# # # Nim's Runtime Library # (c) Copyright 2017 Nim Authors # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This module implements a series of low level methods for bit manipulation. ## By default, this module use compiler intrinsics where possible to improve performance ## on supported compilers: ``GCC``, ``LLVM_GCC``, ``CLANG``, ``VCC``, ``ICC``. ## ## The module will fallback to pure nim procs incase the backend is not supported. ## You can also use the flag `noIntrinsicsBitOpts` to disable compiler intrinsics. ## ## This module is also compatible with other backends: ``Javascript``, ``Nimscript`` ## as well as the ``compiletime VM``. ## ## As a result of using optimized function/intrinsics some functions can return ## undefined results if the input is invalid. You can use the flag `noUndefinedBitOpts` ## to force predictable behaviour for all input, causing a small performance hit. ## ## At this time only `fastLog2`, `firstSetBit, `countLeadingZeroBits`, `countTrailingZeroBits` ## may return undefined and/or platform dependent value if given invalid input. import macros import std/private/since proc bitnot*[T: SomeInteger](x: T): T {.magic: "BitnotI", noSideEffect.} ## Computes the `bitwise complement` of the integer `x`. func internalBitand[T: SomeInteger](x, y: T): T {.magic: "BitandI".} func internalBitor[T: SomeInteger](x, y: T): T {.magic: "BitorI".} func internalBitxor[T: SomeInteger](x, y: T): T {.magic: "BitxorI".} macro bitand*[T: SomeInteger](x, y: T; z: varargs[T]): T = ## Computes the `bitwise and` of all arguments collectively. let fn = bindSym("internalBitand") result = newCall(fn, x, y) for extra in z: result = newCall(fn, result, extra) macro bitor*[T: SomeInteger](x, y: T; z: varargs[T]): T = ## Computes the `bitwise or` of all arguments collectively. let fn = bindSym("internalBitor") result = newCall(fn, x, y) for extra in z: result = newCall(fn, result, extra) macro bitxor*[T: SomeInteger](x, y: T; z: varargs[T]): T = ## Computes the `bitwise xor` of all arguments collectively. let fn = bindSym("internalBitxor") result = newCall(fn, x, y) for extra in z: result = newCall(fn, result, extra) const useBuiltins = not defined(noIntrinsicsBitOpts) const noUndefined = defined(noUndefinedBitOpts) const useGCC_builtins = (defined(gcc) or defined(llvm_gcc) or defined(clang)) and useBuiltins const useICC_builtins = defined(icc) and useBuiltins const useVCC_builtins = defined(vcc) and useBuiltins const arch64 = sizeof(int) == 8 template toUnsigned(x: int8): uint8 = cast[uint8](x) template toUnsigned(x: int16): uint16 = cast[uint16](x) template toUnsigned(x: int32): uint32 = cast[uint32](x) template toUnsigned(x: int64): uint64 = cast[uint64](x) template toUnsigned(x: int): uint = cast[uint](x) template forwardImpl(impl, arg) {.dirty.} = when sizeof(x) <= 4: when x is SomeSignedInt: impl(cast[uint32](x.int32)) else: impl(x.uint32) else: when x is SomeSignedInt: impl(cast[uint64](x.int64)) else: impl(x.uint64) when defined(nimHasalignOf): type BitsRange*[T] = range[0..sizeof(T)*8-1] ## A range with all bit positions for type ``T`` func bitsliced*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = ## Returns an extracted (and shifted) slice of bits from ``v``. runnableExamples: doAssert 0b10111.bitsliced(2 .. 4) == 0b101 doAssert 0b11100.bitsliced(0 .. 2) == 0b100 doAssert 0b11100.bitsliced(0 ..< 3) == 0b100 let upmost = sizeof(T) * 8 - 1 uv = when v is SomeUnsignedInt: v else: v.toUnsigned (uv shl (upmost - slice.b) shr (upmost - slice.b + slice.a)).T proc bitslice*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = ## Mutates ``v`` into an extracted (and shifted) slice of bits from ``v``. runnableExamples: var x = 0b101110 x.bitslice(2 .. 4) doAssert x == 0b011 let upmost = sizeof(T) * 8 - 1 uv = when v is SomeUnsignedInt: v else: v.toUnsigned v = (uv shl (upmost - slice.b) shr (upmost - slice.b + slice.a)).T func toMask*[T: SomeInteger](slice: Slice[int]): T {.inline, since: (1, 3).} = ## Creates a bitmask based on a slice of bits. runnableExamples: doAssert toMask[int32](1 .. 3) == 0b1110'i32 doAssert toMask[int32](0 .. 3) == 0b1111'i32 let upmost = sizeof(T) * 8 - 1 bitmask = when T is SomeUnsignedInt: bitnot(0.T) else: bitnot(0.T).toUnsigned (bitmask shl (upmost - slice.b + slice.a) shr (upmost - slice.b)).T proc masked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} = ## Returns ``v``, with only the ``1`` bits from ``mask`` matching those of ## ``v`` set to 1. ## ## Effectively maps to a `bitand` operation. runnableExamples: var v = 0b0000_0011'u8 doAssert v.masked(0b0000_1010'u8) == 0b0000_0010'u8 bitand(v, mask) func masked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = ## Mutates ``v``, with only the ``1`` bits in the range of ``slice`` ## matching those of ``v`` set to 1. ## ## Effectively maps to a `bitand` operation. runnableExamples: var v = 0b0000_1011'u8 doAssert v.masked(1 .. 3) == 0b0000_1010'u8 bitand(v, toMask[T](slice)) proc mask*[T: SomeInteger](v: var T; mask: T) {.inline, since: (1, 3).} = ## Mutates ``v``, with only the ``1`` bits from ``mask`` matching those of ## ``v`` set to 1. ## ## Effectively maps to a `bitand` operation. runnableExamples: var v = 0b0000_0011'u8 v.mask(0b0000_1010'u8) doAssert v == 0b0000_0010'u8 v = bitand(v, mask) proc mask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = ## Mutates ``v``, with only the ``1`` bits in the range of ``slice`` ## matching those of ``v`` set to 1. ## ## Effectively maps to a `bitand` operation. runnableExamples: var v = 0b0000_1011'u8 v.mask(1 .. 3) doAssert v == 0b0000_1010'u8 v = bitand(v, toMask[T](slice)) func setMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} = ## Returns ``v``, with all the ``1`` bits from ``mask`` set to 1. ## ## Effectively maps to a `bitor` operation. runnableExamples: var v = 0b0000_0011'u8 doAssert v.setMasked(0b0000_1010'u8) == 0b0000_1011'u8 bitor(v, mask) func setMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = ## Returns ``v``, with all the ``1`` bits in the range of ``slice`` set to 1. ## ## Effectively maps to a `bitor` operation. runnableExamples: var v = 0b0000_0011'u8 doAssert v.setMasked(2 .. 3) == 0b0000_1111'u8 bitor(v, toMask[T](slice)) proc setMask*[T: SomeInteger](v: var T; mask: T) {.inline.} = ## Mutates ``v``, with all the ``1`` bits from ``mask`` set to 1. ## ## Effectively maps to a `bitor` operation. runnableExamples: var v = 0b0000_0011'u8 v.setMask(0b0000_1010'u8) doAssert v == 0b0000_1011'u8 v = bitor(v, mask) proc setMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = ## Mutates ``v``, with all the ``1`` bits in the range of ``slice`` set to 1. ## ## Effectively maps to a `bitor` operation. runnableExamples: var v = 0b0000_0011'u8 v.setMask(2 .. 3) doAssert v == 0b0000_1111'u8 v = bitor(v, toMask[T](slice)) func clearMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} = ## Returns ``v``, with all the ``1`` bits from ``mask`` set to 0. ## ## Effectively maps to a `bitand` operation with an *inverted mask.* runnableExamples: var v = 0b0000_0011'u8 doAssert v.clearMasked(0b0000_1010'u8) == 0b0000_0001'u8 bitand(v, bitnot(mask)) func clearMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = ## Returns ``v``, with all the ``1`` bits in the range of ``slice`` set to 0. ## ## Effectively maps to a `bitand` operation with an *inverted mask.* runnableExamples: var v = 0b0000_0011'u8 doAssert v.clearMasked(1 .. 3) == 0b0000_0001'u8 bitand(v, bitnot(toMask[T](slice))) proc clearMask*[T: SomeInteger](v: var T; mask: T) {.inline.} = ## Mutates ``v``, with all the ``1`` bits from ``mask`` set to 0. ## ## Effectively maps to a `bitand` operation with an *inverted mask.* runnableExamples: var v = 0b0000_0011'u8 v.clearMask(0b0000_1010'u8) doAssert v == 0b0000_0001'u8 v = bitand(v, bitnot(mask)) proc clearMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = ## Mutates ``v``, with all the ``1`` bits in the range of ``slice`` set to 0. ## ## Effectively maps to a `bitand` operation with an *inverted mask.* runnableExamples: var v = 0b0000_0011'u8 v.clearMask(1 .. 3) doAssert v == 0b0000_0001'u8 v = bitand(v, bitnot(toMask[T](slice))) func flipMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} = ## Returns ``v``, with all the ``1`` bits from ``mask`` flipped. ## ## Effectively maps to a `bitxor` operation. runnableExamples: var v = 0b0000_0011'u8 doAssert v.flipMasked(0b0000_1010'u8) == 0b0000_1001'u8 bitxor(v, mask) func flipMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} = ## Returns ``v``, with all the ``1`` bits in the range of ``slice`` flipped. ## ## Effectively maps to a `bitxor` operation. runnableExamples: var v = 0b0000_0011'u8 doAssert v.flipMasked(1 .. 3) == 0b0000_1101'u8 bitxor(v, toMask[T](slice)) proc flipMask*[T: SomeInteger](v: var T; mask: T) {.inline.} = ## Mutates ``v``, with all the ``1`` bits from ``mask`` flipped. ## ## Effectively maps to a `bitxor` operation. runnableExamples: var v = 0b0000_0011'u8 v.flipMask(0b0000_1010'u8) doAssert v == 0b0000_1001'u8 v = bitxor(v, mask) proc flipMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} = ## Mutates ``v``, with all the ``1`` bits in the range of ``slice`` flipped. ## ## Effectively maps to a `bitxor` operation. runnableExamples: var v = 0b0000_0011'u8 v.flipMask(1 .. 3) doAssert v == 0b0000_1101'u8 v = bitxor(v, toMask[T](slice)) proc setBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} = ## Mutates ``v``, with the bit at position ``bit`` set to 1 runnableExamples: var v = 0b0000_0011'u8 v.setBit(5'u8) doAssert v == 0b0010_0011'u8 v.setMask(1.T shl bit) proc clearBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} = ## Mutates ``v``, with the bit at position ``bit`` set to 0 runnableExamples: var v = 0b0000_0011'u8 v.clearBit(1'u8) doAssert v == 0b0000_0001'u8 v.clearMask(1.T shl bit) proc flipBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} = ## Mutates ``v``, with the bit at position ``bit`` flipped runnableExamples: var v = 0b0000_0011'u8 v.flipBit(1'u8) doAssert v == 0b0000_0001'u8 v = 0b0000_0011'u8 v.flipBit(2'u8) doAssert v == 0b0000_0111'u8 v.flipMask(1.T shl bit) macro setBits*(v: typed; bits: varargs[typed]): untyped = ## Mutates ``v``, with the bits at positions ``bits`` set to 1 runnableExamples: var v = 0b0000_0011'u8 v.setBits(3, 5, 7) doAssert v == 0b1010_1011'u8 bits.expectKind(nnkBracket) result = newStmtList() for bit in bits: result.add newCall("setBit", v, bit) macro clearBits*(v: typed; bits: varargs[typed]): untyped = ## Mutates ``v``, with the bits at positions ``bits`` set to 0 runnableExamples: var v = 0b1111_1111'u8 v.clearBits(1, 3, 5, 7) doAssert v == 0b0101_0101'u8 bits.expectKind(nnkBracket) result = newStmtList() for bit in bits: result.add newCall("clearBit", v, bit) macro flipBits*(v: typed; bits: varargs[typed]): untyped = ## Mutates ``v``, with the bits at positions ``bits`` set to 0 runnableExamples: var v = 0b0000_1111'u8 v.flipBits(1, 3, 5, 7) doAssert v == 0b1010_0101'u8 bits.expectKind(nnkBracket) result = newStmtList() for bit in bits: result.add newCall("flipBit", v, bit) proc testBit*[T: SomeInteger](v: T; bit: BitsRange[T]): bool {.inline.} = ## Returns true if the bit in ``v`` at positions ``bit`` is set to 1 runnableExamples: var v = 0b0000_1111'u8 doAssert v.testBit(0) doAssert not v.testBit(7) let mask = 1.T shl bit return (v and mask) == mask # #### Pure Nim version #### proc firstSetBitNim(x: uint32): int {.inline, noSideEffect.} = ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero. # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup const lookup: array[32, uint8] = [0'u8, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9] var v = x.uint32 var k = not v + 1 # get two's complement # cast[uint32](-cast[int32](v)) result = 1 + lookup[uint32((v and k) * 0x077CB531'u32) shr 27].int proc firstSetBitNim(x: uint64): int {.inline, noSideEffect.} = ## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero. # https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup var v = uint64(x) var k = uint32(v and 0xFFFFFFFF'u32) if k == 0: k = uint32(v shr 32'u32) and 0xFFFFFFFF'u32 result = 32 result += firstSetBitNim(k) proc fastlog2Nim(x: uint32): int {.inline, noSideEffect.} = ## Quickly find the log base 2 of a 32-bit or less integer. # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers const lookup: array[32, uint8] = [0'u8, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31] var v = x.uint32 v = v or v shr 1 # first round down to one less than a power of 2 v = v or v shr 2 v = v or v shr 4 v = v or v shr 8 v = v or v shr 16 result = lookup[uint32(v * 0x07C4ACDD'u32) shr 27].int proc fastlog2Nim(x: uint64): int {.inline, noSideEffect.} = ## Quickly find the log base 2 of a 64-bit integer. # https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn # https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers const lookup: array[64, uint8] = [0'u8, 58, 1, 59, 47, 53, 2, 60, 39, 48, 27, 54, 33, 42, 3, 61, 51, 37, 40, 49, 18, 28, 20, 55, 30, 34, 11, 43, 14, 22, 4, 62, 57, 46, 52, 38, 26, 32, 41, 50, 36, 17, 19, 29, 10, 13, 21, 56, 45, 25, 31, 35, 16, 9, 12, 44, 24, 15, 8, 23, 7, 6, 5, 63] var v = x.uint64 v = v or v shr 1 # first round down to one less than a power of 2 v = v or v shr 2 v = v or v shr 4 v = v or v shr 8 v = v or v shr 16 v = v or v shr 32 result = lookup[(v * 0x03F6EAF2CD271461'u64) shr 58].int # sets.nim cannot import bitops, but bitops can use include # system/sets to eliminate code duplication. sets.nim defines # countBits32 and countBits64. include system/sets template countSetBitsNim(n: uint32): int = countBits32(n) template countSetBitsNim(n: uint64): int = countBits64(n) template parityImpl[T](value: T): int = # formula id from: https://graphics.stanford.edu/%7Eseander/bithacks.html#ParityParallel var v = value when sizeof(T) == 8: v = v xor (v shr 32) when sizeof(T) >= 4: v = v xor (v shr 16) when sizeof(T) >= 2: v = v xor (v shr 8) v = v xor (v shr 4) v = v and 0xf ((0x6996'u shr v) and 1).int when useGCC_builtins: # Returns the number of set 1-bits in value. proc builtin_popcount(x: cuint): cint {.importc: "__builtin_popcount", cdecl.} proc builtin_popcountll(x: culonglong): cint {. importc: "__builtin_popcountll", cdecl.} # Returns the bit parity in value proc builtin_parity(x: cuint): cint {.importc: "__builtin_parity", cdecl.} proc builtin_parityll(x: culonglong): cint {.importc: "__builtin_parityll", cdecl.} # Returns one plus the index of the least significant 1-bit of x, or if x is zero, returns zero. proc builtin_ffs(x: cint): cint {.importc: "__builtin_ffs", cdecl.} proc builtin_ffsll(x: clonglong): cint {.importc: "__builtin_ffsll", cdecl.} # Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined. proc builtin_clz(x: cuint): cint {.importc: "__builtin_clz", cdecl.} proc builtin_clzll(x: culonglong): cint {.importc: "__builtin_clzll", cdecl.} # Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined. proc builtin_ctz(x: cuint): cint {.importc: "__builtin_ctz", cdecl.} proc builtin_ctzll(x: culonglong): cint {.importc: "__builtin_ctzll", cdecl.} elif useVCC_builtins: # Counts the number of one bits (population count) in a 16-, 32-, or 64-byte unsigned integer. proc builtin_popcnt16(a2: uint16): uint16 {. importc: "__popcnt16"header: "", noSideEffect.} proc builtin_popcnt32(a2: uint32): uint32 {. importc: "__popcnt"header: "", noSideEffect.} proc builtin_popcnt64(a2: uint64): uint64 {. importc: "__popcnt64"header: "", noSideEffect.} # Search the mask data from most significant bit (MSB) to least significant bit (LSB) for a set bit (1). proc bitScanReverse(index: ptr culong, mask: culong): cuchar {. importc: "_BitScanReverse", header: "", noSideEffect.} proc bitScanReverse64(index: ptr culong, mask: uint64): cuchar {. importc: "_BitScanReverse64", header: "", noSideEffect.} # Search the mask data from least significant bit (LSB) to the most significant bit (MSB) for a set bit (1). proc bitScanForward(index: ptr culong, mask: culong): cuchar {. importc: "_BitScanForward", header: "", noSideEffect.} proc bitScanForward64(index: ptr culong, mask: uint64): cuchar {. importc: "_BitScanForward64", header: "", noSideEffect.} template vcc_scan_impl(fnc: untyped; v: untyped): int = var index: culong discard fnc(index.addr, v) index.int elif useICC_builtins: # Intel compiler intrinsics: http://fulla.fnal.gov/intel/compiler_c/main_cls/intref_cls/common/intref_allia_misc.htm # see also: https://software.intel.com/en-us/node/523362 # Count the number of bits set to 1 in an integer a, and return that count in dst. proc builtin_popcnt32(a: cint): cint {. importc: "_popcnt"header: "", noSideEffect.} proc builtin_popcnt64(a: uint64): cint {. importc: "_popcnt64"header: "", noSideEffect.} # Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined. proc bitScanForward(p: ptr uint32, b: uint32): cuchar {. importc: "_BitScanForward", header: "", noSideEffect.} proc bitScanForward64(p: ptr uint32, b: uint64): cuchar {. importc: "_BitScanForward64", header: "", noSideEffect.} # Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined. proc bitScanReverse(p: ptr uint32, b: uint32): cuchar {. importc: "_BitScanReverse", header: "", noSideEffect.} proc bitScanReverse64(p: ptr uint32, b: uint64): cuchar {. importc: "_BitScanReverse64", header: "", noSideEffect.} template icc_scan_impl(fnc: untyped; v: untyped): int = var index: uint32 discard fnc(index.addr, v) index.int proc countSetBits*(x: SomeInteger): int {.inline, noSideEffect.} = ## Counts the set bits in integer. (also called `Hamming weight`:idx:.) runnableExamples: doAssert countSetBits(0b0000_0011'u8) == 2 doAssert countSetBits(0b1010_1010'u8) == 4 # TODO: figure out if ICC support _popcnt32/_popcnt64 on platform without POPCNT. # like GCC and MSVC when x is SomeSignedInt: let x = x.toUnsigned when nimvm: result = forwardImpl(countSetBitsNim, x) else: when useGCC_builtins: when sizeof(x) <= 4: result = builtin_popcount(x.cuint).int else: result = builtin_popcountll(x.culonglong).int elif useVCC_builtins: when sizeof(x) <= 2: result = builtin_popcnt16(x.uint16).int elif sizeof(x) <= 4: result = builtin_popcnt32(x.uint32).int elif arch64: result = builtin_popcnt64(x.uint64).int else: result = builtin_popcnt32((x.uint64 and 0xFFFFFFFF'u64).uint32).int + builtin_popcnt32((x.uint64 shr 32'u64).uint32).int elif useICC_builtins: when sizeof(x) <= 4: result = builtin_popcnt32(x.cint).int elif arch64: result = builtin_popcnt64(x.uint64).int else: result = builtin_popcnt32((x.uint64 and 0xFFFFFFFF'u64).cint).int + builtin_popcnt32((x.uint64 shr 32'u64).cint).int else: when sizeof(x) <= 4: result = countSetBitsNim(x.uint32) else: result = countSetBitsNim(x.uint64) proc popcount*(x: SomeInteger): int {.inline, noSideEffect.} = ## Alias for for `countSetBits <#countSetBits,SomeInteger>`_. (Hamming weight.) result = countSetBits(x) proc parityBits*(x: SomeInteger): int {.inline, noSideEffect.} = ## Calculate the bit parity in integer. If number of 1-bit ## is odd parity is 1, otherwise 0. runnableExamples: doAssert parityBits(0b0000_0000'u8) == 0 doAssert parityBits(0b0101_0001'u8) == 1 doAssert parityBits(0b0110_1001'u8) == 0 doAssert parityBits(0b0111_1111'u8) == 1 # Can be used a base if creating ASM version. # https://stackoverflow.com/questions/21617970/how-to-check-if-value-has-even-parity-of-bits-or-odd when x is SomeSignedInt: let x = x.toUnsigned when nimvm: result = forwardImpl(parityImpl, x) else: when useGCC_builtins: when sizeof(x) <= 4: result = builtin_parity(x.uint32).int else: result = builtin_parityll(x.uint64).int else: when sizeof(x) <= 4: result = parityImpl(x.uint32) else: result = parityImpl(x.uint64) proc firstSetBit*(x: SomeInteger): int {.inline, noSideEffect.} = ## Returns the 1-based index of the least significant set bit of x. ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0, ## otherwise result is undefined. runnableExamples: doAssert firstSetBit(0b0000_0001'u8) == 1 doAssert firstSetBit(0b0000_0010'u8) == 2 doAssert firstSetBit(0b0000_0100'u8) == 3 doAssert firstSetBit(0b0000_1000'u8) == 4 doAssert firstSetBit(0b0000_1111'u8) == 1 # GCC builtin 'builtin_ffs' already handle zero input. when x is SomeSignedInt: let x = x.toUnsigned when nimvm: when noUndefined: if x == 0: return 0 result = forwardImpl(firstSetBitNim, x) else: when noUndefined and not useGCC_builtins: if x == 0: return 0 when useGCC_builtins: when sizeof(x) <= 4: result = builtin_ffs(cast[cint](x.cuint)).int else: result = builtin_ffsll(cast[clonglong](x.culonglong)).int elif useVCC_builtins: when sizeof(x) <= 4: result = 1 + vcc_scan_impl(bitScanForward, x.culong) elif arch64: result = 1 + vcc_scan_impl(bitScanForward64, x.uint64) else: result = firstSetBitNim(x.uint64) elif useICC_builtins: when sizeof(x) <= 4: result = 1 + icc_scan_impl(bitScanForward, x.uint32) elif arch64: result = 1 + icc_scan_impl(bitScanForward64, x.uint64) else: result = firstSetBitNim(x.uint64) else: when sizeof(x) <= 4: result = firstSetBitNim(x.uint32) else: result = firstSetBitNim(x.uint64) proc fastLog2*(x: SomeInteger): int {.inline, noSideEffect.} = ## Quickly find the log base 2 of an integer. ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is -1, ## otherwise result is undefined. runnableExamples: doAssert fastLog2(0b0000_0001'u8) == 0 doAssert fastLog2(0b0000_0010'u8) == 1 doAssert fastLog2(0b0000_0100'u8) == 2 doAssert fastLog2(0b0000_1000'u8) == 3 doAssert fastLog2(0b0000_1111'u8) == 3 when x is SomeSignedInt: let x = x.toUnsigned when noUndefined: if x == 0: return -1 when nimvm: result = forwardImpl(fastlog2Nim, x) else: when useGCC_builtins: when sizeof(x) <= 4: result = 31 - builtin_clz(x.uint32).int else: result = 63 - builtin_clzll(x.uint64).int elif useVCC_builtins: when sizeof(x) <= 4: result = vcc_scan_impl(bitScanReverse, x.culong) elif arch64: result = vcc_scan_impl(bitScanReverse64, x.uint64) else: result = fastlog2Nim(x.uint64) elif useICC_builtins: when sizeof(x) <= 4: result = icc_scan_impl(bitScanReverse, x.uint32) elif arch64: result = icc_scan_impl(bitScanReverse64, x.uint64) else: result = fastlog2Nim(x.uint64) else: when sizeof(x) <= 4: result = fastlog2Nim(x.uint32) else: result = fastlog2Nim(x.uint64) proc countLeadingZeroBits*(x: SomeInteger): int {.inline, noSideEffect.} = ## Returns the number of leading zero bits in integer. ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0, ## otherwise result is undefined. ## ## See also: ## * `countTrailingZeroBits proc <#countTrailingZeroBits,SomeInteger>`_ runnableExamples: doAssert countLeadingZeroBits(0b0000_0001'u8) == 7 doAssert countLeadingZeroBits(0b0000_0010'u8) == 6 doAssert countLeadingZeroBits(0b0000_0100'u8) == 5 doAssert countLeadingZeroBits(0b0000_1000'u8) == 4 doAssert countLeadingZeroBits(0b0000_1111'u8) == 4 when x is SomeSignedInt: let x = x.toUnsigned when noUndefined: if x == 0: return 0 when nimvm: result = sizeof(x)*8 - 1 - forwardImpl(fastlog2Nim, x) else: when useGCC_builtins: when sizeof(x) <= 4: result = builtin_clz(x.uint32).int - (32 - sizeof(x)*8) else: result = builtin_clzll(x.uint64).int else: when sizeof(x) <= 4: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint32) else: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint64) proc countTrailingZeroBits*(x: SomeInteger): int {.inline, noSideEffect.} = ## Returns the number of trailing zeros in integer. ## If `x` is zero, when ``noUndefinedBitOpts`` is set, result is 0, ## otherwise result is undefined. ## ## See also: ## * `countLeadingZeroBits proc <#countLeadingZeroBits,SomeInteger>`_ runnableExamples: doAssert countTrailingZeroBits(0b0000_0001'u8) == 0 doAssert countTrailingZeroBits(0b0000_0010'u8) == 1 doAssert countTrailingZeroBits(0b0000_0100'u8) == 2 doAssert countTrailingZeroBits(0b0000_1000'u8) == 3 doAssert countTrailingZeroBits(0b0000_1111'u8) == 0 when x is SomeSignedInt: let x = x.toUnsigned when noUndefined: if x == 0: return 0 when nimvm: result = firstSetBit(x) - 1 else: when useGCC_builtins: when sizeof(x) <= 4: result = builtin_ctz(x.uint32).int else: result = builtin_ctzll(x.uint64).int else: result = firstSetBit(x) - 1 proc rotateLeftBits*(value: uint8; amount: range[0..8]): uint8 {.inline, noSideEffect.} = ## Left-rotate bits in a 8-bits value. runnableExamples: doAssert rotateLeftBits(0b0000_0001'u8, 1) == 0b0000_0010'u8 doAssert rotateLeftBits(0b0000_0001'u8, 2) == 0b0000_0100'u8 doAssert rotateLeftBits(0b0100_0001'u8, 1) == 0b1000_0010'u8 doAssert rotateLeftBits(0b0100_0001'u8, 2) == 0b0000_0101'u8 # using this form instead of the one below should handle any value # out of range as well as negative values. # result = (value shl amount) or (value shr (8 - amount)) # taken from: https://en.wikipedia.org/wiki/Circular_shift#Implementing_circular_shifts let amount = amount and 7 result = (value shl amount) or (value shr ( (-amount) and 7)) proc rotateLeftBits*(value: uint16; amount: range[0..16]): uint16 {.inline, noSideEffect.} = ## Left-rotate bits in a 16-bits value. ## ## See also: ## * `rotateLeftBits proc <#rotateLeftBits,uint8,range[]>`_ let amount = amount and 15 result = (value shl amount) or (value shr ( (-amount) and 15)) proc rotateLeftBits*(value: uint32; amount: range[0..32]): uint32 {.inline, noSideEffect.} = ## Left-rotate bits in a 32-bits value. ## ## See also: ## * `rotateLeftBits proc <#rotateLeftBits,uint8,range[]>`_ let amount = amount and 31 result = (value shl amount) or (value shr ( (-amount) and 31)) proc rotateLeftBits*(value: uint64; amount: range[0..64]): uint64 {.inline, noSideEffect.} = ## Left-rotate bits in a 64-bits value. ## ## See also: ## * `rotateLeftBits proc <#rotateLeftBits,uint8,range[]>`_ let amount = amount and 63 result = (value shl amount) or (value shr ( (-amount) and 63)) proc rotateRightBits*(value: uint8; amount: range[0..8]): uint8 {.inline, noSideEffect.} = ## Right-rotate bits in a 8-bits value. runnableExamples: doAssert rotateRightBits(0b0000_0001'u8, 1) == 0b1000_0000'u8 doAssert rotateRightBits(0b0000_0001'u8, 2) == 0b0100_0000'u8 doAssert rotateRightBits(0b0100_0001'u8, 1) == 0b1010_0000'u8 doAssert rotateRightBits(0b0100_0001'u8, 2) == 0b0101_0000'u8 let amount = amount and 7 result = (value shr amount) or (value shl ( (-amount) and 7)) proc rotateRightBits*(value: uint16; amount: range[0..16]): uint16 {.inline, noSideEffect.} = ## Right-rotate bits in a 16-bits value. ## ## See also: ## * `rotateRightBits proc <#rotateRightBits,uint8,range[]>`_ let amount = amount and 15 result = (value shr amount) or (value shl ( (-amount) and 15)) proc rotateRightBits*(value: uint32; amount: range[0..32]): uint32 {.inline, noSideEffect.} = ## Right-rotate bits in a 32-bits value. ## ## See also: ## * `rotateRightBits proc <#rotateRightBits,uint8,range[]>`_ let amount = amount and 31 result = (value shr amount) or (value shl ( (-amount) and 31)) proc rotateRightBits*(value: uint64; amount: range[0..64]): uint64 {.inline, noSideEffect.} = ## Right-rotate bits in a 64-bits value. ## ## See also: ## * `rotateRightBits proc <#rotateRightBits,uint8,range[]>`_ let amount = amount and 63 result = (value shr amount) or (value shl ( (-amount) and 63)) proc repeatBits[T: SomeUnsignedInt](x: SomeUnsignedInt; retType: type[T]): T {. noSideEffect.} = result = x var i = 1 while i != (sizeof(T) div sizeof(x)): result = (result shl (sizeof(x)*8*i)) or result i *= 2 proc reverseBits*[T: SomeUnsignedInt](x: T): T {.noSideEffect.} = ## Return the bit reversal of x. runnableExamples: doAssert reverseBits(0b10100100'u8) == 0b00100101'u8 doAssert reverseBits(0xdd'u8) == 0xbb'u8 doAssert reverseBits(0xddbb'u16) == 0xddbb'u16 doAssert reverseBits(0xdeadbeef'u32) == 0xf77db57b'u32 template repeat(x: SomeUnsignedInt): T = repeatBits(x, T) result = x result = ((repeat(0x55u8) and result) shl 1) or ((repeat(0xaau8) and result) shr 1) result = ((repeat(0x33u8) and result) shl 2) or ((repeat(0xccu8) and result) shr 2) when sizeof(T) == 1: result = (result shl 4) or (result shr 4) when sizeof(T) >= 2: result = ((repeat(0x0fu8) and result) shl 4) or ((repeat(0xf0u8) and result) shr 4) when sizeof(T) == 2: result = (result shl 8) or (result shr 8) when sizeof(T) >= 4: result = ((repeat(0x00ffu16) and result) shl 8) or ((repeat(0xff00u16) and result) shr 8) when sizeof(T) == 4: result = (result shl 16) or (result shr 16) when sizeof(T) == 8: result = ((repeat(0x0000ffffu32) and result) shl 16) or ((repeat(0xffff0000u32) and result) shr 16) result = (result shl 32) or (result shr 32)