# # # Nim's Runtime Library # (c) Copyright 2011 Alexander Mitchell-Robinson # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## Although this module has `seq` in its name, it implements operations ## not only for the `seq`:idx: type, but for three built-in container types ## under the `openArray` umbrella: ## * sequences ## * strings ## * array ## ## The `system` module defines several common functions, such as: ## * `newSeq[T]` for creating new sequences of type `T` ## * `@` for converting arrays and strings to sequences ## * `add` for adding new elements to strings and sequences ## * `&` for string and seq concatenation ## * `in` (alias for `contains`) and `notin` for checking if an item is ## in a container ## ## This module builds upon that, providing additional functionality in form of ## procs, iterators and templates inspired by functional programming ## languages. ## ## For functional style programming you have different options at your disposal: ## * the `sugar.collect macro`_ ## * pass an `anonymous proc`_ ## * import the `sugar module`_ and use ## the `=> macro.m,untyped,untyped>`_ ## * use `...It templates<#18>`_ ## (`mapIt<#mapIt.t,typed,untyped>`_, ## `filterIt<#filterIt.t,untyped,untyped>`_, etc.) ## ## Chaining of functions is possible thanks to the ## `method call syntax`_. runnableExamples: import std/sugar # Creating a sequence from 1 to 10, multiplying each member by 2, # keeping only the members which are not divisible by 6. let foo = toSeq(1..10).map(x => x * 2).filter(x => x mod 6 != 0) bar = toSeq(1..10).mapIt(it * 2).filterIt(it mod 6 != 0) baz = collect: for i in 1..10: let j = 2 * i if j mod 6 != 0: j doAssert foo == bar doAssert foo == baz doAssert foo == @[2, 4, 8, 10, 14, 16, 20] doAssert foo.any(x => x > 17) doAssert not bar.allIt(it < 20) doAssert foo.foldl(a + b) == 74 # sum of all members runnableExamples: from std/strutils import join let vowels = @"aeiou" foo = "sequtils is an awesome module" doAssert (vowels is seq[char]) and (vowels == @['a', 'e', 'i', 'o', 'u']) doAssert foo.filterIt(it notin vowels).join == "sqtls s n wsm mdl" ## See also ## ======== ## * `strutils module`_ for common string functions ## * `sugar module`_ for syntactic sugar macros ## * `algorithm module`_ for common generic algorithms ## * `json module`_ for a structure which allows ## heterogeneous members import std/private/since import macros when defined(nimPreviewSlimSystem): import std/assertions when defined(nimHasEffectsOf): {.experimental: "strictEffects".} else: {.pragma: effectsOf.} macro evalOnceAs(expAlias, exp: untyped, letAssigneable: static[bool]): untyped = ## Injects `expAlias` in caller scope, to avoid bugs involving multiple ## substitution in macro arguments such as ## https://github.com/nim-lang/Nim/issues/7187. ## `evalOnceAs(myAlias, myExp)` will behave as `let myAlias = myExp` ## except when `letAssigneable` is false (e.g. to handle openArray) where ## it just forwards `exp` unchanged. expectKind(expAlias, nnkIdent) var val = exp result = newStmtList() # If `exp` is not a symbol we evaluate it once here and then use the temporary # symbol as alias if exp.kind != nnkSym and letAssigneable: val = genSym() result.add(newLetStmt(val, exp)) result.add( newProc(name = genSym(nskTemplate, $expAlias), params = [getType(untyped)], body = val, procType = nnkTemplateDef)) func concat*[T](seqs: varargs[seq[T]]): seq[T] = ## Takes several sequences' items and returns them inside a new sequence. ## All sequences must be of the same type. ## ## **See also:** ## * `distribute func<#distribute,seq[T],Positive>`_ for a reverse ## operation ## runnableExamples: let s1 = @[1, 2, 3] s2 = @[4, 5] s3 = @[6, 7] total = concat(s1, s2, s3) assert total == @[1, 2, 3, 4, 5, 6, 7] var L = 0 for seqitm in items(seqs): inc(L, len(seqitm)) newSeq(result, L) var i = 0 for s in items(seqs): for itm in items(s): result[i] = itm inc(i) func count*[T](s: openArray[T], x: T): int = ## Returns the number of occurrences of the item `x` in the container `s`. ## runnableExamples: let a = @[1, 2, 2, 3, 2, 4, 2] b = "abracadabra" assert count(a, 2) == 4 assert count(a, 99) == 0 assert count(b, 'r') == 2 for itm in items(s): if itm == x: inc result func cycle*[T](s: openArray[T], n: Natural): seq[T] = ## Returns a new sequence with the items of the container `s` repeated ## `n` times. ## `n` must be a non-negative number (zero or more). ## runnableExamples: let s = @[1, 2, 3] total = s.cycle(3) assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3] result = newSeq[T](n * s.len) var o = 0 for x in 0 ..< n: for e in s: result[o] = e inc o proc repeat*[T](x: T, n: Natural): seq[T] = ## Returns a new sequence with the item `x` repeated `n` times. ## `n` must be a non-negative number (zero or more). ## runnableExamples: let total = repeat(5, 3) assert total == @[5, 5, 5] result = newSeq[T](n) for i in 0 ..< n: result[i] = x func deduplicate*[T](s: openArray[T], isSorted: bool = false): seq[T] = ## Returns a new sequence without duplicates. ## ## Setting the optional argument `isSorted` to true (default: false) ## uses a faster algorithm for deduplication. ## runnableExamples: let dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4] dup2 = @["a", "a", "c", "d", "d"] unique1 = deduplicate(dup1) unique2 = deduplicate(dup2, isSorted = true) assert unique1 == @[1, 3, 4, 2, 8] assert unique2 == @["a", "c", "d"] result = @[] if s.len > 0: if isSorted: var prev = s[0] result.add(prev) for i in 1..s.high: if s[i] != prev: prev = s[i] result.add(prev) else: for itm in items(s): if not result.contains(itm): result.add(itm) func minIndex*[T](s: openArray[T]): int {.since: (1, 1).} = ## Returns the index of the minimum value of `s`. ## `T` needs to have a `<` operator. runnableExamples: let a = @[1, 2, 3, 4] b = @[6, 5, 4, 3] c = [2, -7, 8, -5] d = "ziggy" assert minIndex(a) == 0 assert minIndex(b) == 3 assert minIndex(c) == 1 assert minIndex(d) == 2 for i in 1..high(s): if s[i] < s[result]: result = i func maxIndex*[T](s: openArray[T]): int {.since: (1, 1).} = ## Returns the index of the maximum value of `s`. ## `T` needs to have a `<` operator. runnableExamples: let a = @[1, 2, 3, 4] b = @[6, 5, 4, 3] c = [2, -7, 8, -5] d = "ziggy" assert maxIndex(a) == 3 assert maxIndex(b) == 0 assert maxIndex(c) == 2 assert maxIndex(d) == 0 for i in 1..high(s): if s[i] > s[result]: result = i template zipImpl(s1, s2, retType: untyped): untyped = proc zip*[S, T](s1: openArray[S], s2: openArray[T]): retType = ## Returns a new sequence with a combination of the two input containers. ## ## The input containers can be of different types. ## If one container is shorter, the remaining items in the longer container ## are discarded. ## ## **Note**: For Nim 1.0.x and older version, `zip` returned a seq of ## named tuples with fields `a` and `b`. For Nim versions 1.1.x and newer, ## `zip` returns a seq of unnamed tuples. runnableExamples: let short = @[1, 2, 3] long = @[6, 5, 4, 3, 2, 1] words = @["one", "two", "three"] letters = "abcd" zip1 = zip(short, long) zip2 = zip(short, words) assert zip1 == @[(1, 6), (2, 5), (3, 4)] assert zip2 == @[(1, "one"), (2, "two"), (3, "three")] assert zip1[2][0] == 3 assert zip2[1][1] == "two" when (NimMajor, NimMinor) <= (1, 0): let zip3 = zip(long, letters) assert zip3 == @[(a: 6, b: 'a'), (5, 'b'), (4, 'c'), (3, 'd')] assert zip3[0].b == 'a' else: let zip3: seq[tuple[num: int, letter: char]] = zip(long, letters) assert zip3 == @[(6, 'a'), (5, 'b'), (4, 'c'), (3, 'd')] assert zip3[0].letter == 'a' var m = min(s1.len, s2.len) newSeq(result, m) for i in 0 ..< m: result[i] = (s1[i], s2[i]) when (NimMajor, NimMinor) <= (1, 0): zipImpl(s1, s2, seq[tuple[a: S, b: T]]) else: zipImpl(s1, s2, seq[(S, T)]) proc unzip*[S, T](s: openArray[(S, T)]): (seq[S], seq[T]) {.since: (1, 1).} = ## Returns a tuple of two sequences split out from a sequence of 2-field tuples. runnableExamples: let zipped = @[(1, 'a'), (2, 'b'), (3, 'c')] unzipped1 = @[1, 2, 3] unzipped2 = @['a', 'b', 'c'] assert zipped.unzip() == (unzipped1, unzipped2) assert zip(unzipped1, unzipped2).unzip() == (unzipped1, unzipped2) result = (newSeq[S](s.len), newSeq[T](s.len)) for i in 0..`_ func. ## The input sequence `s` can be empty, which will produce ## `num` empty sequences. ## ## If `spread` is false and the length of `s` is not a multiple of `num`, the ## func will max out the first sub-sequence with `1 + len(s) div num` ## entries, leaving the remainder of elements to the last sequence. ## ## On the other hand, if `spread` is true, the func will distribute evenly ## the remainder of the division across all sequences, which makes the result ## more suited to multithreading where you are passing equal sized work units ## to a thread pool and want to maximize core usage. ## runnableExamples: let numbers = @[1, 2, 3, 4, 5, 6, 7] assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]] assert numbers.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]] assert numbers.distribute(6)[0] == @[1, 2] assert numbers.distribute(6)[1] == @[3] if num < 2: result = @[s] return # Create the result and calculate the stride size and the remainder if any. result = newSeq[seq[T]](num) var stride = s.len div num first = 0 last = 0 extra = s.len mod num if extra == 0 or spread == false: # Use an algorithm which overcounts the stride and minimizes reading limits. if extra > 0: inc(stride) for i in 0 ..< num: result[i] = newSeq[T]() for g in first ..< min(s.len, first + stride): result[i].add(s[g]) first += stride else: # Use an undercounting algorithm which *adds* the remainder each iteration. for i in 0 ..< num: last = first + stride if extra > 0: extra -= 1 inc(last) result[i] = newSeq[T]() for g in first ..< last: result[i].add(s[g]) first = last proc map*[T, S](s: openArray[T], op: proc (x: T): S {.closure.}): seq[S] {.inline, effectsOf: op.} = ## Returns a new sequence with the results of the `op` proc applied to every ## item in the container `s`. ## ## Since the input is not modified, you can use it to ## transform the type of the elements in the input container. ## ## Instead of using `map` and `filter`, consider using the `collect` macro ## from the `sugar` module. ## ## **See also:** ## * `sugar.collect macro`_ ## * `mapIt template<#mapIt.t,typed,untyped>`_ ## * `apply proc<#apply,openArray[T],proc(T)_2>`_ for the in-place version ## runnableExamples: let a = @[1, 2, 3, 4] b = map(a, proc(x: int): string = $x) assert b == @["1", "2", "3", "4"] newSeq(result, s.len) for i in 0 ..< s.len: result[i] = op(s[i]) proc apply*[T](s: var openArray[T], op: proc (x: var T) {.closure.}) {.inline, effectsOf: op.} = ## Applies `op` to every item in `s`, modifying it directly. ## ## Note that the container `s` must be declared as a `var`, ## since `s` is modified in-place. ## The parameter function takes a `var T` type parameter. ## ## **See also:** ## * `applyIt template<#applyIt.t,untyped,untyped>`_ ## * `map proc<#map,openArray[T],proc(T)>`_ ## runnableExamples: var a = @["1", "2", "3", "4"] apply(a, proc(x: var string) = x &= "42") assert a == @["142", "242", "342", "442"] for i in 0 ..< s.len: op(s[i]) proc apply*[T](s: var openArray[T], op: proc (x: T): T {.closure.}) {.inline, effectsOf: op.} = ## Applies `op` to every item in `s` modifying it directly. ## ## Note that the container `s` must be declared as a `var` ## and it is required for your input and output types to ## be the same, since `s` is modified in-place. ## The parameter function takes and returns a `T` type variable. ## ## **See also:** ## * `applyIt template<#applyIt.t,untyped,untyped>`_ ## * `map proc<#map,openArray[T],proc(T)>`_ ## runnableExamples: var a = @["1", "2", "3", "4"] apply(a, proc(x: string): string = x & "42") assert a == @["142", "242", "342", "442"] for i in 0 ..< s.len: s[i] = op(s[i]) proc apply*[T](s: openArray[T], op: proc (x: T) {.closure.}) {.inline, since: (1, 3), effectsOf: op.} = ## Same as `apply` but for a proc that does not return anything ## and does not mutate `s` directly. runnableExamples: var message: string apply([0, 1, 2, 3, 4], proc(item: int) = message.addInt item) assert message == "01234" for i in 0 ..< s.len: op(s[i]) iterator filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): T {.effectsOf: pred.} = ## Iterates through a container `s` and yields every item that fulfills the ## predicate `pred` (a function that returns a `bool`). ## ## Instead of using `map` and `filter`, consider using the `collect` macro ## from the `sugar` module. ## ## **See also:** ## * `sugar.collect macro`_ ## * `filter proc<#filter,openArray[T],proc(T)>`_ ## * `filterIt template<#filterIt.t,untyped,untyped>`_ ## runnableExamples: let numbers = @[1, 4, 5, 8, 9, 7, 4] var evens = newSeq[int]() for n in filter(numbers, proc (x: int): bool = x mod 2 == 0): evens.add(n) assert evens == @[4, 8, 4] for i in 0 ..< s.len: if pred(s[i]): yield s[i] proc filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): seq[T] {.inline, effectsOf: pred.} = ## Returns a new sequence with all the items of `s` that fulfill the ## predicate `pred` (a function that returns a `bool`). ## ## Instead of using `map` and `filter`, consider using the `collect` macro ## from the `sugar` module. ## ## **See also:** ## * `sugar.collect macro`_ ## * `filterIt template<#filterIt.t,untyped,untyped>`_ ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_ ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_ for the in-place version ## runnableExamples: let colors = @["red", "yellow", "black"] f1 = filter(colors, proc(x: string): bool = x.len < 6) f2 = filter(colors, proc(x: string): bool = x.contains('y')) assert f1 == @["red", "black"] assert f2 == @["yellow"] result = newSeq[T]() for i in 0 ..< s.len: if pred(s[i]): result.add(s[i]) proc keepIf*[T](s: var seq[T], pred: proc(x: T): bool {.closure.}) {.inline, effectsOf: pred.} = ## Keeps the items in the passed sequence `s` if they fulfill the ## predicate `pred` (a function that returns a `bool`). ## ## Note that `s` must be declared as a `var`. ## ## Similar to the `filter proc<#filter,openArray[T],proc(T)>`_, ## but modifies the sequence directly. ## ## **See also:** ## * `keepItIf template<#keepItIf.t,seq,untyped>`_ ## * `filter proc<#filter,openArray[T],proc(T)>`_ ## runnableExamples: var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1] keepIf(floats, proc(x: float): bool = x > 10) assert floats == @[13.0, 12.5, 10.1] var pos = 0 for i in 0 ..< len(s): if pred(s[i]): if pos != i: when defined(gcDestructors): s[pos] = move(s[i]) else: shallowCopy(s[pos], s[i]) inc(pos) setLen(s, pos) func delete*[T](s: var seq[T]; slice: Slice[int]) = ## Deletes the items `s[slice]`, raising `IndexDefect` if the slice contains ## elements out of range. ## ## This operation moves all elements after `s[slice]` in linear time. runnableExamples: var a = @[10, 11, 12, 13, 14] doAssertRaises(IndexDefect): a.delete(4..5) assert a == @[10, 11, 12, 13, 14] a.delete(4..4) assert a == @[10, 11, 12, 13] a.delete(1..2) assert a == @[10, 13] a.delete(1..<1) # empty slice assert a == @[10, 13] when compileOption("boundChecks"): if not (slice.a < s.len and slice.a >= 0 and slice.b < s.len): raise newException(IndexDefect, $(slice: slice, len: s.len)) if slice.b >= slice.a: template defaultImpl = var i = slice.a var j = slice.b + 1 var newLen = s.len - j + i while i < newLen: when defined(gcDestructors): s[i] = move(s[j]) else: s[i].shallowCopy(s[j]) inc(i) inc(j) setLen(s, newLen) when nimvm: defaultImpl() else: when defined(js): let n = slice.b - slice.a + 1 let first = slice.a {.emit: "`s`.splice(`first`, `n`);".} else: defaultImpl() func delete*[T](s: var seq[T]; first, last: Natural) {.deprecated: "use `delete(s, first..last)`".} = ## Deletes the items of a sequence `s` at positions `first..last` ## (including both ends of the range). ## This modifies `s` itself, it does not return a copy. runnableExamples("--warning:deprecated:off"): let outcome = @[1, 1, 1, 1, 1, 1, 1, 1] var dest = @[1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1] dest.delete(3, 8) assert outcome == dest doAssert first <= last if first >= s.len: return var i = first var j = min(len(s), last + 1) var newLen = len(s) - j + i while i < newLen: when defined(gcDestructors): s[i] = move(s[j]) else: s[i].shallowCopy(s[j]) inc(i) inc(j) setLen(s, newLen) func insert*[T](dest: var seq[T], src: openArray[T], pos = 0) = ## Inserts items from `src` into `dest` at position `pos`. This modifies ## `dest` itself, it does not return a copy. ## ## Note that the elements of `src` and `dest` must be of the same type. ## runnableExamples: var dest = @[1, 1, 1, 1, 1, 1, 1, 1] let src = @[2, 2, 2, 2, 2, 2] outcome = @[1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1] dest.insert(src, 3) assert dest == outcome var j = len(dest) - 1 var i = j + len(src) if i == j: return dest.setLen(i + 1) # Move items after `pos` to the end of the sequence. while j >= pos: when defined(gcDestructors): dest[i] = move(dest[j]) else: dest[i].shallowCopy(dest[j]) dec(i) dec(j) # Insert items from `dest` into `dest` at `pos` inc(j) for item in src: dest[j] = item inc(j) template filterIt*(s, pred: untyped): untyped = ## Returns a new sequence with all the items of `s` that fulfill the ## predicate `pred`. ## ## Unlike the `filter proc<#filter,openArray[T],proc(T)>`_ and ## `filter iterator<#filter.i,openArray[T],proc(T)>`_, ## the predicate needs to be an expression using the `it` variable ## for testing, like: `filterIt("abcxyz", it == 'x')`. ## ## Instead of using `mapIt` and `filterIt`, consider using the `collect` macro ## from the `sugar` module. ## ## **See also:** ## * `sugar.collect macro`_ ## * `filter proc<#filter,openArray[T],proc(T)>`_ ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_ ## runnableExamples: let temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44] acceptable = temperatures.filterIt(it < 50 and it > -10) notAcceptable = temperatures.filterIt(it > 50 or it < -10) assert acceptable == @[-2.0, 24.5, 44.31] assert notAcceptable == @[-272.15, 99.9, -113.44] var result = newSeq[typeof(s[0])]() for it {.inject.} in items(s): if pred: result.add(it) result template keepItIf*(varSeq: seq, pred: untyped) = ## Keeps the items in the passed sequence (must be declared as a `var`) ## if they fulfill the predicate. ## ## Unlike the `keepIf proc<#keepIf,seq[T],proc(T)>`_, ## the predicate needs to be an expression using ## the `it` variable for testing, like: `keepItIf("abcxyz", it == 'x')`. ## ## **See also:** ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_ ## * `filterIt template<#filterIt.t,untyped,untyped>`_ ## runnableExamples: var candidates = @["foo", "bar", "baz", "foobar"] candidates.keepItIf(it.len == 3 and it[0] == 'b') assert candidates == @["bar", "baz"] var pos = 0 for i in 0 ..< len(varSeq): let it {.inject.} = varSeq[i] if pred: if pos != i: when defined(gcDestructors): varSeq[pos] = move(varSeq[i]) else: shallowCopy(varSeq[pos], varSeq[i]) inc(pos) setLen(varSeq, pos) since (1, 1): template countIt*(s, pred: untyped): int = ## Returns a count of all the items that fulfill the predicate. ## ## The predicate needs to be an expression using ## the `it` variable for testing, like: `countIt(@[1, 2, 3], it > 2)`. ## runnableExamples: let numbers = @[-3, -2, -1, 0, 1, 2, 3, 4, 5, 6] iterator iota(n: int): int = for i in 0..`_ ## * `any proc<#any,openArray[T],proc(T)>`_ ## runnableExamples: let numbers = @[1, 4, 5, 8, 9, 7, 4] assert all(numbers, proc (x: int): bool = x < 10) == true assert all(numbers, proc (x: int): bool = x < 9) == false for i in s: if not pred(i): return false true template allIt*(s, pred: untyped): bool = ## Iterates through a container and checks if every item fulfills the ## predicate. ## ## Unlike the `all proc<#all,openArray[T],proc(T)>`_, ## the predicate needs to be an expression using ## the `it` variable for testing, like: `allIt("abba", it == 'a')`. ## ## **See also:** ## * `all proc<#all,openArray[T],proc(T)>`_ ## * `anyIt template<#anyIt.t,untyped,untyped>`_ ## runnableExamples: let numbers = @[1, 4, 5, 8, 9, 7, 4] assert numbers.allIt(it < 10) == true assert numbers.allIt(it < 9) == false var result = true for it {.inject.} in items(s): if not pred: result = false break result proc any*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool {.effectsOf: pred.} = ## Iterates through a container and checks if at least one item ## fulfills the predicate. ## ## **See also:** ## * `anyIt template<#anyIt.t,untyped,untyped>`_ ## * `all proc<#all,openArray[T],proc(T)>`_ ## runnableExamples: let numbers = @[1, 4, 5, 8, 9, 7, 4] assert any(numbers, proc (x: int): bool = x > 8) == true assert any(numbers, proc (x: int): bool = x > 9) == false for i in s: if pred(i): return true false template anyIt*(s, pred: untyped): bool = ## Iterates through a container and checks if at least one item ## fulfills the predicate. ## ## Unlike the `any proc<#any,openArray[T],proc(T)>`_, ## the predicate needs to be an expression using ## the `it` variable for testing, like: `anyIt("abba", it == 'a')`. ## ## **See also:** ## * `any proc<#any,openArray[T],proc(T)>`_ ## * `allIt template<#allIt.t,untyped,untyped>`_ ## runnableExamples: let numbers = @[1, 4, 5, 8, 9, 7, 4] assert numbers.anyIt(it > 8) == true assert numbers.anyIt(it > 9) == false var result = false for it {.inject.} in items(s): if pred: result = true break result template toSeq1(s: not iterator): untyped = # overload for typed but not iterator type OutType = typeof(items(s)) when compiles(s.len): block: evalOnceAs(s2, s, compiles((let _ = s))) var i = 0 var result = newSeq[OutType](s2.len) for it in s2: result[i] = it i += 1 result else: var result: seq[OutType]# = @[] for it in s: result.add(it) result template toSeq2(iter: iterator): untyped = # overload for iterator evalOnceAs(iter2, iter(), false) when compiles(iter2.len): var i = 0 var result = newSeq[typeof(iter2)](iter2.len) for x in iter2: result[i] = x inc i result else: type OutType = typeof(iter2()) var result: seq[OutType]# = @[] when compiles(iter2()): evalOnceAs(iter4, iter, false) let iter3 = iter4() for x in iter3(): result.add(x) else: for x in iter2(): result.add(x) result template toSeq*(iter: untyped): untyped = ## Transforms any iterable (anything that can be iterated over, e.g. with ## a for-loop) into a sequence. ## runnableExamples: let myRange = 1..5 mySet: set[int8] = {5'i8, 3, 1} assert typeof(myRange) is HSlice[system.int, system.int] assert typeof(mySet) is set[int8] let mySeq1 = toSeq(myRange) mySeq2 = toSeq(mySet) assert mySeq1 == @[1, 2, 3, 4, 5] assert mySeq2 == @[1'i8, 3, 5] when compiles(toSeq1(iter)): toSeq1(iter) elif compiles(toSeq2(iter)): toSeq2(iter) else: # overload for untyped, e.g.: `toSeq(myInlineIterator(3))` when compiles(iter.len): block: evalOnceAs(iter2, iter, true) var result = newSeq[typeof(iter)](iter2.len) var i = 0 for x in iter2: result[i] = x inc i result else: var result: seq[typeof(iter)]# = @[] for x in iter: result.add(x) result template foldl*(sequence, operation: untyped): untyped = ## Template to fold a sequence from left to right, returning the accumulation. ## ## The sequence is required to have at least a single element. Debug versions ## of your program will assert in this situation but release versions will ## happily go ahead. If the sequence has a single element it will be returned ## without applying `operation`. ## ## The `operation` parameter should be an expression which uses the ## variables `a` and `b` for each step of the fold. Since this is a left ## fold, for non associative binary operations like subtraction think that ## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) - ## 3). ## ## **See also:** ## * `foldl template<#foldl.t,,,>`_ with a starting parameter ## * `foldr template<#foldr.t,untyped,untyped>`_ ## runnableExamples: let numbers = @[5, 9, 11] addition = foldl(numbers, a + b) subtraction = foldl(numbers, a - b) multiplication = foldl(numbers, a * b) words = @["nim", "is", "cool"] concatenation = foldl(words, a & b) procs = @["proc", "Is", "Also", "Fine"] func foo(acc, cur: string): string = result = acc & cur assert addition == 25, "Addition is (((5)+9)+11)" assert subtraction == -15, "Subtraction is (((5)-9)-11)" assert multiplication == 495, "Multiplication is (((5)*9)*11)" assert concatenation == "nimiscool" assert foldl(procs, foo(a, b)) == "procIsAlsoFine" let s = sequence assert s.len > 0, "Can't fold empty sequences" var result: typeof(s[0]) result = s[0] for i in 1..`_ ## runnableExamples: let numbers = @[0, 8, 1, 5] digits = foldl(numbers, a & (chr(b + ord('0'))), "") assert digits == "0815" var result: typeof(first) = first for x in items(sequence): let a {.inject.} = result b {.inject.} = x result = operation result template foldr*(sequence, operation: untyped): untyped = ## Template to fold a sequence from right to left, returning the accumulation. ## ## The sequence is required to have at least a single element. Debug versions ## of your program will assert in this situation but release versions will ## happily go ahead. If the sequence has a single element it will be returned ## without applying `operation`. ## ## The `operation` parameter should be an expression which uses the ## variables `a` and `b` for each step of the fold. Since this is a right ## fold, for non associative binary operations like subtraction think that ## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 - ## (3))). ## ## **See also:** ## * `foldl template<#foldl.t,untyped,untyped>`_ ## * `foldl template<#foldl.t,,,>`_ with a starting parameter ## runnableExamples: let numbers = @[5, 9, 11] addition = foldr(numbers, a + b) subtraction = foldr(numbers, a - b) multiplication = foldr(numbers, a * b) words = @["nim", "is", "cool"] concatenation = foldr(words, a & b) assert addition == 25, "Addition is (5+(9+(11)))" assert subtraction == 7, "Subtraction is (5-(9-(11)))" assert multiplication == 495, "Multiplication is (5*(9*(11)))" assert concatenation == "nimiscool" let s = sequence # xxx inefficient, use {.evalonce.} pending #13750 let n = s.len assert n > 0, "Can't fold empty sequences" var result = s[n - 1] for i in countdown(n - 2, 0): let a {.inject.} = s[i] b {.inject.} = result result = operation result template mapIt*(s: typed, op: untyped): untyped = ## Returns a new sequence with the results of the `op` proc applied to every ## item in the container `s`. ## ## Since the input is not modified you can use it to ## transform the type of the elements in the input container. ## ## The template injects the `it` variable which you can use directly in an ## expression. ## ## Instead of using `mapIt` and `filterIt`, consider using the `collect` macro ## from the `sugar` module. ## ## **See also:** ## * `sugar.collect macro`_ ## * `map proc<#map,openArray[T],proc(T)>`_ ## * `applyIt template<#applyIt.t,untyped,untyped>`_ for the in-place version ## runnableExamples: let nums = @[1, 2, 3, 4] strings = nums.mapIt($(4 * it)) assert strings == @["4", "8", "12", "16"] type OutType = typeof(( block: var it{.inject.}: typeof(items(s), typeOfIter); op), typeOfProc) when OutType is not (proc): # Here, we avoid to create closures in loops. # This avoids https://github.com/nim-lang/Nim/issues/12625 when compiles(s.len): block: # using a block avoids https://github.com/nim-lang/Nim/issues/8580 # BUG: `evalOnceAs(s2, s, false)` would lead to C compile errors # (`error: use of undeclared identifier`) instead of Nim compile errors evalOnceAs(s2, s, compiles((let _ = s))) var i = 0 var result = newSeq[OutType](s2.len) for it {.inject.} in s2: result[i] = op i += 1 result else: var result: seq[OutType]# = @[] # use `items` to avoid https://github.com/nim-lang/Nim/issues/12639 for it {.inject.} in items(s): result.add(op) result else: # `op` is going to create closures in loops, let's fallback to `map`. # NOTE: Without this fallback, developers have to define a helper function and # call `map`: # [1, 2].map((it) => ((x: int) => it + x)) # With this fallback, above code can be simplified to: # [1, 2].mapIt((x: int) => it + x) # In this case, `mapIt` is just syntax sugar for `map`. type InType = typeof(items(s), typeOfIter) # Use a help proc `f` to create closures for each element in `s` let f = proc (x: InType): OutType = let it {.inject.} = x op map(s, f) template applyIt*(varSeq, op: untyped) = ## Convenience template around the mutable `apply` proc to reduce typing. ## ## The template injects the `it` variable which you can use directly in an ## expression. The expression has to return the same type as the elements ## of the sequence you are mutating. ## ## **See also:** ## * `apply proc<#apply,openArray[T],proc(T)_2>`_ ## * `mapIt template<#mapIt.t,typed,untyped>`_ ## runnableExamples: var nums = @[1, 2, 3, 4] nums.applyIt(it * 3) assert nums[0] + nums[3] == 15 for i in low(varSeq) .. high(varSeq): let it {.inject.} = varSeq[i] varSeq[i] = op template newSeqWith*(len: int, init: untyped): untyped = ## Creates a new `seq` of length `len`, calling `init` to initialize ## each value of the seq. ## ## Useful for creating "2D" seqs - seqs containing other seqs ## or to populate fields of the created seq. runnableExamples: ## Creates a seq containing 5 bool seqs, each of length of 3. var seq2D = newSeqWith(5, newSeq[bool](3)) assert seq2D.len == 5 assert seq2D[0].len == 3 assert seq2D[4][2] == false ## Creates a seq with random numbers import std/random var seqRand = newSeqWith(20, rand(1.0)) assert seqRand[0] != seqRand[1] let newLen = len var result = newSeq[typeof(init)](newLen) for i in 0 ..< newLen: result[i] = init move(result) # refs bug #7295 func mapLitsImpl(constructor: NimNode; op: NimNode; nested: bool; filter = nnkLiterals): NimNode = if constructor.kind in filter: result = newNimNode(nnkCall, lineInfoFrom = constructor) result.add op result.add constructor else: result = copyNimNode(constructor) for v in constructor: if nested or v.kind in filter: result.add mapLitsImpl(v, op, nested, filter) else: result.add v macro mapLiterals*(constructor, op: untyped; nested = true): untyped = ## Applies `op` to each of the **atomic** literals like `3` ## or `"abc"` in the specified `constructor` AST. This can ## be used to map every array element to some target type: runnableExamples: let x = mapLiterals([0.1, 1.2, 2.3, 3.4], int) doAssert x is array[4, int] doAssert x == [int(0.1), int(1.2), int(2.3), int(3.4)] ## If `nested` is true (which is the default), the literals are replaced ## everywhere in the `constructor` AST, otherwise only the first level ## is considered: runnableExamples: let a = mapLiterals((1.2, (2.3, 3.4), 4.8), int) let b = mapLiterals((1.2, (2.3, 3.4), 4.8), int, nested=false) assert a == (1, (2, 3), 4) assert b == (1, (2.3, 3.4), 4) let c = mapLiterals((1, (2, 3), 4, (5, 6)), `$`) let d = mapLiterals((1, (2, 3), 4, (5, 6)), `$`, nested=false) assert c == ("1", ("2", "3"), "4", ("5", "6")) assert d == ("1", (2, 3), "4", (5, 6)) ## There are no constraints for the `constructor` AST, it ## works for nested tuples of arrays of sets etc. result = mapLitsImpl(constructor, op, nested.boolVal) iterator items*[T](xs: iterator: T): T = ## Iterates over each element yielded by a closure iterator. This may ## not seem particularly useful on its own, but this allows closure ## iterators to be used by the mapIt, filterIt, allIt, anyIt, etc. ## templates. for x in xs(): yield x