# # # Nim's Runtime Library # (c) Copyright 2012 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## An implementation of a `deque`:idx: (double-ended queue). ## The underlying implementation uses a `seq`. ## ## .. note:: None of the procs that get an individual value from the deque should be used ## on an empty deque. ## ## If compiled with the `boundChecks` option, those procs will raise an `IndexDefect` ## on such access. This should not be relied upon, as `-d:danger` or `--checks:off` will ## disable those checks and then the procs may return garbage or crash the program. ## ## As such, a check to see if the deque is empty is needed before any ## access, unless your program logic guarantees it indirectly. runnableExamples: var a = [10, 20, 30, 40].toDeque doAssertRaises(IndexDefect, echo a[4]) a.addLast(50) assert $a == "[10, 20, 30, 40, 50]" assert a.peekFirst == 10 assert a.peekLast == 50 assert len(a) == 5 assert a.popFirst == 10 assert a.popLast == 50 assert len(a) == 3 a.addFirst(11) a.addFirst(22) a.addFirst(33) assert $a == "[33, 22, 11, 20, 30, 40]" a.shrink(fromFirst = 1, fromLast = 2) assert $a == "[22, 11, 20]" ## See also ## ======== ## * `lists module `_ for singly and doubly linked lists and rings import std/private/since import math type Deque*[T] = object ## A double-ended queue backed with a ringed `seq` buffer. ## ## To initialize an empty deque, ## use the `initDeque proc <#initDeque,int>`_. data: seq[T] head, tail, count, mask: int const defaultInitialSize* = 4 template initImpl(result: typed, initialSize: int) = let correctSize = nextPowerOfTwo(initialSize) result.mask = correctSize - 1 newSeq(result.data, correctSize) template checkIfInitialized(deq: typed) = when compiles(defaultInitialSize): if deq.mask == 0: initImpl(deq, defaultInitialSize) proc initDeque*[T](initialSize: int = defaultInitialSize): Deque[T] = ## Creates a new empty deque. ## ## Optionally, the initial capacity can be reserved via `initialSize` ## as a performance optimization ## (default: `defaultInitialSize <#defaultInitialSize>`_). ## The length of a newly created deque will still be 0. ## ## **See also:** ## * `toDeque proc <#toDeque,openArray[T]>`_ result.initImpl(initialSize) proc len*[T](deq: Deque[T]): int {.inline.} = ## Returns the number of elements of `deq`. result = deq.count template emptyCheck(deq) = # Bounds check for the regular deque access. when compileOption("boundChecks"): if unlikely(deq.count < 1): raise newException(IndexDefect, "Empty deque.") template xBoundsCheck(deq, i) = # Bounds check for the array like accesses. when compileOption("boundChecks"): # `-d:danger` or `--checks:off` should disable this. if unlikely(i >= deq.count): # x < deq.low is taken care by the Natural parameter raise newException(IndexDefect, "Out of bounds: " & $i & " > " & $(deq.count - 1)) if unlikely(i < 0): # when used with BackwardsIndex raise newException(IndexDefect, "Out of bounds: " & $i & " < 0") proc `[]`*[T](deq: Deque[T], i: Natural): lent T {.inline.} = ## Accesses the `i`-th element of `deq`. runnableExamples: let a = [10, 20, 30, 40, 50].toDeque assert a[0] == 10 assert a[3] == 40 doAssertRaises(IndexDefect, echo a[8]) xBoundsCheck(deq, i) return deq.data[(deq.head + i) and deq.mask] proc `[]`*[T](deq: var Deque[T], i: Natural): var T {.inline.} = ## Accesses the `i`-th element of `deq` and returns a mutable ## reference to it. runnableExamples: var a = [10, 20, 30, 40, 50].toDeque inc(a[0]) assert a[0] == 11 xBoundsCheck(deq, i) return deq.data[(deq.head + i) and deq.mask] proc `[]=`*[T](deq: var Deque[T], i: Natural, val: sink T) {.inline.} = ## Sets the `i`-th element of `deq` to `val`. runnableExamples: var a = [10, 20, 30, 40, 50].toDeque a[0] = 99 a[3] = 66 assert $a == "[99, 20, 30, 66, 50]" checkIfInitialized(deq) xBoundsCheck(deq, i) deq.data[(deq.head + i) and deq.mask] = val proc `[]`*[T](deq: Deque[T], i: BackwardsIndex): lent T {.inline.} = ## Accesses the backwards indexed `i`-th element. ## ## `deq[^1]` is the last element. runnableExamples: let a = [10, 20, 30, 40, 50].toDeque assert a[^1] == 50 assert a[^4] == 20 doAssertRaises(IndexDefect, echo a[^9]) xBoundsCheck(deq, deq.len - int(i)) return deq[deq.len - int(i)] proc `[]`*[T](deq: var Deque[T], i: BackwardsIndex): var T {.inline.} = ## Accesses the backwards indexed `i`-th element and returns a mutable ## reference to it. ## ## `deq[^1]` is the last element. runnableExamples: var a = [10, 20, 30, 40, 50].toDeque inc(a[^1]) assert a[^1] == 51 xBoundsCheck(deq, deq.len - int(i)) return deq[deq.len - int(i)] proc `[]=`*[T](deq: var Deque[T], i: BackwardsIndex, x: sink T) {.inline.} = ## Sets the backwards indexed `i`-th element of `deq` to `x`. ## ## `deq[^1]` is the last element. runnableExamples: var a = [10, 20, 30, 40, 50].toDeque a[^1] = 99 a[^3] = 77 assert $a == "[10, 20, 77, 40, 99]" checkIfInitialized(deq) xBoundsCheck(deq, deq.len - int(i)) deq[deq.len - int(i)] = x iterator items*[T](deq: Deque[T]): lent T = ## Yields every element of `deq`. ## ## **See also:** ## * `mitems iterator <#mitems.i,Deque[T]>`_ runnableExamples: from std/sequtils import toSeq let a = [10, 20, 30, 40, 50].toDeque assert toSeq(a.items) == @[10, 20, 30, 40, 50] var i = deq.head for c in 0 ..< deq.count: yield deq.data[i] i = (i + 1) and deq.mask iterator mitems*[T](deq: var Deque[T]): var T = ## Yields every element of `deq`, which can be modified. ## ## **See also:** ## * `items iterator <#items.i,Deque[T]>`_ runnableExamples: var a = [10, 20, 30, 40, 50].toDeque assert $a == "[10, 20, 30, 40, 50]" for x in mitems(a): x = 5 * x - 1 assert $a == "[49, 99, 149, 199, 249]" var i = deq.head for c in 0 ..< deq.count: yield deq.data[i] i = (i + 1) and deq.mask iterator pairs*[T](deq: Deque[T]): tuple[key: int, val: T] = ## Yields every `(position, value)`-pair of `deq`. runnableExamples: from std/sequtils import toSeq let a = [10, 20, 30].toDeque assert toSeq(a.pairs) == @[(0, 10), (1, 20), (2, 30)] var i = deq.head for c in 0 ..< deq.count: yield (c, deq.data[i]) i = (i + 1) and deq.mask proc contains*[T](deq: Deque[T], item: T): bool {.inline.} = ## Returns true if `item` is in `deq` or false if not found. ## ## Usually used via the `in` operator. ## It is the equivalent of `deq.find(item) >= 0`. runnableExamples: let q = [7, 9].toDeque assert 7 in q assert q.contains(7) assert 8 notin q for e in deq: if e == item: return true return false proc expandIfNeeded[T](deq: var Deque[T]) = checkIfInitialized(deq) var cap = deq.mask + 1 if unlikely(deq.count >= cap): var n = newSeq[T](cap * 2) var i = 0 for x in mitems(deq): when nimvm: n[i] = x # workaround for VM bug else: n[i] = move(x) inc i deq.data = move(n) deq.mask = cap * 2 - 1 deq.tail = deq.count deq.head = 0 proc addFirst*[T](deq: var Deque[T], item: sink T) = ## Adds an `item` to the beginning of `deq`. ## ## **See also:** ## * `addLast proc <#addLast,Deque[T],sinkT>`_ runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addFirst(10 * i) assert $a == "[50, 40, 30, 20, 10]" expandIfNeeded(deq) inc deq.count deq.head = (deq.head - 1) and deq.mask deq.data[deq.head] = item proc addLast*[T](deq: var Deque[T], item: sink T) = ## Adds an `item` to the end of `deq`. ## ## **See also:** ## * `addFirst proc <#addFirst,Deque[T],sinkT>`_ runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addLast(10 * i) assert $a == "[10, 20, 30, 40, 50]" expandIfNeeded(deq) inc deq.count deq.data[deq.tail] = item deq.tail = (deq.tail + 1) and deq.mask proc toDeque*[T](x: openArray[T]): Deque[T] {.since: (1, 3).} = ## Creates a new deque that contains the elements of `x` (in the same order). ## ## **See also:** ## * `initDeque proc <#initDeque,int>`_ runnableExamples: let a = toDeque([7, 8, 9]) assert len(a) == 3 assert $a == "[7, 8, 9]" result.initImpl(x.len) for item in items(x): result.addLast(item) proc peekFirst*[T](deq: Deque[T]): lent T {.inline.} = ## Returns the first element of `deq`, but does not remove it from the deque. ## ## **See also:** ## * `peekFirst proc <#peekFirst,Deque[T]_2>`_ which returns a mutable reference ## * `peekLast proc <#peekLast,Deque[T]>`_ runnableExamples: let a = [10, 20, 30, 40, 50].toDeque assert $a == "[10, 20, 30, 40, 50]" assert a.peekFirst == 10 assert len(a) == 5 emptyCheck(deq) result = deq.data[deq.head] proc peekLast*[T](deq: Deque[T]): lent T {.inline.} = ## Returns the last element of `deq`, but does not remove it from the deque. ## ## **See also:** ## * `peekLast proc <#peekLast,Deque[T]_2>`_ which returns a mutable reference ## * `peekFirst proc <#peekFirst,Deque[T]>`_ runnableExamples: let a = [10, 20, 30, 40, 50].toDeque assert $a == "[10, 20, 30, 40, 50]" assert a.peekLast == 50 assert len(a) == 5 emptyCheck(deq) result = deq.data[(deq.tail - 1) and deq.mask] proc peekFirst*[T](deq: var Deque[T]): var T {.inline, since: (1, 3).} = ## Returns a mutable reference to the first element of `deq`, ## but does not remove it from the deque. ## ## **See also:** ## * `peekFirst proc <#peekFirst,Deque[T]>`_ ## * `peekLast proc <#peekLast,Deque[T]_2>`_ runnableExamples: var a = [10, 20, 30, 40, 50].toDeque a.peekFirst() = 99 assert $a == "[99, 20, 30, 40, 50]" emptyCheck(deq) result = deq.data[deq.head] proc peekLast*[T](deq: var Deque[T]): var T {.inline, since: (1, 3).} = ## Returns a mutable reference to the last element of `deq`, ## but does not remove it from the deque. ## ## **See also:** ## * `peekFirst proc <#peekFirst,Deque[T]_2>`_ ## * `peekLast proc <#peekLast,Deque[T]>`_ runnableExamples: var a = [10, 20, 30, 40, 50].toDeque a.peekLast() = 99 assert $a == "[10, 20, 30, 40, 99]" emptyCheck(deq) result = deq.data[(deq.tail - 1) and deq.mask] template destroy(x: untyped) = reset(x) proc popFirst*[T](deq: var Deque[T]): T {.inline, discardable.} = ## Removes and returns the first element of the `deq`. ## ## See also: ## * `popLast proc <#popLast,Deque[T]>`_ ## * `shrink proc <#shrink,Deque[T],int,int>`_ runnableExamples: var a = [10, 20, 30, 40, 50].toDeque assert $a == "[10, 20, 30, 40, 50]" assert a.popFirst == 10 assert $a == "[20, 30, 40, 50]" emptyCheck(deq) dec deq.count result = move deq.data[deq.head] deq.head = (deq.head + 1) and deq.mask proc popLast*[T](deq: var Deque[T]): T {.inline, discardable.} = ## Removes and returns the last element of the `deq`. ## ## **See also:** ## * `popFirst proc <#popFirst,Deque[T]>`_ ## * `shrink proc <#shrink,Deque[T],int,int>`_ runnableExamples: var a = [10, 20, 30, 40, 50].toDeque assert $a == "[10, 20, 30, 40, 50]" assert a.popLast == 50 assert $a == "[10, 20, 30, 40]" emptyCheck(deq) dec deq.count deq.tail = (deq.tail - 1) and deq.mask result = move deq.data[deq.tail] proc clear*[T](deq: var Deque[T]) {.inline.} = ## Resets the deque so that it is empty. ## ## **See also:** ## * `shrink proc <#shrink,Deque[T],int,int>`_ runnableExamples: var a = [10, 20, 30, 40, 50].toDeque assert $a == "[10, 20, 30, 40, 50]" clear(a) assert len(a) == 0 for el in mitems(deq): destroy(el) deq.count = 0 deq.tail = deq.head proc shrink*[T](deq: var Deque[T], fromFirst = 0, fromLast = 0) = ## Removes `fromFirst` elements from the front of the deque and ## `fromLast` elements from the back. ## ## If the supplied number of elements exceeds the total number of elements ## in the deque, the deque will remain empty. ## ## **See also:** ## * `clear proc <#clear,Deque[T]>`_ ## * `popFirst proc <#popFirst,Deque[T]>`_ ## * `popLast proc <#popLast,Deque[T]>`_ runnableExamples: var a = [10, 20, 30, 40, 50].toDeque assert $a == "[10, 20, 30, 40, 50]" a.shrink(fromFirst = 2, fromLast = 1) assert $a == "[30, 40]" if fromFirst + fromLast > deq.count: clear(deq) return for i in 0 ..< fromFirst: destroy(deq.data[deq.head]) deq.head = (deq.head + 1) and deq.mask for i in 0 ..< fromLast: destroy(deq.data[(deq.tail - 1) and deq.mask]) deq.tail = (deq.tail - 1) and deq.mask dec deq.count, fromFirst + fromLast proc `$`*[T](deq: Deque[T]): string = ## Turns a deque into its string representation. runnableExamples: let a = [10, 20, 30].toDeque assert $a == "[10, 20, 30]" result = "[" for x in deq: if result.len > 1: result.add(", ") result.addQuoted(x) result.add("]")