,v2:TVector2d):TVector2d {.noInit.}= ## Computes the bisector between v1 and v2 as a normalized vector. ## If one of the input vectors has zero length, a normalized version ## of the other is returned. If both input vectors has zero length, ## an arbitrary normalized vector is returned. var vmag1=v1.len vmag2=v2.len # zero length vector equals arbitrary vector, just change to magnitude to one to # avoid zero division if vmag1==0.0: if vmag2==0: #both are zero length return any normalized vector return XAXIS vmag1=1.0 if vmag2==0.0: vmag2=1.0 let x1=v1.x/vmag1 y1=v1.y/vmag1 x2=v2.x/vmag2 y2=v2.y/vmag2 result.x=(x1 + x2) * 0.5 result.y=(y1 + y2) * 0.5 if not result.tryNormalize(): # This can happen if vectors are colinear. In this special case # there are actually two bisectors, we select just # one of them (x1,y1 rotated 90 degrees ccw). result.x = -y1 result.y = x1 # *************************************** # TPoint2d implementation # *************************************** proc point2d*(x,y:float):TPoint2d = result.x=x result.y=y proc sqrDist*(a,b:TPoint2d):float= ## Computes the squared distance between `a` and `b` let dx=b.x-a.x let dy=b.y-a.y result=dx*dx+dy*dy proc dist*(a,b:TPoint2d):float {.inline.}= ## Computes the absolute distance between `a` and `b` result=sqrt(sqrDist(a,b)) proc angle*(a,b:TPoint2d):float= ## Computes the angle of the vector `b`-`a` let dx=b.x-a.x let dy=b.y-a.y result=arctan2(dy,dx) if result<0: result += DEG360 proc `$` *(p:TPoint2d):string= ## String representation of `p` result=rtos(p.x) result.add(",") result.add(rtos(p.y)) proc `&`*(p:TPoint2d,t:TMatrix2d):TPoint2d {.noInit,inline.} = ## Concatenates a point `p` with a transform `t`, ## resulting in a new, transformed point. # | AX AY 0 | # | X Y 1 | * | BX BY 0 | # | TX TY 1 | result.x=p.x*t.ax+p.y*t.bx+t.tx result.y=p.x*t.ay+p.y*t.by+t.ty proc `&=` *(p:var TPoint2d,t:TMatrix2d) {.inline.}= ## Applies transformation `t` onto `p` in place. let newx=p.x*t.ax+p.y*t.bx+t.tx p.y=p.x*t.ay+p.y*t.by+t.ty p.x=newx proc transformInv*(p:var TPoint2d,t:TMatrix2d){.inline.}= ## Applies the inverse of transformation `t` onto `p` in place. ## If the matrix is not invertable (determinant=0) , EDivByZero will ## be raised. # | AX AY 0 | ^-1 # | X Y 1 | * | BX BY 0 | # | TX TY 1 | let d=t.determinant if d==0.0: raise newException(EDivByZero,"Cannot invert a zero determinant matrix") let newx= (t.bx*t.ty-t.by*t.tx+p.x*t.by-p.y*t.bx)/d p.y = -(t.ax*t.ty-t.ay*t.tx+p.x*t.ay-p.y*t.ax)/d p.x=newx proc `+`*(p:TPoint2d,v:TVector2d):TPoint2d {.noInit,inline.} = ## Adds a vector `v` to a point `p`, resulting ## in a new point. result.x=p.x+v.x result.y=p.y+v.y proc `+=`*(p:var TPoint2d,v:TVector2d) {.noInit,inline.} = ## Adds a vector `v` to a point `p` in place. p.x+=v.x p.y+=v.y proc `-`*(p:TPoint2d,v:TVector2d):TPoint2d {.noInit,inline.} = ## Subtracts a vector `v` from a point `p`, resulting ## in a new point. result.x=p.x-v.x result.y=p.y-v.y proc `-`*(p1,p2:TPoint2d):TVector2d {.noInit,inline.} = ## Subtracts `p2`from `p1` resulting in a difference vector. result.x=p1.x-p2.x result.y=p1.y-p2.y proc `-=`*(p:var TPoint2d,v:TVector2d) {.noInit,inline.} = ## Subtracts a vector `v` from a point `p` in place. p.x-=v.x p.y-=v.y proc equals(p1,p2:TPoint2d,tol=1.0e-6):bool {.inline.}= ## Checks if two points approximately equals with a tolerance. return abs(p2.x-p1.x)<=tol and abs(p2.y-p1.y)<=tol proc `=~`*(p1,p2:TPoint2d):bool {.inline.}= ## Checks if two vectors approximately equals with a ## hardcoded tolerance 1e-6 equals(p1,p2) proc polar*(p:TPoint2d,ang,dist:float):TPoint2d {.noInit.} = ## Returns a point with a given angle and distance away from `p` result.x=p.x+cos(ang)*dist result.y=p.y+sin(ang)*dist proc rotate*(p:var TPoint2d,rad:float)= ## Rotates a point in place `rad` radians around origo. let c=cos(rad) s=sin(rad) newx=p.x*c-p.y*s p.y=p.y*c+p.x*s p.x=newx proc rotate*(p:var TPoint2d,rad:float,org:TPoint2d)= ## Rotates a point in place `rad` radians using `org` as ## center of rotation. let c=cos(rad) s=sin(rad) newx=(p.x - org.x) * c - (p.y - org.y) * s + org.x p.y=(p.y - org.y) * c + (p.x - org.x) * s + org.y p.x=newx proc scale*(p:var TPoint2d,fac:float) {.inline.}= ## Scales a point in place `fac` times with world origo as origin. p.x*=fac p.y*=fac proc scale*(p:var TPoint2d,fac:float,org:TPoint2d){.inline.}= ## Scales the point in place `fac` times with `org` as origin. p.x=(p.x - org.x) * fac + org.x p.y=(p.y - org.y) * fac + org.y proc stretch*(p:var TPoint2d,facx,facy:float){.inline.}= ## Scales a point in place non uniformly `facx` and `facy` times with ## world origo as origin. p.x*=facx p.y*=facy proc stretch*(p:var TPoint2d,facx,facy:float,org:TPoint2d){.inline.}= ## Scales the point in place non uniformly `facx` and `facy` times with ## `org` as origin. p.x=(p.x - org.x) * facx + org.x p.y=(p.y - org.y) * facy + org.y proc move*(p:var TPoint2d,dx,dy:float){.inline.}= ## Translates a point `dx`, `dy` in place. p.x+=dx p.y+=dy proc move*(p:var TPoint2d,v:TVector2d){.inline.}= ## Translates a point with vector `v` in place. p.x+=v.x p.y+=v.y proc sgnArea*(a,b,c:TPoint2d):float= ## Computes the signed area of the triangle thru points `a`,`b` and `c` ## result>0.0 for counter clockwise triangle ## result<0.0 for clockwise triangle ## This is commonly used to determinate side of a point with respect to a line. return ((b.x - c.x) * (b.y - a.y)-(b.y - c.y) * (b.x - a.x))*0.5 proc area*(a,b,c:TPoint2d):float= ## Computes the area of the triangle thru points `a`,`b` and `c` return abs(sgnArea(a,b,c)) proc closestPoint*(p:TPoint2d,pts:varargs[TPoint2d]):TPoint2d= ## Returns a point selected from `pts`, that has the closest ## euclidean distance to `p` assert(pts.len>0) # must have at least one point var bestidx=0 bestdist=p.sqrdist(pts[0]) curdist:float for idx in 1..high(pts): curdist=p.sqrdist(pts[idx]) if curdist=0.0 and ang