# # # Nim's Runtime Library # (c) Copyright 2012 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## Implementation of a `deque`:idx: (double-ended queue). ## The underlying implementation uses a ``seq``. ## ## None of the procs that get an individual value from the deque can be used ## on an empty deque. ## If compiled with `boundChecks` option, those procs will raise an `IndexDefect` ## on such access. This should not be relied upon, as `-d:release` will ## disable those checks and may return garbage or crash the program. ## ## As such, a check to see if the deque is empty is needed before any ## access, unless your program logic guarantees it indirectly. ## ## .. code-block:: Nim ## import deques ## ## var a = initDeque[int]() ## ## doAssertRaises(IndexDefect, echo a[0]) ## ## for i in 1 .. 5: ## a.addLast(10*i) ## assert $a == "[10, 20, 30, 40, 50]" ## ## assert a.peekFirst == 10 ## assert a.peekLast == 50 ## assert len(a) == 5 ## ## assert a.popFirst == 10 ## assert a.popLast == 50 ## assert len(a) == 3 ## ## a.addFirst(11) ## a.addFirst(22) ## a.addFirst(33) ## assert $a == "[33, 22, 11, 20, 30, 40]" ## ## a.shrink(fromFirst = 1, fromLast = 2) ## assert $a == "[22, 11, 20]" ## ## ## **See also:** ## * `lists module `_ for singly and doubly linked lists and rings ## * `channels module `_ for inter-thread communication import std/private/since import math type Deque*[T] = object ## A double-ended queue backed with a ringed seq buffer. ## ## To initialize an empty deque use `initDeque proc <#initDeque,int>`_. data: seq[T] head, tail, count, mask: int const defaultInitialSize* = 4 template initImpl(result: typed, initialSize: int) = let correctSize = nextPowerOfTwo(initialSize) result.mask = correctSize-1 newSeq(result.data, correctSize) template checkIfInitialized(deq: typed) = when compiles(defaultInitialSize): if deq.mask == 0: initImpl(deq, defaultInitialSize) proc initDeque*[T](initialSize: int = 4): Deque[T] = ## Create a new empty deque. ## ## Optionally, the initial capacity can be reserved via `initialSize` ## as a performance optimization. ## The length of a newly created deque will still be 0. ## ## See also: ## * `toDeque proc <#toDeque,openArray[T]>`_ result.initImpl(initialSize) proc toDeque*[T](x: openArray[T]): Deque[T] {.since: (1, 3).} = ## Creates a new deque that contains the elements of `x` (in the same order). ## ## See also: ## * `initDeque proc <#initDeque,int>`_ runnableExamples: var a = toDeque([7, 8, 9]) assert len(a) == 3 assert a.popFirst == 7 assert len(a) == 2 result.initImpl(x.len) for item in items(x): result.addLast(item) proc len*[T](deq: Deque[T]): int {.inline.} = ## Return the number of elements of `deq`. result = deq.count template emptyCheck(deq) = # Bounds check for the regular deque access. when compileOption("boundChecks"): if unlikely(deq.count < 1): raise newException(IndexDefect, "Empty deque.") template xBoundsCheck(deq, i) = # Bounds check for the array like accesses. when compileOption("boundChecks"): # d:release should disable this. if unlikely(i >= deq.count): # x < deq.low is taken care by the Natural parameter raise newException(IndexDefect, "Out of bounds: " & $i & " > " & $(deq.count - 1)) if unlikely(i < 0): # when used with BackwardsIndex raise newException(IndexDefect, "Out of bounds: " & $i & " < 0") proc `[]`*[T](deq: Deque[T], i: Natural): T {.inline.} = ## Access the i-th element of `deq`. runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addLast(10*i) assert a[0] == 10 assert a[3] == 40 doAssertRaises(IndexDefect, echo a[8]) xBoundsCheck(deq, i) return deq.data[(deq.head + i) and deq.mask] proc `[]`*[T](deq: var Deque[T], i: Natural): var T {.inline.} = ## Access the i-th element of `deq` and return a mutable ## reference to it. runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addLast(10*i) assert a[0] == 10 assert a[3] == 40 doAssertRaises(IndexDefect, echo a[8]) xBoundsCheck(deq, i) return deq.data[(deq.head + i) and deq.mask] proc `[]=`*[T](deq: var Deque[T], i: Natural, val: T) {.inline.} = ## Change the i-th element of `deq`. runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addLast(10*i) a[0] = 99 a[3] = 66 assert $a == "[99, 20, 30, 66, 50]" checkIfInitialized(deq) xBoundsCheck(deq, i) deq.data[(deq.head + i) and deq.mask] = val proc `[]`*[T](deq: Deque[T], i: BackwardsIndex): T {.inline.} = ## Access the backwards indexed i-th element. ## ## `deq[^1]` is the last element. runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addLast(10*i) assert a[^1] == 50 assert a[^4] == 20 doAssertRaises(IndexDefect, echo a[^9]) xBoundsCheck(deq, deq.len - int(i)) return deq[deq.len - int(i)] proc `[]`*[T](deq: var Deque[T], i: BackwardsIndex): var T {.inline.} = ## Access the backwards indexed i-th element. ## ## `deq[^1]` is the last element. runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addLast(10*i) assert a[^1] == 50 assert a[^4] == 20 doAssertRaises(IndexDefect, echo a[^9]) xBoundsCheck(deq, deq.len - int(i)) return deq[deq.len - int(i)] proc `[]=`*[T](deq: var Deque[T], i: BackwardsIndex, x: T) {.inline.} = ## Change the backwards indexed i-th element. ## ## `deq[^1]` is the last element. runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addLast(10*i) a[^1] = 99 a[^3] = 77 assert $a == "[10, 20, 77, 40, 99]" checkIfInitialized(deq) xBoundsCheck(deq, deq.len - int(i)) deq[deq.len - int(i)] = x iterator items*[T](deq: Deque[T]): T = ## Yield every element of `deq`. ## ## **Examples:** ## ## .. code-block:: ## var a = initDeque[int]() ## for i in 1 .. 3: ## a.addLast(10*i) ## ## for x in a: # the same as: for x in items(a): ## echo x ## ## # 10 ## # 20 ## # 30 ## var i = deq.head for c in 0 ..< deq.count: yield deq.data[i] i = (i + 1) and deq.mask iterator mitems*[T](deq: var Deque[T]): var T = ## Yield every element of `deq`, which can be modified. runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addLast(10*i) assert $a == "[10, 20, 30, 40, 50]" for x in mitems(a): x = 5*x - 1 assert $a == "[49, 99, 149, 199, 249]" var i = deq.head for c in 0 ..< deq.count: yield deq.data[i] i = (i + 1) and deq.mask iterator pairs*[T](deq: Deque[T]): tuple[key: int, val: T] = ## Yield every (position, value) of `deq`. ## ## **Examples:** ## ## .. code-block:: ## var a = initDeque[int]() ## for i in 1 .. 3: ## a.addLast(10*i) ## ## for k, v in pairs(a): ## echo "key: ", k, ", value: ", v ## ## # key: 0, value: 10 ## # key: 1, value: 20 ## # key: 2, value: 30 ## var i = deq.head for c in 0 ..< deq.count: yield (c, deq.data[i]) i = (i + 1) and deq.mask proc contains*[T](deq: Deque[T], item: T): bool {.inline.} = ## Return true if `item` is in `deq` or false if not found. ## ## Usually used via the ``in`` operator. ## It is the equivalent of ``deq.find(item) >= 0``. ## ## .. code-block:: Nim ## if x in q: ## assert q.contains(x) for e in deq: if e == item: return true return false proc expandIfNeeded[T](deq: var Deque[T]) = checkIfInitialized(deq) var cap = deq.mask + 1 if unlikely(deq.count >= cap): var n = newSeq[T](cap * 2) var i = 0 for x in mitems(deq): when nimVM: n[i] = x # workaround for VM bug else: n[i] = move(x) inc i deq.data = move(n) deq.mask = cap * 2 - 1 deq.tail = deq.count deq.head = 0 proc addFirst*[T](deq: var Deque[T], item: T) = ## Add an `item` to the beginning of the `deq`. ## ## See also: ## * `addLast proc <#addLast,Deque[T],T>`_ ## * `peekFirst proc <#peekFirst,Deque[T]>`_ ## * `peekLast proc <#peekLast,Deque[T]>`_ ## * `popFirst proc <#popFirst,Deque[T]>`_ ## * `popLast proc <#popLast,Deque[T]>`_ runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addFirst(10*i) assert $a == "[50, 40, 30, 20, 10]" expandIfNeeded(deq) inc deq.count deq.head = (deq.head - 1) and deq.mask deq.data[deq.head] = item proc addLast*[T](deq: var Deque[T], item: T) = ## Add an `item` to the end of the `deq`. ## ## See also: ## * `addFirst proc <#addFirst,Deque[T],T>`_ ## * `peekFirst proc <#peekFirst,Deque[T]>`_ ## * `peekLast proc <#peekLast,Deque[T]>`_ ## * `popFirst proc <#popFirst,Deque[T]>`_ ## * `popLast proc <#popLast,Deque[T]>`_ runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addLast(10*i) assert $a == "[10, 20, 30, 40, 50]" expandIfNeeded(deq) inc deq.count deq.data[deq.tail] = item deq.tail = (deq.tail + 1) and deq.mask proc peekFirst*[T](deq: Deque[T]): T {.inline.} = ## Returns the first element of `deq`, but does not remove it from the deque. ## ## See also: ## * `addFirst proc <#addFirst,Deque[T],T>`_ ## * `addLast proc <#addLast,Deque[T],T>`_ ## * `peekLast proc <#peekLast,Deque[T]>`_ ## * `popFirst proc <#popFirst,Deque[T]>`_ ## * `popLast proc <#popLast,Deque[T]>`_ runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addLast(10*i) assert $a == "[10, 20, 30, 40, 50]" assert a.peekFirst == 10 assert len(a) == 5 emptyCheck(deq) result = deq.data[deq.head] proc peekLast*[T](deq: Deque[T]): T {.inline.} = ## Returns the last element of `deq`, but does not remove it from the deque. ## ## See also: ## * `addFirst proc <#addFirst,Deque[T],T>`_ ## * `addLast proc <#addLast,Deque[T],T>`_ ## * `peekFirst proc <#peekFirst,Deque[T]>`_ ## * `popFirst proc <#popFirst,Deque[T]>`_ ## * `popLast proc <#popLast,Deque[T]>`_ runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addLast(10*i) assert $a == "[10, 20, 30, 40, 50]" assert a.peekLast == 50 assert len(a) == 5 emptyCheck(deq) result = deq.data[(deq.tail - 1) and deq.mask] proc peekFirst*[T](deq: var Deque[T]): var T {.inline, since: (1, 3).} = ## Returns the first element of `deq`, but does not remove it from the deque. ## ## See also: ## * `addFirst proc <#addFirst,Deque[T],T>`_ ## * `addLast proc <#addLast,Deque[T],T>`_ ## * `peekLast proc <#peekLast,Deque[T]>`_ ## * `popFirst proc <#popFirst,Deque[T]>`_ ## * `popLast proc <#popLast,Deque[T]>`_ runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addLast(10*i) assert $a == "[10, 20, 30, 40, 50]" assert a.peekFirst == 10 assert len(a) == 5 emptyCheck(deq) result = deq.data[deq.head] proc peekLast*[T](deq: var Deque[T]): var T {.inline, since: (1, 3).} = ## Returns the last element of `deq`, but does not remove it from the deque. ## ## See also: ## * `addFirst proc <#addFirst,Deque[T],T>`_ ## * `addLast proc <#addLast,Deque[T],T>`_ ## * `peekFirst proc <#peekFirst,Deque[T]>`_ ## * `popFirst proc <#popFirst,Deque[T]>`_ ## * `popLast proc <#popLast,Deque[T]>`_ runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addLast(10*i) assert $a == "[10, 20, 30, 40, 50]" assert a.peekLast == 50 assert len(a) == 5 emptyCheck(deq) result = deq.data[(deq.tail - 1) and deq.mask] template destroy(x: untyped) = reset(x) proc popFirst*[T](deq: var Deque[T]): T {.inline, discardable.} = ## Remove and returns the first element of the `deq`. ## ## See also: ## * `addFirst proc <#addFirst,Deque[T],T>`_ ## * `addLast proc <#addLast,Deque[T],T>`_ ## * `peekFirst proc <#peekFirst,Deque[T]>`_ ## * `peekLast proc <#peekLast,Deque[T]>`_ ## * `popLast proc <#popLast,Deque[T]>`_ ## * `clear proc <#clear,Deque[T]>`_ ## * `shrink proc <#shrink,Deque[T],int,int>`_ runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addLast(10*i) assert $a == "[10, 20, 30, 40, 50]" assert a.popFirst == 10 assert $a == "[20, 30, 40, 50]" emptyCheck(deq) dec deq.count result = deq.data[deq.head] destroy(deq.data[deq.head]) deq.head = (deq.head + 1) and deq.mask proc popLast*[T](deq: var Deque[T]): T {.inline, discardable.} = ## Remove and returns the last element of the `deq`. ## ## See also: ## * `addFirst proc <#addFirst,Deque[T],T>`_ ## * `addLast proc <#addLast,Deque[T],T>`_ ## * `peekFirst proc <#peekFirst,Deque[T]>`_ ## * `peekLast proc <#peekLast,Deque[T]>`_ ## * `popFirst proc <#popFirst,Deque[T]>`_ ## * `clear proc <#clear,Deque[T]>`_ ## * `shrink proc <#shrink,Deque[T],int,int>`_ runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addLast(10*i) assert $a == "[10, 20, 30, 40, 50]" assert a.popLast == 50 assert $a == "[10, 20, 30, 40]" emptyCheck(deq) dec deq.count deq.tail = (deq.tail - 1) and deq.mask result = deq.data[deq.tail] destroy(deq.data[deq.tail]) proc clear*[T](deq: var Deque[T]) {.inline.} = ## Resets the deque so that it is empty. ## ## See also: ## * `clear proc <#clear,Deque[T]>`_ ## * `shrink proc <#shrink,Deque[T],int,int>`_ runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addFirst(10*i) assert $a == "[50, 40, 30, 20, 10]" clear(a) assert len(a) == 0 for el in mitems(deq): destroy(el) deq.count = 0 deq.tail = deq.head proc shrink*[T](deq: var Deque[T], fromFirst = 0, fromLast = 0) = ## Remove `fromFirst` elements from the front of the deque and ## `fromLast` elements from the back. ## ## If the supplied number of elements exceeds the total number of elements ## in the deque, the deque will remain empty. ## ## See also: ## * `clear proc <#clear,Deque[T]>`_ runnableExamples: var a = initDeque[int]() for i in 1 .. 5: a.addFirst(10*i) assert $a == "[50, 40, 30, 20, 10]" a.shrink(fromFirst = 2, fromLast = 1) assert $a == "[30, 20]" if fromFirst + fromLast > deq.count: clear(deq) return for i in 0 ..< fromFirst: destroy(deq.data[deq.head]) deq.head = (deq.head + 1) and deq.mask for i in 0 ..< fromLast: destroy(deq.data[deq.tail]) deq.tail = (deq.tail - 1) and deq.mask dec deq.count, fromFirst + fromLast proc `$`*[T](deq: Deque[T]): string = ## Turn a deque into its string representation. result = "[" for x in deq: if result.len > 1: result.add(", ") result.addQuoted(x) result.add("]") when isMainModule: var deq = initDeque[int](1) deq.addLast(4) deq.addFirst(9) deq.addFirst(123) var first = deq.popFirst() deq.addLast(56) assert(deq.peekLast() == 56) deq.addLast(6) assert(deq.peekLast() == 6) var second = deq.popFirst() deq.addLast(789) assert(deq.peekLast() == 789) assert first == 123 assert second == 9 assert($deq == "[4, 56, 6, 789]") assert deq == [4, 56, 6, 789].toDeque assert deq[0] == deq.peekFirst and deq.peekFirst == 4 #assert deq[^1] == deq.peekLast and deq.peekLast == 789 deq[0] = 42 deq[deq.len - 1] = 7 assert 6 in deq and 789 notin deq assert deq.find(6) >= 0 assert deq.find(789) < 0 block: var d = initDeque[int](1) d.addLast 7 d.addLast 8 d.addLast 10 d.addFirst 5 d.addFirst 2 d.addFirst 1 d.addLast 20 d.shrink(fromLast = 2) doAssert($d == "[1, 2, 5, 7, 8]") d.shrink(2, 1) doAssert($d == "[5, 7]") d.shrink(2, 2) doAssert d.len == 0 for i in -2 .. 10: if i in deq: assert deq.contains(i) and deq.find(i) >= 0 else: assert(not deq.contains(i) and deq.find(i) < 0) when compileOption("boundChecks"): try: echo deq[99] assert false except IndexDefect: discard try: assert deq.len == 4 for i in 0 ..< 5: deq.popFirst() assert false except IndexDefect: discard # grabs some types of resize error. deq = initDeque[int]() for i in 1 .. 4: deq.addLast i deq.popFirst() deq.popLast() for i in 5 .. 8: deq.addFirst i assert $deq == "[8, 7, 6, 5, 2, 3]" # Similar to proc from the documentation example proc foo(a, b: Positive) = # assume random positive values for `a` and `b`. var deq = initDeque[int]() assert deq.len == 0 for i in 1 .. a: deq.addLast i if b < deq.len: # checking before indexed access. assert deq[b] == b + 1 # The following two lines don't need any checking on access due to the logic # of the program, but that would not be the case if `a` could be 0. assert deq.peekFirst == 1 assert deq.peekLast == a while deq.len > 0: # checking if the deque is empty assert deq.popFirst() > 0 #foo(0,0) foo(8, 5) foo(10, 9) foo(1, 1) foo(2, 1) foo(1, 5) foo(3, 2) import sets block t13310: proc main() = var q = initDeque[HashSet[int16]](2) q.addFirst([1'i16].toHashSet) q.addFirst([2'i16].toHashSet) q.addFirst([3'i16].toHashSet) assert $q == "[{3}, {2}, {1}]" static: main()