# # # Nim's Runtime Library # (c) Copyright 2012 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## Implementation of: ## * `singly linked lists <#SinglyLinkedList>`_ ## * `doubly linked lists <#DoublyLinkedList>`_ ## * `singly linked rings <#SinglyLinkedRing>`_ (circular lists) ## * `doubly linked rings <#DoublyLinkedRing>`_ (circular lists) ## ## # Basic Usage ## Because it makes no sense to do otherwise, the `next` and `prev` pointers ## are not hidden from you and can be manipulated directly for efficiency. ## ## Lists runnableExamples: var l = initDoublyLinkedList[int]() a = newDoublyLinkedNode[int](3) b = newDoublyLinkedNode[int](7) c = newDoublyLinkedNode[int](9) l.add(a) l.add(b) l.prepend(c) assert a.next == b assert a.prev == c assert c.next == a assert c.next.next == b assert c.prev == nil assert b.next == nil ## ## Rings runnableExamples: var l = initSinglyLinkedRing[int]() a = newSinglyLinkedNode[int](3) b = newSinglyLinkedNode[int](7) c = newSinglyLinkedNode[int](9) l.add(a) l.add(b) l.prepend(c) assert c.next == a assert a.next == b assert c.next.next == b assert b.next == c assert c.next.next.next == c ## # See also ## * `deques module `_ for double-ended queues ## * `sharedlist module `_ for shared singly-linked lists import std/private/since when not defined(nimHasCursor): {.pragma: cursor.} type DoublyLinkedNodeObj*[T] = object ## \ ## A node a doubly linked list consists of. ## ## It consists of a `value` field, and pointers to `next` and `prev`. next*: (ref DoublyLinkedNodeObj[T]) prev* {.cursor.}: ref DoublyLinkedNodeObj[T] value*: T DoublyLinkedNode*[T] = ref DoublyLinkedNodeObj[T] SinglyLinkedNodeObj*[T] = object ## \ ## A node a singly linked list consists of. ## ## It consists of a `value` field, and a pointer to `next`. next*: (ref SinglyLinkedNodeObj[T]) value*: T SinglyLinkedNode*[T] = ref SinglyLinkedNodeObj[T] SinglyLinkedList*[T] = object ## \ ## A singly linked list. ## ## Use `initSinglyLinkedList proc <#initSinglyLinkedList>`_ to create ## a new empty list. head*: (SinglyLinkedNode[T]) tail* {.cursor.}: SinglyLinkedNode[T] DoublyLinkedList*[T] = object ## \ ## A doubly linked list. ## ## Use `initDoublyLinkedList proc <#initDoublyLinkedList>`_ to create ## a new empty list. head*: (DoublyLinkedNode[T]) tail* {.cursor.}: DoublyLinkedNode[T] SinglyLinkedRing*[T] = object ## \ ## A singly linked ring. ## ## Use `initSinglyLinkedRing proc <#initSinglyLinkedRing>`_ to create ## a new empty ring. head*: (SinglyLinkedNode[T]) tail* {.cursor.}: SinglyLinkedNode[T] DoublyLinkedRing*[T] = object ## \ ## A doubly linked ring. ## ## Use `initDoublyLinkedRing proc <#initDoublyLinkedRing>`_ to create ## a new empty ring. head*: DoublyLinkedNode[T] SomeLinkedList*[T] = SinglyLinkedList[T] | DoublyLinkedList[T] SomeLinkedRing*[T] = SinglyLinkedRing[T] | DoublyLinkedRing[T] SomeLinkedCollection*[T] = SomeLinkedList[T] | SomeLinkedRing[T] SomeLinkedNode*[T] = SinglyLinkedNode[T] | DoublyLinkedNode[T] proc initSinglyLinkedList*[T](): SinglyLinkedList[T] = ## Creates a new singly linked list that is empty. runnableExamples: var a = initSinglyLinkedList[int]() discard proc initDoublyLinkedList*[T](): DoublyLinkedList[T] = ## Creates a new doubly linked list that is empty. runnableExamples: var a = initDoublyLinkedList[int]() discard proc initSinglyLinkedRing*[T](): SinglyLinkedRing[T] = ## Creates a new singly linked ring that is empty. runnableExamples: var a = initSinglyLinkedRing[int]() discard proc initDoublyLinkedRing*[T](): DoublyLinkedRing[T] = ## Creates a new doubly linked ring that is empty. runnableExamples: var a = initDoublyLinkedRing[int]() discard proc newDoublyLinkedNode*[T](value: T): (DoublyLinkedNode[T]) = ## Creates a new doubly linked node with the given `value`. runnableExamples: var n = newDoublyLinkedNode[int](5) assert n.value == 5 new(result) result.value = value proc newSinglyLinkedNode*[T](value: T): (SinglyLinkedNode[T]) = ## Creates a new singly linked node with the given `value`. runnableExamples: var n = newSinglyLinkedNode[int](5) assert n.value == 5 new(result) result.value = value func toSinglyLinkedList*[T](elems: openArray[T]): SinglyLinkedList[T] {.since: (1, 5, 1).} = ## Creates a new `SinglyLinkedList` from members of `elems`. runnableExamples: import std/sequtils let a = [1, 2, 3, 4, 5].toSinglyLinkedList assert a.toSeq == [1, 2, 3, 4, 5] result = initSinglyLinkedList[T]() for elem in elems.items: result.add(elem) func toDoublyLinkedList*[T](elems: openArray[T]): DoublyLinkedList[T] {.since: (1, 5, 1).} = ## Creates a new `DoublyLinkedList` from members of `elems`. runnableExamples: import std/sequtils let a = [1, 2, 3, 4, 5].toDoublyLinkedList assert a.toSeq == [1, 2, 3, 4, 5] result = initDoublyLinkedList[T]() for elem in elems.items: result.add(elem) template itemsListImpl() {.dirty.} = var it = L.head while it != nil: yield it.value it = it.next template itemsRingImpl() {.dirty.} = var it = L.head if it != nil: while true: yield it.value it = it.next if it == L.head: break iterator items*[T](L: SomeLinkedList[T]): T = ## Yields every value of `L`. ## ## See also: ## * `mitems iterator <#mitems.i,SomeLinkedList[T]>`_ ## * `nodes iterator <#nodes.i,SomeLinkedList[T]>`_ runnableExamples: from std/sugar import collect from std/sequtils import toSeq let a = collect(initSinglyLinkedList): for i in 1..3: 10*i doAssert toSeq(items(a)) == toSeq(a) doAssert toSeq(a) == @[10, 20, 30] itemsListImpl() iterator items*[T](L: SomeLinkedRing[T]): T = ## Yields every value of `L`. ## ## See also: ## * `mitems iterator <#mitems.i,SomeLinkedRing[T]>`_ ## * `nodes iterator <#nodes.i,SomeLinkedRing[T]>`_ runnableExamples: from std/sugar import collect from std/sequtils import toSeq let a = collect(initSinglyLinkedRing): for i in 1 .. 3: 10 * i doAssert toSeq(items(a)) == toSeq(a) doAssert toSeq(a) == @[10, 20, 30] itemsRingImpl() iterator mitems*[T](L: var SomeLinkedList[T]): var T = ## Yields every value of `L` so that you can modify it. ## ## See also: ## * `items iterator <#items.i,SomeLinkedList[T]>`_ ## * `nodes iterator <#nodes.i,SomeLinkedList[T]>`_ runnableExamples: var a = initSinglyLinkedList[int]() for i in 1 .. 5: a.add(10 * i) assert $a == "[10, 20, 30, 40, 50]" for x in mitems(a): x = 5 * x - 1 assert $a == "[49, 99, 149, 199, 249]" itemsListImpl() iterator mitems*[T](L: var SomeLinkedRing[T]): var T = ## Yields every value of `L` so that you can modify it. ## ## See also: ## * `items iterator <#items.i,SomeLinkedRing[T]>`_ ## * `nodes iterator <#nodes.i,SomeLinkedRing[T]>`_ runnableExamples: var a = initSinglyLinkedRing[int]() for i in 1 .. 5: a.add(10 * i) assert $a == "[10, 20, 30, 40, 50]" for x in mitems(a): x = 5 * x - 1 assert $a == "[49, 99, 149, 199, 249]" itemsRingImpl() iterator nodes*[T](L: SomeLinkedList[T]): SomeLinkedNode[T] = ## Iterates over every node of `x`. Removing the current node from the ## list during traversal is supported. ## ## See also: ## * `items iterator <#items.i,SomeLinkedList[T]>`_ ## * `mitems iterator <#mitems.i,SomeLinkedList[T]>`_ runnableExamples: var a = initDoublyLinkedList[int]() for i in 1 .. 5: a.add(10 * i) assert $a == "[10, 20, 30, 40, 50]" for x in nodes(a): if x.value == 30: a.remove(x) else: x.value = 5 * x.value - 1 assert $a == "[49, 99, 199, 249]" var it = L.head while it != nil: var nxt = it.next yield it it = nxt iterator nodes*[T](L: SomeLinkedRing[T]): SomeLinkedNode[T] = ## Iterates over every node of `x`. Removing the current node from the ## list during traversal is supported. ## ## See also: ## * `items iterator <#items.i,SomeLinkedRing[T]>`_ ## * `mitems iterator <#mitems.i,SomeLinkedRing[T]>`_ runnableExamples: var a = initDoublyLinkedRing[int]() for i in 1 .. 5: a.add(10 * i) assert $a == "[10, 20, 30, 40, 50]" for x in nodes(a): if x.value == 30: a.remove(x) else: x.value = 5 * x.value - 1 assert $a == "[49, 99, 199, 249]" var it = L.head if it != nil: while true: var nxt = it.next yield it it = nxt if it == L.head: break proc `$`*[T](L: SomeLinkedCollection[T]): string = ## Turns a list into its string representation for logging and printing. result = "[" for x in nodes(L): if result.len > 1: result.add(", ") result.addQuoted(x.value) result.add("]") proc find*[T](L: SomeLinkedCollection[T], value: T): SomeLinkedNode[T] = ## Searches in the list for a value. Returns `nil` if the value does not ## exist. ## ## See also: ## * `contains proc <#contains,SomeLinkedCollection[T],T>`_ runnableExamples: var a = initSinglyLinkedList[int]() a.add(9) a.add(8) assert a.find(9).value == 9 assert a.find(1) == nil for x in nodes(L): if x.value == value: return x proc contains*[T](L: SomeLinkedCollection[T], value: T): bool {.inline.} = ## Searches in the list for a value. Returns `false` if the value does not ## exist, `true` otherwise. ## ## See also: ## * `find proc <#find,SomeLinkedCollection[T],T>`_ runnableExamples: var a = initSinglyLinkedList[int]() a.add(9) a.add(8) assert a.contains(9) assert 8 in a assert(not a.contains(1)) assert 2 notin a result = find(L, value) != nil proc prepend*[T: SomeLinkedList](a: var T, b: T) {.since: (1, 5, 1).} = ## Prepends a shallow copy of `b` to the beginning of `a`. ## ## See also: ## * `prependMoved proc <#prependMoved,SinglyLinkedList[T],SinglyLinkedList[T]>`_ ## * `prependMoved proc <#prependMoved,DoublyLinkedList[T],DoublyLinkedList[T]>`_ ## for moving the second list instead of copying runnableExamples: import std/sequtils var a = [4, 5].toSinglyLinkedList let b = [1, 2, 3].toSinglyLinkedList a.prepend b assert a.toSeq == [1, 2, 3, 4, 5] assert b.toSeq == [1, 2, 3] a.prepend a assert a.toSeq == [1, 2, 3, 4, 5, 1, 2, 3, 4, 5] var tmp = b.copy tmp.addMoved a a = tmp proc prependMoved*[T: SomeLinkedList](a, b: var T) {.since: (1, 5, 1).} = ## Moves `b` before the head of `a`. Efficiency: O(1). ## Note that `b` becomes empty after the operation unless it has the same address as `a`. ## Self-prepending results in a cycle. ## ## See also: ## * `prepend proc <#prepend,T,T>`_ ## for prepending a copy of a list runnableExamples: import std/[sequtils, enumerate, sugar] var a = [4, 5].toSinglyLinkedList b = [1, 2, 3].toSinglyLinkedList c = [0, 1].toSinglyLinkedList a.prependMoved b assert a.toSeq == [1, 2, 3, 4, 5] assert b.toSeq == [] c.prependMoved c let s = collect: for i, ci in enumerate(c): if i == 6: break ci assert s == [0, 1, 0, 1, 0, 1] b.addMoved a when defined(js): # XXX: swap broken in js; bug #16771 (b, a) = (a, b) else: swap a, b proc add*[T](L: var SinglyLinkedList[T], n: SinglyLinkedNode[T]) {.inline.} = ## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1). ## ## See also: ## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value ## * `prepend proc <#prepend,SinglyLinkedList[T],SinglyLinkedNode[T]>`_ ## for prepending a node ## * `prepend proc <#prepend,SinglyLinkedList[T],T>`_ for prepending a value runnableExamples: var a = initSinglyLinkedList[int]() n = newSinglyLinkedNode[int](9) a.add(n) assert a.contains(9) n.next = nil if L.tail != nil: assert(L.tail.next == nil) L.tail.next = n L.tail = n if L.head == nil: L.head = n proc add*[T](L: var SinglyLinkedList[T], value: T) {.inline.} = ## Appends (adds to the end) a value to `L`. Efficiency: O(1). ## ## See also: ## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value ## * `prepend proc <#prepend,SinglyLinkedList[T],SinglyLinkedNode[T]>`_ ## for prepending a node ## * `prepend proc <#prepend,SinglyLinkedList[T],T>`_ for prepending a value runnableExamples: var a = initSinglyLinkedList[int]() a.add(9) a.add(8) assert a.contains(9) add(L, newSinglyLinkedNode(value)) proc prepend*[T](L: var SinglyLinkedList[T], n: SinglyLinkedNode[T]) {.inline.} = ## Prepends (adds to the beginning) a node to `L`. Efficiency: O(1). ## ## See also: ## * `add proc <#add,SinglyLinkedList[T],SinglyLinkedNode[T]>`_ ## for appending a node ## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value ## * `prepend proc <#prepend,SinglyLinkedList[T],T>`_ for prepending a value runnableExamples: var a = initSinglyLinkedList[int]() n = newSinglyLinkedNode[int](9) a.prepend(n) assert a.contains(9) n.next = L.head L.head = n if L.tail == nil: L.tail = n proc prepend*[T](L: var SinglyLinkedList[T], value: T) {.inline.} = ## Prepends (adds to the beginning) a node to `L`. Efficiency: O(1). ## ## See also: ## * `add proc <#add,SinglyLinkedList[T],SinglyLinkedNode[T]>`_ ## for appending a node ## * `add proc <#add,SinglyLinkedList[T],T>`_ for appending a value ## * `prepend proc <#prepend,SinglyLinkedList[T],SinglyLinkedNode[T]>`_ ## for prepending a node runnableExamples: var a = initSinglyLinkedList[int]() a.prepend(9) a.prepend(8) assert a.contains(9) prepend(L, newSinglyLinkedNode(value)) func copy*[T](a: SinglyLinkedList[T]): SinglyLinkedList[T] {.since: (1, 5, 1).} = ## Creates a shallow copy of `a`. runnableExamples: import std/sequtils type Foo = ref object x: int var f = Foo(x: 1) a = [f].toSinglyLinkedList let b = a.copy a.add [f].toSinglyLinkedList assert a.toSeq == [f, f] assert b.toSeq == [f] # b isn't modified... f.x = 42 assert a.head.value.x == 42 assert b.head.value.x == 42 # ... but the elements are not deep copied let c = [1, 2, 3].toSinglyLinkedList assert $c == $c.copy result = initSinglyLinkedList[T]() for x in a.items: result.add(x) proc addMoved*[T](a, b: var SinglyLinkedList[T]) {.since: (1, 5, 1).} = ## Moves `b` to the end of `a`. Efficiency: O(1). ## Note that `b` becomes empty after the operation unless it has the same address as `a`. ## Self-adding results in a cycle. ## ## See also: ## * `add proc <#add,T,T>`_ ## for adding a copy of a list runnableExamples: import std/[sequtils, enumerate, sugar] var a = [1, 2, 3].toSinglyLinkedList b = [4, 5].toSinglyLinkedList c = [0, 1].toSinglyLinkedList a.addMoved b assert a.toSeq == [1, 2, 3, 4, 5] assert b.toSeq == [] c.addMoved c let s = collect: for i, ci in enumerate(c): if i == 6: break ci assert s == [0, 1, 0, 1, 0, 1] if a.tail != nil: a.tail.next = b.head a.tail = b.tail if a.head == nil: a.head = b.head if a.addr != b.addr: b.head = nil b.tail = nil proc add*[T](L: var DoublyLinkedList[T], n: DoublyLinkedNode[T]) = ## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1). ## ## See also: ## * `add proc <#add,DoublyLinkedList[T],T>`_ for appending a value ## * `prepend proc <#prepend,DoublyLinkedList[T],DoublyLinkedNode[T]>`_ ## for prepending a node ## * `prepend proc <#prepend,DoublyLinkedList[T],T>`_ for prepending a value ## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_ ## for removing a node runnableExamples: var a = initDoublyLinkedList[int]() n = newDoublyLinkedNode[int](9) a.add(n) assert a.contains(9) n.next = nil n.prev = L.tail if L.tail != nil: assert(L.tail.next == nil) L.tail.next = n L.tail = n if L.head == nil: L.head = n proc add*[T](L: var DoublyLinkedList[T], value: T) = ## Appends (adds to the end) a value to `L`. Efficiency: O(1). ## ## See also: ## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_ ## for appending a node ## * `prepend proc <#prepend,DoublyLinkedList[T],DoublyLinkedNode[T]>`_ ## for prepending a node ## * `prepend proc <#prepend,DoublyLinkedList[T],T>`_ for prepending a value ## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_ ## for removing a node runnableExamples: var a = initDoublyLinkedList[int]() a.add(9) a.add(8) assert a.contains(9) add(L, newDoublyLinkedNode(value)) proc prepend*[T](L: var DoublyLinkedList[T], n: DoublyLinkedNode[T]) = ## Prepends (adds to the beginning) a node `n` to `L`. Efficiency: O(1). ## ## See also: ## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_ ## for appending a node ## * `add proc <#add,DoublyLinkedList[T],T>`_ for appending a value ## * `prepend proc <#prepend,DoublyLinkedList[T],T>`_ for prepending a value ## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_ ## for removing a node runnableExamples: var a = initDoublyLinkedList[int]() n = newDoublyLinkedNode[int](9) a.prepend(n) assert a.contains(9) n.prev = nil n.next = L.head if L.head != nil: assert(L.head.prev == nil) L.head.prev = n L.head = n if L.tail == nil: L.tail = n proc prepend*[T](L: var DoublyLinkedList[T], value: T) = ## Prepends (adds to the beginning) a value to `L`. Efficiency: O(1). ## ## See also: ## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_ ## for appending a node ## * `add proc <#add,DoublyLinkedList[T],T>`_ for appending a value ## * `prepend proc <#prepend,DoublyLinkedList[T],DoublyLinkedNode[T]>`_ ## for prepending a node ## * `remove proc <#remove,DoublyLinkedList[T],DoublyLinkedNode[T]>`_ ## for removing a node runnableExamples: var a = initDoublyLinkedList[int]() a.prepend(9) a.prepend(8) assert a.contains(9) prepend(L, newDoublyLinkedNode(value)) func copy*[T](a: DoublyLinkedList[T]): DoublyLinkedList[T] {.since: (1, 5, 1).} = ## Creates a shallow copy of `a`. runnableExamples: type Foo = ref object x: int var f = Foo(x: 1) let a = [f].toDoublyLinkedList b = a.copy f.x = 42 assert a.head.value.x == 42 assert b.head.value.x == 42 let c = [1, 2, 3].toDoublyLinkedList assert $c == $c.copy result = initDoublyLinkedList[T]() for x in a.items: result.add(x) proc addMoved*[T](a, b: var DoublyLinkedList[T]) {.since: (1, 5, 1).} = ## Moves `b` to the end of `a`. Efficiency: O(1). ## Note that `b` becomes empty after the operation unless it has the same address as `a`. ## Self-adding results in a cycle. ## ## See also: ## * `add proc <#add,T,T>`_ ## for adding a copy of a list runnableExamples: import std/[sequtils, enumerate, sugar] var a = [1, 2, 3].toDoublyLinkedList b = [4, 5].toDoublyLinkedList c = [0, 1].toDoublyLinkedList a.addMoved b assert a.toSeq == [1, 2, 3, 4, 5] assert b.toSeq == [] c.addMoved c let s = collect: for i, ci in enumerate(c): if i == 6: break ci assert s == [0, 1, 0, 1, 0, 1] if b.head != nil: b.head.prev = a.tail if a.tail != nil: a.tail.next = b.head a.tail = b.tail if a.head == nil: a.head = b.head if a.addr != b.addr: b.head = nil b.tail = nil proc add*[T: SomeLinkedList](a: var T, b: T) {.since: (1, 5, 1).} = ## Appends a shallow copy of `b` to the end of `a`. ## ## See also: ## * `addMoved proc <#addMoved,SinglyLinkedList[T],SinglyLinkedList[T]>`_ ## * `addMoved proc <#addMoved,DoublyLinkedList[T],DoublyLinkedList[T]>`_ ## for moving the second list instead of copying runnableExamples: import std/sequtils var a = [1, 2, 3].toSinglyLinkedList let b = [4, 5].toSinglyLinkedList a.add b assert a.toSeq == [1, 2, 3, 4, 5] assert b.toSeq == [4, 5] a.add a assert a.toSeq == [1, 2, 3, 4, 5, 1, 2, 3, 4, 5] var tmp = b.copy a.addMoved tmp proc remove*[T](L: var SinglyLinkedList[T], n: SinglyLinkedNode[T]): bool {.discardable.} = ## Removes a node `n` from `L`. ## Returns `true` if `n` was found in `L`. ## Efficiency: O(n); the list is traversed until `n` is found. ## Attempting to remove an element not contained in the list is a no-op. ## When the list is cyclic, the cycle is preserved after removal. runnableExamples: import std/[sequtils, enumerate, sugar] var a = [0, 1, 2].toSinglyLinkedList let n = a.head.next doAssert n.value == 1 doAssert a.remove(n) == true doAssert a.toSeq == [0, 2] doAssert a.remove(n) == false doAssert a.toSeq == [0, 2] a.addMoved a # cycle: [0, 2, 0, 2, ...] a.remove a.head let s = collect: for i, ai in enumerate(a): if i == 4: break ai doAssert s == [2, 2, 2, 2] if n == L.head: L.head = n.next if L.tail.next == n: L.tail.next = L.head # restore cycle else: var prev = L.head while prev.next != n and prev.next != nil: prev = prev.next if prev.next == nil: return false prev.next = n.next true proc remove*[T](L: var DoublyLinkedList[T], n: DoublyLinkedNode[T]) = ## Removes a node `n` from `L`. Efficiency: O(1). ## This function assumes, for the sake of efficiency, that `n` is contained in `L`, ## otherwise the effects are undefined. ## When the list is cyclic, the cycle is preserved after removal. runnableExamples: import std/[sequtils, enumerate, sugar] var a = [0, 1, 2].toSinglyLinkedList let n = a.head.next doAssert n.value == 1 a.remove n doAssert a.toSeq == [0, 2] a.remove n doAssert a.toSeq == [0, 2] a.addMoved a # cycle: [0, 2, 0, 2, ...] a.remove a.head let s = collect: for i, ai in enumerate(a): if i == 4: break ai doAssert s == [2, 2, 2, 2] if n == L.tail: L.tail = n.prev if n == L.head: L.head = n.next if n.next != nil: n.next.prev = n.prev if n.prev != nil: n.prev.next = n.next proc add*[T](L: var SinglyLinkedRing[T], n: SinglyLinkedNode[T]) = ## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1). ## ## See also: ## * `add proc <#add,SinglyLinkedRing[T],T>`_ for appending a value ## * `prepend proc <#prepend,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_ ## for prepending a node ## * `prepend proc <#prepend,SinglyLinkedRing[T],T>`_ for prepending a value runnableExamples: var a = initSinglyLinkedRing[int]() n = newSinglyLinkedNode[int](9) a.add(n) assert a.contains(9) if L.head != nil: n.next = L.head assert(L.tail != nil) L.tail.next = n L.tail = n else: n.next = n L.head = n L.tail = n proc add*[T](L: var SinglyLinkedRing[T], value: T) = ## Appends (adds to the end) a value to `L`. Efficiency: O(1). ## ## See also: ## * `add proc <#add,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_ ## for appending a node ## * `prepend proc <#prepend,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_ ## for prepending a node ## * `prepend proc <#prepend,SinglyLinkedRing[T],T>`_ for prepending a value runnableExamples: var a = initSinglyLinkedRing[int]() a.add(9) a.add(8) assert a.contains(9) add(L, newSinglyLinkedNode(value)) proc prepend*[T](L: var SinglyLinkedRing[T], n: SinglyLinkedNode[T]) = ## Prepends (adds to the beginning) a node `n` to `L`. Efficiency: O(1). ## ## See also: ## * `add proc <#add,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_ ## for appending a node ## * `add proc <#add,SinglyLinkedRing[T],T>`_ for appending a value ## * `prepend proc <#prepend,SinglyLinkedRing[T],T>`_ for prepending a value runnableExamples: var a = initSinglyLinkedRing[int]() n = newSinglyLinkedNode[int](9) a.prepend(n) assert a.contains(9) if L.head != nil: n.next = L.head assert(L.tail != nil) L.tail.next = n else: n.next = n L.tail = n L.head = n proc prepend*[T](L: var SinglyLinkedRing[T], value: T) = ## Prepends (adds to the beginning) a value to `L`. Efficiency: O(1). ## ## See also: ## * `add proc <#add,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_ ## for appending a node ## * `add proc <#add,SinglyLinkedRing[T],T>`_ for appending a value ## * `prepend proc <#prepend,SinglyLinkedRing[T],SinglyLinkedNode[T]>`_ ## for prepending a node runnableExamples: var a = initSinglyLinkedRing[int]() a.prepend(9) a.prepend(8) assert a.contains(9) prepend(L, newSinglyLinkedNode(value)) proc add*[T](L: var DoublyLinkedRing[T], n: DoublyLinkedNode[T]) = ## Appends (adds to the end) a node `n` to `L`. Efficiency: O(1). ## ## See also: ## * `add proc <#add,DoublyLinkedRing[T],T>`_ for appending a value ## * `prepend proc <#prepend,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_ ## for prepending a node ## * `prepend proc <#prepend,DoublyLinkedRing[T],T>`_ for prepending a value ## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_ ## for removing a node runnableExamples: var a = initDoublyLinkedRing[int]() n = newDoublyLinkedNode[int](9) a.add(n) assert a.contains(9) if L.head != nil: n.next = L.head n.prev = L.head.prev L.head.prev.next = n L.head.prev = n else: n.prev = n n.next = n L.head = n proc add*[T](L: var DoublyLinkedRing[T], value: T) = ## Appends (adds to the end) a value to `L`. Efficiency: O(1). ## ## See also: ## * `add proc <#add,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_ ## for appending a node ## * `prepend proc <#prepend,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_ ## for prepending a node ## * `prepend proc <#prepend,DoublyLinkedRing[T],T>`_ for prepending a value ## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_ ## for removing a node runnableExamples: var a = initDoublyLinkedRing[int]() a.add(9) a.add(8) assert a.contains(9) add(L, newDoublyLinkedNode(value)) proc prepend*[T](L: var DoublyLinkedRing[T], n: DoublyLinkedNode[T]) = ## Prepends (adds to the beginning) a node `n` to `L`. Efficiency: O(1). ## ## See also: ## * `add proc <#add,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_ ## for appending a node ## * `add proc <#add,DoublyLinkedRing[T],T>`_ for appending a value ## * `prepend proc <#prepend,DoublyLinkedRing[T],T>`_ for prepending a value ## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_ ## for removing a node runnableExamples: var a = initDoublyLinkedRing[int]() n = newDoublyLinkedNode[int](9) a.prepend(n) assert a.contains(9) if L.head != nil: n.next = L.head n.prev = L.head.prev L.head.prev.next = n L.head.prev = n else: n.prev = n n.next = n L.head = n proc prepend*[T](L: var DoublyLinkedRing[T], value: T) = ## Prepends (adds to the beginning) a value to `L`. Efficiency: O(1). ## ## See also: ## * `add proc <#add,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_ ## for appending a node ## * `add proc <#add,DoublyLinkedRing[T],T>`_ for appending a value ## * `prepend proc <#prepend,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_ ## for prepending a node ## * `remove proc <#remove,DoublyLinkedRing[T],DoublyLinkedNode[T]>`_ ## for removing a node runnableExamples: var a = initDoublyLinkedRing[int]() a.prepend(9) a.prepend(8) assert a.contains(9) prepend(L, newDoublyLinkedNode(value)) proc remove*[T](L: var DoublyLinkedRing[T], n: DoublyLinkedNode[T]) = ## Removes `n` from `L`. Efficiency: O(1). runnableExamples: var a = initDoublyLinkedRing[int]() n = newDoublyLinkedNode[int](5) a.add(n) assert 5 in a a.remove(n) assert 5 notin a n.next.prev = n.prev n.prev.next = n.next if n == L.head: var p = L.head.prev if p == L.head: # only one element left: L.head = nil else: L.head = L.head.prev proc append*[T](a: var (SinglyLinkedList[T] | SinglyLinkedRing[T]), b: SinglyLinkedList[T] | SinglyLinkedNode[T] | T) = ## Alias for `a.add(b)`. ## ## See also: ## * `add proc <#add,SinglyLinkedList[T],SinglyLinkedNode[T]>`_ ## * `add proc <#add,SinglyLinkedList[T],T>`_ ## * `add proc <#add,T,T>`_ a.add b proc append*[T](a: var (DoublyLinkedList[T] | DoublyLinkedRing[T]), b: DoublyLinkedList[T] | DoublyLinkedNode[T] | T) = ## Alias for `a.add(b)`. ## ## See also: ## * `add proc <#add,DoublyLinkedList[T],DoublyLinkedNode[T]>`_ ## * `add proc <#add,DoublyLinkedList[T],T>`_ ## * `add proc <#add,T,T>`_ a.add b proc appendMoved*[T: SomeLinkedList](a, b: var T) {.since: (1, 5, 1).} = ## Alias for `a.addMoved(b)`. ## ## See also: ## * `addMoved proc <#addMoved,SinglyLinkedList[T],SinglyLinkedList[T]>`_ ## * `addMoved proc <#addMoved,DoublyLinkedList[T],DoublyLinkedList[T]>`_ a.addMoved b