# # # Nim's Runtime Library # (c) Copyright 2011 Alexander Mitchell-Robinson # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## Although this module has ``seq`` in its name, it implements operations ## not only for `seq`:idx: type, but for three built-in container types under ## the ``openArray`` umbrella: ## * sequences ## * strings ## * array ## ## The system module defines several common functions, such as: ## * ``newseq[T]`` for creating new sequences of type ``T`` ## * ``@`` for converting arrays and strings to sequences ## * ``add`` for adding new elements to strings and sequences ## * ``&`` for string and seq concatenation ## * ``in`` (alias for ``contains``) and ``notin`` for checking if an item is ## in a container ## ## This module builds upon that, providing additional functionality in form of ## procs, iterators and templates inspired by functional programming ## languages. ## ## For functional style programming you have different options at your disposal: ## * pass `anonymous proc`_ ## * import `sugar module`_ and use ## `=> macro.m,untyped,untyped>`_ ## * use `...It templates<#18>`_ ## (`mapIt<#mapIt.t,typed,untyped>`_, ## `filterIt<#filterIt.t,untyped,untyped>`_, etc.) ## ## The chaining of functions is possible thanks to the ## `method call syntax`_. ## ## .. code-block:: ## import sequtils, sugar ## ## # Creating a sequence from 1 to 10, multiplying each member by 2, ## # keeping only the members which are not divisible by 6. ## let ## foo = toSeq(1..10).map(x => x*2).filter(x => x mod 6 != 0) ## bar = toSeq(1..10).mapIt(it*2).filterIt(it mod 6 != 0) ## ## doAssert foo == bar ## echo foo # @[2, 4, 8, 10, 14, 16, 20] ## ## echo foo.any(x => x > 17) # true ## echo bar.allIt(it < 20) # false ## echo foo.foldl(a + b) # 74; sum of all members ## ## .. code-block:: ## import sequtils ## from strutils import join ## ## let ## vowels = @"aeiou" # creates a sequence @['a', 'e', 'i', 'o', 'u'] ## foo = "sequtils is an awesome module" ## ## echo foo.filterIt(it notin vowels).join # "sqtls s n wsm mdl" ## ## ---- ## ## **See also**: ## * `strutils module`_ for common string functions ## * `sugar module`_ for syntactic sugar macros ## * `algorithm module`_ for common generic algorithms ## * `json module`_ for a structure which allows ## heterogeneous members include "system/inclrtl" import macros when not defined(nimhygiene): {.pragma: dirty.} macro evalOnceAs(expAlias, exp: untyped, letAssigneable: static[bool]): untyped = ## Injects ``expAlias`` in caller scope, to avoid bugs involving multiple ## substitution in macro arguments such as ## https://github.com/nim-lang/Nim/issues/7187 ## ``evalOnceAs(myAlias, myExp)`` will behave as ``let myAlias = myExp`` ## except when ``letAssigneable`` is false (e.g. to handle openArray) where ## it just forwards ``exp`` unchanged expectKind(expAlias, nnkIdent) var val = exp result = newStmtList() # If `exp` is not a symbol we evaluate it once here and then use the temporary # symbol as alias if exp.kind != nnkSym and letAssigneable: val = genSym() result.add(newLetStmt(val, exp)) result.add( newProc(name = genSym(nskTemplate, $expAlias), params = [getType(untyped)], body = val, procType = nnkTemplateDef)) proc concat*[T](seqs: varargs[seq[T]]): seq[T] = ## Takes several sequences' items and returns them inside a new sequence. ## All sequences must be of the same type. ## ## See also: ## * `distribute proc<#distribute,seq[T],Positive>`_ for a reverse ## operation ## runnableExamples: let s1 = @[1, 2, 3] s2 = @[4, 5] s3 = @[6, 7] total = concat(s1, s2, s3) assert total == @[1, 2, 3, 4, 5, 6, 7] var L = 0 for seqitm in items(seqs): inc(L, len(seqitm)) newSeq(result, L) var i = 0 for s in items(seqs): for itm in items(s): result[i] = itm inc(i) proc count*[T](s: openArray[T], x: T): int = ## Returns the number of occurrences of the item `x` in the container `s`. ## runnableExamples: let a = @[1, 2, 2, 3, 2, 4, 2] b = "abracadabra" assert count(a, 2) == 4 assert count(a, 99) == 0 assert count(b, 'r') == 2 for itm in items(s): if itm == x: inc result proc cycle*[T](s: openArray[T], n: Natural): seq[T] = ## Returns a new sequence with the items of the container `s` repeated ## `n` times. ## `n` must be a non-negative number (zero or more). ## runnableExamples: let s = @[1, 2, 3] total = s.cycle(3) assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3] result = newSeq[T](n * s.len) var o = 0 for x in 0 ..< n: for e in s: result[o] = e inc o proc repeat*[T](x: T, n: Natural): seq[T] = ## Returns a new sequence with the item `x` repeated `n` times. ## `n` must be a non-negative number (zero or more). ## runnableExamples: let total = repeat(5, 3) assert total == @[5, 5, 5] result = newSeq[T](n) for i in 0 ..< n: result[i] = x proc deduplicate*[T](s: openArray[T], isSorted: bool = false): seq[T] = ## Returns a new sequence without duplicates. ## ## Setting the optional argument ``isSorted`` to ``true`` (default: false) ## uses a faster algorithm for deduplication. ## runnableExamples: let dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4] dup2 = @["a", "a", "c", "d", "d"] unique1 = deduplicate(dup1) unique2 = deduplicate(dup2, isSorted = true) assert unique1 == @[1, 3, 4, 2, 8] assert unique2 == @["a", "c", "d"] result = @[] if s.len > 0: if isSorted: var prev = s[0] result.add(prev) for i in 1..s.high: if s[i] != prev: prev = s[i] result.add(prev) else: for itm in items(s): if not result.contains(itm): result.add(itm) proc zip*[S, T](s1: openArray[S], s2: openArray[T]): seq[tuple[a: S, b: T]] = ## Returns a new sequence with a combination of the two input containers. ## ## The input containers can be of different types. ## If one container is shorter, the remaining items in the longer container ## are discarded. ## ## For convenience you can access the returned tuples through the named ## fields `a` and `b`. ## runnableExamples: let short = @[1, 2, 3] long = @[6, 5, 4, 3, 2, 1] words = @["one", "two", "three"] letters = "abcd" zip1 = zip(short, long) zip2 = zip(short, words) zip3 = zip(long, letters) assert zip1 == @[(1, 6), (2, 5), (3, 4)] assert zip2 == @[(1, "one"), (2, "two"), (3, "three")] assert zip3 == @[(a: 6, b: 'a'), (a: 5, b: 'b'), (a: 4, b: 'c'), (a: 3, b: 'd')] assert zip1[2].b == 4 assert zip2[2].b == "three" var m = min(s1.len, s2.len) newSeq(result, m) for i in 0 ..< m: result[i] = (s1[i], s2[i]) proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] = ## Splits and distributes a sequence `s` into `num` sub-sequences. ## ## Returns a sequence of `num` sequences. For *some* input values this is the ## inverse of the `concat <#concat,varargs[seq[T]]>`_ proc. ## The input sequence `s` can be empty, which will produce ## `num` empty sequences. ## ## If `spread` is false and the length of `s` is not a multiple of `num`, the ## proc will max out the first sub-sequence with ``1 + len(s) div num`` ## entries, leaving the remainder of elements to the last sequence. ## ## On the other hand, if `spread` is true, the proc will distribute evenly ## the remainder of the division across all sequences, which makes the result ## more suited to multithreading where you are passing equal sized work units ## to a thread pool and want to maximize core usage. ## runnableExamples: let numbers = @[1, 2, 3, 4, 5, 6, 7] assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]] assert numbers.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]] assert numbers.distribute(6)[0] == @[1, 2] assert numbers.distribute(6)[1] == @[3] if num < 2: result = @[s] return let num = int(num) # XXX probably only needed because of .. bug # Create the result and calculate the stride size and the remainder if any. result = newSeq[seq[T]](num) var stride = s.len div num first = 0 last = 0 extra = s.len mod num if extra == 0 or spread == false: # Use an algorithm which overcounts the stride and minimizes reading limits. if extra > 0: inc(stride) for i in 0 ..< num: result[i] = newSeq[T]() for g in first ..< min(s.len, first + stride): result[i].add(s[g]) first += stride else: # Use an undercounting algorithm which *adds* the remainder each iteration. for i in 0 ..< num: last = first + stride if extra > 0: extra -= 1 inc(last) result[i] = newSeq[T]() for g in first ..< last: result[i].add(s[g]) first = last proc map*[T, S](s: openArray[T], op: proc (x: T): S {.closure.}): seq[S]{.inline.} = ## Returns a new sequence with the results of `op` proc applied to every ## item in the container `s`. ## ## Since the input is not modified you can use it to ## transform the type of the elements in the input container. ## ## See also: ## * `mapIt template<#mapIt.t,typed,untyped>`_ ## * `apply proc<#apply,openArray[T],proc(T)_2>`_ for the in-place version ## runnableExamples: let a = @[1, 2, 3, 4] b = map(a, proc(x: int): string = $x) assert b == @["1", "2", "3", "4"] newSeq(result, s.len) for i in 0 ..< s.len: result[i] = op(s[i]) proc apply*[T](s: var openArray[T], op: proc (x: var T) {.closure.}) {.inline.} = ## Applies `op` to every item in `s` modifying it directly. ## ## Note that container `s` must be declared as a ``var`` ## and it is required for your input and output types to ## be the same, since `s` is modified in-place. ## The parameter function takes a ``var T`` type parameter. ## ## See also: ## * `applyIt template<#applyIt.t,untyped,untyped>`_ ## * `map proc<#map,openArray[T],proc(T)>`_ ## runnableExamples: var a = @["1", "2", "3", "4"] apply(a, proc(x: var string) = x &= "42") assert a == @["142", "242", "342", "442"] for i in 0 ..< s.len: op(s[i]) proc apply*[T](s: var openArray[T], op: proc (x: T): T {.closure.}) {.inline.} = ## Applies `op` to every item in `s` modifying it directly. ## ## Note that container `s` must be declared as a ``var`` ## and it is required for your input and output types to ## be the same, since `s` is modified in-place. ## The parameter function takes and returns a ``T`` type variable. ## ## See also: ## * `applyIt template<#applyIt.t,untyped,untyped>`_ ## * `map proc<#map,openArray[T],proc(T)>`_ ## runnableExamples: var a = @["1", "2", "3", "4"] apply(a, proc(x: string): string = x & "42") assert a == @["142", "242", "342", "442"] for i in 0 ..< s.len: s[i] = op(s[i]) iterator filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): T = ## Iterates through a container `s` and yields every item that fulfills the ## predicate `pred` (function that returns a `bool`). ## ## See also: ## * `fliter proc<#filter,openArray[T],proc(T)>`_ ## * `filterIt template<#filterIt.t,untyped,untyped>`_ ## runnableExamples: let numbers = @[1, 4, 5, 8, 9, 7, 4] var evens = newSeq[int]() for n in filter(numbers, proc (x: int): bool = x mod 2 == 0): evens.add(n) assert evens == @[4, 8, 4] for i in 0 ..< s.len: if pred(s[i]): yield s[i] proc filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): seq[T] {.inline.} = ## Returns a new sequence with all the items of `s` that fulfilled the ## predicate `pred` (function that returns a `bool`). ## ## See also: ## * `filterIt template<#filterIt.t,untyped,untyped>`_ ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_ ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_ for the in-place version ## runnableExamples: let colors = @["red", "yellow", "black"] f1 = filter(colors, proc(x: string): bool = x.len < 6) f2 = filter(colors, proc(x: string): bool = x.contains('y')) assert f1 == @["red", "black"] assert f2 == @["yellow"] result = newSeq[T]() for i in 0 ..< s.len: if pred(s[i]): result.add(s[i]) proc keepIf*[T](s: var seq[T], pred: proc(x: T): bool {.closure.}) {.inline.} = ## Keeps the items in the passed sequence `s` if they fulfilled the ## predicate `pred` (function that returns a `bool`). ## ## Note that `s` must be declared as a ``var``. ## ## Similar to the `filter proc<#filter,openArray[T],proc(T)>`_, ## but modifies the sequence directly. ## ## See also: ## * `keepItIf template<#keepItIf.t,seq,untyped>`_ ## * `filter proc<#filter,openArray[T],proc(T)>`_ ## runnableExamples: var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1] keepIf(floats, proc(x: float): bool = x > 10) assert floats == @[13.0, 12.5, 10.1] var pos = 0 for i in 0 ..< len(s): if pred(s[i]): if pos != i: shallowCopy(s[pos], s[i]) inc(pos) setLen(s, pos) proc delete*[T](s: var seq[T]; first, last: Natural) = ## Deletes in the items of a sequence `s` at positions ``first..last`` ## (including both ends of a range). ## This modifies `s` itself, it does not return a copy. ## runnableExamples: let outcome = @[1,1,1,1,1,1,1,1] var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1] dest.delete(3, 8) assert outcome == dest var i = first var j = last+1 var newLen = len(s)-j+i while i < newLen: s[i].shallowCopy(s[j]) inc(i) inc(j) setLen(s, newLen) proc insert*[T](dest: var seq[T], src: openArray[T], pos=0) = ## Inserts items from `src` into `dest` at position `pos`. This modifies ## `dest` itself, it does not return a copy. ## ## Notice that `src` and `dest` must be of the same type. ## runnableExamples: var dest = @[1,1,1,1,1,1,1,1] let src = @[2,2,2,2,2,2] outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1] dest.insert(src, 3) assert dest == outcome var j = len(dest) - 1 var i = len(dest) + len(src) - 1 dest.setLen(i + 1) # Move items after `pos` to the end of the sequence. while j >= pos: dest[i].shallowCopy(dest[j]) dec(i) dec(j) # Insert items from `dest` into `dest` at `pos` inc(j) for item in src: dest[j] = item inc(j) template filterIt*(s, pred: untyped): untyped = ## Returns a new sequence with all the items of `s` that fulfilled the ## predicate `pred`. ## ## Unlike the `filter proc<#filter,openArray[T],proc(T)>`_ and ## `filter iterator<#filter.i,openArray[T],proc(T)>`_, ## the predicate needs to be an expression using the ``it`` variable ## for testing, like: ``filterIt("abcxyz", it == 'x')``. ## ## See also: ## * `fliter proc<#filter,openArray[T],proc(T)>`_ ## * `filter iterator<#filter.i,openArray[T],proc(T)>`_ ## runnableExamples: let temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44] acceptable = temperatures.filterIt(it < 50 and it > -10) notAcceptable = temperatures.filterIt(it > 50 or it < -10) assert acceptable == @[-2.0, 24.5, 44.31] assert notAcceptable == @[-272.15, 99.9, -113.44] var result = newSeq[type(s[0])]() for it {.inject.} in items(s): if pred: result.add(it) result template keepItIf*(varSeq: seq, pred: untyped) = ## Keeps the items in the passed sequence (must be declared as a ``var``) ## if they fulfilled the predicate. ## ## Unlike the `keepIf proc<#keepIf,seq[T],proc(T)>`_, ## the predicate needs to be an expression using ## the ``it`` variable for testing, like: ``keepItIf("abcxyz", it == 'x')``. ## ## See also: ## * `keepIf proc<#keepIf,seq[T],proc(T)>`_ ## * `filterIt template<#filterIt.t,untyped,untyped>`_ ## runnableExamples: var candidates = @["foo", "bar", "baz", "foobar"] candidates.keepItIf(it.len == 3 and it[0] == 'b') assert candidates == @["bar", "baz"] var pos = 0 for i in 0 ..< len(varSeq): let it {.inject.} = varSeq[i] if pred: if pos != i: shallowCopy(varSeq[pos], varSeq[i]) inc(pos) setLen(varSeq, pos) proc all*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool = ## Iterates through a container and checks if every item fulfills the ## predicate. ## ## See also: ## * `allIt template<#allIt.t,untyped,untyped>`_ ## * `any proc<#any,openArray[T],proc(T)>`_ ## runnableExamples: let numbers = @[1, 4, 5, 8, 9, 7, 4] assert all(numbers, proc (x: int): bool = return x < 10) == true assert all(numbers, proc (x: int): bool = return x < 9) == false for i in s: if not pred(i): return false return true template allIt*(s, pred: untyped): bool = ## Iterates through a container and checks if every item fulfills the ## predicate. ## ## Unlike the `all proc<#all,openArray[T],proc(T)>`_, ## the predicate needs to be an expression using ## the ``it`` variable for testing, like: ``allIt("abba", it == 'a')``. ## ## See also: ## * `all proc<#all,openArray[T],proc(T)>`_ ## * `anyIt template<#anyIt.t,untyped,untyped>`_ ## runnableExamples: let numbers = @[1, 4, 5, 8, 9, 7, 4] assert numbers.allIt(it < 10) == true assert numbers.allIt(it < 9) == false var result = true for it {.inject.} in items(s): if not pred: result = false break result proc any*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool = ## Iterates through a container and checks if some item fulfills the ## predicate. ## ## See also: ## * `anyIt template<#anyIt.t,untyped,untyped>`_ ## * `all proc<#all,openArray[T],proc(T)>`_ ## runnableExamples: let numbers = @[1, 4, 5, 8, 9, 7, 4] assert any(numbers, proc (x: int): bool = return x > 8) == true assert any(numbers, proc (x: int): bool = return x > 9) == false for i in s: if pred(i): return true return false template anyIt*(s, pred: untyped): bool = ## Iterates through a container and checks if some item fulfills the ## predicate. ## ## Unlike the `any proc<#any,openArray[T],proc(T)>`_, ## the predicate needs to be an expression using ## the ``it`` variable for testing, like: ``anyIt("abba", it == 'a')``. ## ## See also: ## * `any proc<#any,openArray[T],proc(T)>`_ ## * `allIt template<#allIt.t,untyped,untyped>`_ ## runnableExamples: let numbers = @[1, 4, 5, 8, 9, 7, 4] assert numbers.anyIt(it > 8) == true assert numbers.anyIt(it > 9) == false var result = false for it {.inject.} in items(s): if pred: result = true break result template toSeq1(s: not iterator): untyped = # overload for typed but not iterator type outType = type(items(s)) when compiles(s.len): block: evalOnceAs(s2, s, compiles((let _ = s))) var i = 0 var result = newSeq[outType](s2.len) for it in s2: result[i] = it i += 1 result else: var result: seq[outType] = @[] for it in s: result.add(it) result template toSeq2(iter: iterator): untyped = # overload for iterator evalOnceAs(iter2, iter(), false) when compiles(iter2.len): var i = 0 var result = newSeq[type(iter2)](iter2.len) for x in iter2: result[i] = x inc i result else: type outType = type(iter2()) var result: seq[outType] = @[] when compiles(iter2()): evalOnceAs(iter4, iter, false) let iter3=iter4() for x in iter3(): result.add(x) else: for x in iter2(): result.add(x) result template toSeq*(iter: untyped): untyped = ## Transforms any iterable (anything that can be iterated over, e.g. with ## a for-loop) into a sequence. ## runnableExamples: let myRange = 1..5 mySet: set[int8] = {5'i8, 3, 1} assert type(myRange) is HSlice[system.int, system.int] assert type(mySet) is set[int8] let mySeq1 = toSeq(myRange) mySeq2 = toSeq(mySet) assert mySeq1 == @[1, 2, 3, 4, 5] assert mySeq2 == @[1'i8, 3, 5] when compiles(toSeq1(iter)): toSeq1(iter) elif compiles(toSeq2(iter)): toSeq2(iter) else: # overload for untyped, e.g.: `toSeq(myInlineIterator(3))` when compiles(iter.len): block: evalOnceAs(iter2, iter, true) var result = newSeq[type(iter)](iter2.len) var i = 0 for x in iter2: result[i] = x inc i result else: var result: seq[type(iter)] = @[] for x in iter: result.add(x) result template foldl*(sequence, operation: untyped): untyped = ## Template to fold a sequence from left to right, returning the accumulation. ## ## The sequence is required to have at least a single element. Debug versions ## of your program will assert in this situation but release versions will ## happily go ahead. If the sequence has a single element it will be returned ## without applying ``operation``. ## ## The ``operation`` parameter should be an expression which uses the ## variables ``a`` and ``b`` for each step of the fold. Since this is a left ## fold, for non associative binary operations like subtraction think that ## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) - ## 3). ## ## See also: ## * `foldl template<#foldl.t,,,>`_ with a starting parameter ## * `foldr template<#foldr.t,untyped,untyped>`_ ## runnableExamples: let numbers = @[5, 9, 11] addition = foldl(numbers, a + b) subtraction = foldl(numbers, a - b) multiplication = foldl(numbers, a * b) words = @["nim", "is", "cool"] concatenation = foldl(words, a & b) assert addition == 25, "Addition is (((5)+9)+11)" assert subtraction == -15, "Subtraction is (((5)-9)-11)" assert multiplication == 495, "Multiplication is (((5)*9)*11)" assert concatenation == "nimiscool" let s = sequence assert s.len > 0, "Can't fold empty sequences" var result: type(s[0]) result = s[0] for i in 1..`_ ## runnableExamples: let numbers = @[0, 8, 1, 5] digits = foldl(numbers, a & (chr(b + ord('0'))), "") assert digits == "0815" var result: type(first) result = first for x in items(sequence): let a {.inject.} = result b {.inject.} = x result = operation result template foldr*(sequence, operation: untyped): untyped = ## Template to fold a sequence from right to left, returning the accumulation. ## ## The sequence is required to have at least a single element. Debug versions ## of your program will assert in this situation but release versions will ## happily go ahead. If the sequence has a single element it will be returned ## without applying ``operation``. ## ## The ``operation`` parameter should be an expression which uses the ## variables ``a`` and ``b`` for each step of the fold. Since this is a right ## fold, for non associative binary operations like subtraction think that ## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 - ## (3))). ## ## See also: ## * `foldl template<#foldl.t,untyped,untyped>`_ ## * `foldl template<#foldl.t,,,>`_ with a starting parameter ## runnableExamples: let numbers = @[5, 9, 11] addition = foldr(numbers, a + b) subtraction = foldr(numbers, a - b) multiplication = foldr(numbers, a * b) words = @["nim", "is", "cool"] concatenation = foldr(words, a & b) assert addition == 25, "Addition is (5+(9+(11)))" assert subtraction == 7, "Subtraction is (5-(9-(11)))" assert multiplication == 495, "Multiplication is (5*(9*(11)))" assert concatenation == "nimiscool" let s = sequence assert s.len > 0, "Can't fold empty sequences" var result: type(s[0]) result = sequence[s.len - 1] for i in countdown(s.len - 2, 0): let a {.inject.} = s[i] b {.inject.} = result result = operation result template mapIt*(s: typed, op: untyped): untyped = ## Returns a new sequence with the results of `op` proc applied to every ## item in the container `s`. ## ## Since the input is not modified you can use it to ## transform the type of the elements in the input container. ## ## The template injects the ``it`` variable which you can use directly in an ## expression. ## ## See also: ## * `map proc<#map,openArray[T],proc(T)>`_ ## * `applyIt template<#applyIt.t,untyped,untyped>`_ for the in-place version ## runnableExamples: let nums = @[1, 2, 3, 4] strings = nums.mapIt($(4 * it)) assert strings == @["4", "8", "12", "16"] when defined(nimHasTypeof): type outType = typeof(( block: var it{.inject.}: typeof(items(s), typeOfIter); op), typeOfProc) else: type outType = type(( block: var it{.inject.}: type(items(s)); op)) when compiles(s.len): block: # using a block avoids https://github.com/nim-lang/Nim/issues/8580 # BUG: `evalOnceAs(s2, s, false)` would lead to C compile errors # (`error: use of undeclared identifier`) instead of Nim compile errors evalOnceAs(s2, s, compiles((let _ = s))) var i = 0 var result = newSeq[outType](s2.len) for it {.inject.} in s2: result[i] = op i += 1 result else: var result: seq[outType] = @[] for it {.inject.} in s: result.add(op) result template mapIt*(s, typ, op: untyped): untyped {.error: "Use 'mapIt(seq1, op)' - without specifying the type of the returned seqence".} = ## **Deprecated since version 0.12.0:** Use the `mapIt(seq1, op) template ## <#mapIt.t,typed,untyped>`_ instead. var result: seq[typ] = @[] for it {.inject.} in items(s): result.add(op) result template applyIt*(varSeq, op: untyped) = ## Convenience template around the mutable ``apply`` proc to reduce typing. ## ## The template injects the ``it`` variable which you can use directly in an ## expression. The expression has to return the same type as the sequence you ## are mutating. ## ## See also: ## * `apply proc<#apply,openArray[T],proc(T)_2>`_ ## * `mapIt template<#mapIt.t,typed,untyped>`_ ## runnableExamples: var nums = @[1, 2, 3, 4] nums.applyIt(it * 3) assert nums[0] + nums[3] == 15 for i in low(varSeq) .. high(varSeq): let it {.inject.} = varSeq[i] varSeq[i] = op template newSeqWith*(len: int, init: untyped): untyped = ## Creates a new sequence of length `len`, calling `init` to initialize ## each value of the sequence. ## ## Useful for creating "2D" sequences - sequences containing other sequences ## or to populate fields of the created sequence. ## runnableExamples: ## Creates a seqence containing 5 bool sequences, each of length of 3. var seq2D = newSeqWith(5, newSeq[bool](3)) assert seq2D.len == 5 assert seq2D[0].len == 3 assert seq2D[4][2] == false ## Creates a sequence of 20 random numbers from 1 to 10 import random var seqRand = newSeqWith(20, random(10)) var result = newSeq[type(init)](len) for i in 0 ..< len: result[i] = init result proc mapLitsImpl(constructor: NimNode; op: NimNode; nested: bool; filter = nnkLiterals): NimNode = if constructor.kind in filter: result = newNimNode(nnkCall, lineInfoFrom=constructor) result.add op result.add constructor else: result = copyNimNode(constructor) for v in constructor: if nested or v.kind in filter: result.add mapLitsImpl(v, op, nested, filter) else: result.add v macro mapLiterals*(constructor, op: untyped; nested = true): untyped = ## Applies ``op`` to each of the **atomic** literals like ``3`` ## or ``"abc"`` in the specified ``constructor`` AST. This can ## be used to map every array element to some target type: ## ## Example: ## ## .. code-block:: ## let x = mapLiterals([0.1, 1.2, 2.3, 3.4], int) ## doAssert x is array[4, int] ## ## Short notation for: ## ## .. code-block:: ## let x = [int(0.1), int(1.2), int(2.3), int(3.4)] ## ## If ``nested`` is true (which is the default), the literals are replaced ## everywhere in the ``constructor`` AST, otherwise only the first level ## is considered: ## ## .. code-block:: ## let a = mapLiterals((1.2, (2.3, 3.4), 4.8), int) ## let b = mapLiterals((1.2, (2.3, 3.4), 4.8), int, nested=false) ## assert a == (1, (2, 3), 4) ## assert b == (1, (2.3, 3.4), 4) ## ## let c = mapLiterals((1, (2, 3), 4, (5, 6)), `$`) ## let d = mapLiterals((1, (2, 3), 4, (5, 6)), `$`, nested=false) ## assert c == ("1", ("2", "3"), "4", ("5", "6")) ## assert d == ("1", (2, 3), "4", (5, 6)) ## ## There are no constraints for the ``constructor`` AST, it ## works for nested tuples of arrays of sets etc. result = mapLitsImpl(constructor, op, nested.boolVal) when isMainModule: import strutils from algorithm import sorted # helper for testing double substitution side effects which are handled # by `evalOnceAs` var counter = 0 proc identity[T](a:T):auto= counter.inc a block: # concat test let s1 = @[1, 2, 3] s2 = @[4, 5] s3 = @[6, 7] total = concat(s1, s2, s3) assert total == @[1, 2, 3, 4, 5, 6, 7] block: # count test let s1 = @[1, 2, 3, 2] s2 = @['a', 'b', 'x', 'a'] a1 = [1, 2, 3, 2] a2 = ['a', 'b', 'x', 'a'] r0 = count(s1, 0) r1 = count(s1, 1) r2 = count(s1, 2) r3 = count(s2, 'y') r4 = count(s2, 'x') r5 = count(s2, 'a') ar0 = count(a1, 0) ar1 = count(a1, 1) ar2 = count(a1, 2) ar3 = count(a2, 'y') ar4 = count(a2, 'x') ar5 = count(a2, 'a') assert r0 == 0 assert r1 == 1 assert r2 == 2 assert r3 == 0 assert r4 == 1 assert r5 == 2 assert ar0 == 0 assert ar1 == 1 assert ar2 == 2 assert ar3 == 0 assert ar4 == 1 assert ar5 == 2 block: # cycle tests let a = @[1, 2, 3] b: seq[int] = @[] c = [1, 2, 3] doAssert a.cycle(3) == @[1, 2, 3, 1, 2, 3, 1, 2, 3] doAssert a.cycle(0) == @[] #doAssert a.cycle(-1) == @[] # will not compile! doAssert b.cycle(3) == @[] doAssert c.cycle(3) == @[1, 2, 3, 1, 2, 3, 1, 2, 3] doAssert c.cycle(0) == @[] block: # repeat tests assert repeat(10, 5) == @[10, 10, 10, 10, 10] assert repeat(@[1,2,3], 2) == @[@[1,2,3], @[1,2,3]] assert repeat([1,2,3], 2) == @[[1,2,3], [1,2,3]] block: # deduplicates test let dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4] dup2 = @["a", "a", "c", "d", "d"] dup3 = [1, 1, 3, 4, 2, 2, 8, 1, 4] dup4 = ["a", "a", "c", "d", "d"] unique1 = deduplicate(dup1) unique2 = deduplicate(dup2) unique3 = deduplicate(dup3) unique4 = deduplicate(dup4) unique5 = deduplicate(dup1.sorted, true) unique6 = deduplicate(dup2, true) unique7 = deduplicate(dup3.sorted, true) unique8 = deduplicate(dup4, true) assert unique1 == @[1, 3, 4, 2, 8] assert unique2 == @["a", "c", "d"] assert unique3 == @[1, 3, 4, 2, 8] assert unique4 == @["a", "c", "d"] assert unique5 == @[1, 2, 3, 4, 8] assert unique6 == @["a", "c", "d"] assert unique7 == @[1, 2, 3, 4, 8] assert unique8 == @["a", "c", "d"] block: # zip test let short = @[1, 2, 3] long = @[6, 5, 4, 3, 2, 1] words = @["one", "two", "three"] ashort = [1, 2, 3] along = [6, 5, 4, 3, 2, 1] awords = ["one", "two", "three"] zip1 = zip(short, long) zip2 = zip(short, words) zip3 = zip(ashort, along) zip4 = zip(ashort, awords) zip5 = zip(ashort, words) assert zip1 == @[(1, 6), (2, 5), (3, 4)] assert zip2 == @[(1, "one"), (2, "two"), (3, "three")] assert zip3 == @[(1, 6), (2, 5), (3, 4)] assert zip4 == @[(1, "one"), (2, "two"), (3, "three")] assert zip5 == @[(1, "one"), (2, "two"), (3, "three")] assert zip1[2].b == 4 assert zip2[2].b == "three" assert zip3[2].b == 4 assert zip4[2].b == "three" assert zip5[2].b == "three" block: # distribute tests let numbers = @[1, 2, 3, 4, 5, 6, 7] doAssert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]] doAssert numbers.distribute(6)[0] == @[1, 2] doAssert numbers.distribute(6)[5] == @[7] let a = @[1, 2, 3, 4, 5, 6, 7] doAssert a.distribute(1, true) == @[@[1, 2, 3, 4, 5, 6, 7]] doAssert a.distribute(1, false) == @[@[1, 2, 3, 4, 5, 6, 7]] doAssert a.distribute(2, true) == @[@[1, 2, 3, 4], @[5, 6, 7]] doAssert a.distribute(2, false) == @[@[1, 2, 3, 4], @[5, 6, 7]] doAssert a.distribute(3, true) == @[@[1, 2, 3], @[4, 5], @[6, 7]] doAssert a.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]] doAssert a.distribute(4, true) == @[@[1, 2], @[3, 4], @[5, 6], @[7]] doAssert a.distribute(4, false) == @[@[1, 2], @[3, 4], @[5, 6], @[7]] doAssert a.distribute(5, true) == @[@[1, 2], @[3, 4], @[5], @[6], @[7]] doAssert a.distribute(5, false) == @[@[1, 2], @[3, 4], @[5, 6], @[7], @[]] doAssert a.distribute(6, true) == @[@[1, 2], @[3], @[4], @[5], @[6], @[7]] doAssert a.distribute(6, false) == @[ @[1, 2], @[3, 4], @[5, 6], @[7], @[], @[]] doAssert a.distribute(8, false) == a.distribute(8, true) doAssert a.distribute(90, false) == a.distribute(90, true) var b = @[0] for f in 1 .. 25: b.add(f) doAssert b.distribute(5, true)[4].len == 5 doAssert b.distribute(5, false)[4].len == 2 block: # map test let numbers = @[1, 4, 5, 8, 9, 7, 4] anumbers = [1, 4, 5, 8, 9, 7, 4] m1 = map(numbers, proc(x: int): int = 2*x) m2 = map(anumbers, proc(x: int): int = 2*x) assert m1 == @[2, 8, 10, 16, 18, 14, 8] assert m2 == @[2, 8, 10, 16, 18, 14, 8] block: # apply test var a = @["1", "2", "3", "4"] apply(a, proc(x: var string) = x &= "42") assert a == @["142", "242", "342", "442"] block: # filter proc test let colors = @["red", "yellow", "black"] acolors = ["red", "yellow", "black"] f1 = filter(colors, proc(x: string): bool = x.len < 6) f2 = filter(colors) do (x: string) -> bool : x.len > 5 f3 = filter(acolors, proc(x: string): bool = x.len < 6) f4 = filter(acolors) do (x: string) -> bool : x.len > 5 assert f1 == @["red", "black"] assert f2 == @["yellow"] assert f3 == @["red", "black"] assert f4 == @["yellow"] block: # filter iterator test let numbers = @[1, 4, 5, 8, 9, 7, 4] let anumbers = [1, 4, 5, 8, 9, 7, 4] assert toSeq(filter(numbers, proc (x: int): bool = x mod 2 == 0)) == @[4, 8, 4] assert toSeq(filter(anumbers, proc (x: int): bool = x mod 2 == 0)) == @[4, 8, 4] block: # keepIf test var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1] keepIf(floats, proc(x: float): bool = x > 10) assert floats == @[13.0, 12.5, 10.1] block: # delete tests let outcome = @[1,1,1,1,1,1,1,1] var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1] dest.delete(3, 8) assert outcome == dest, """\ Deleting range 3-9 from [1,1,1,2,2,2,2,2,2,1,1,1,1,1] is [1,1,1,1,1,1,1,1]""" block: # insert tests var dest = @[1,1,1,1,1,1,1,1] let src = @[2,2,2,2,2,2] outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1] dest.insert(src, 3) assert dest == outcome, """\ Inserting [2,2,2,2,2,2] into [1,1,1,1,1,1,1,1] at 3 is [1,1,1,2,2,2,2,2,2,1,1,1,1,1]""" block: # filterIt test let temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44] acceptable = filterIt(temperatures, it < 50 and it > -10) notAcceptable = filterIt(temperatures, it > 50 or it < -10) assert acceptable == @[-2.0, 24.5, 44.31] assert notAcceptable == @[-272.15, 99.9, -113.44] block: # keepItIf test var candidates = @["foo", "bar", "baz", "foobar"] keepItIf(candidates, it.len == 3 and it[0] == 'b') assert candidates == @["bar", "baz"] block: # all let numbers = @[1, 4, 5, 8, 9, 7, 4] anumbers = [1, 4, 5, 8, 9, 7, 4] len0seq : seq[int] = @[] assert all(numbers, proc (x: int): bool = return x < 10) == true assert all(numbers, proc (x: int): bool = return x < 9) == false assert all(len0seq, proc (x: int): bool = return false) == true assert all(anumbers, proc (x: int): bool = return x < 10) == true assert all(anumbers, proc (x: int): bool = return x < 9) == false block: # allIt let numbers = @[1, 4, 5, 8, 9, 7, 4] anumbers = [1, 4, 5, 8, 9, 7, 4] len0seq : seq[int] = @[] assert allIt(numbers, it < 10) == true assert allIt(numbers, it < 9) == false assert allIt(len0seq, false) == true assert allIt(anumbers, it < 10) == true assert allIt(anumbers, it < 9) == false block: # any let numbers = @[1, 4, 5, 8, 9, 7, 4] anumbers = [1, 4, 5, 8, 9, 7, 4] len0seq : seq[int] = @[] assert any(numbers, proc (x: int): bool = return x > 8) == true assert any(numbers, proc (x: int): bool = return x > 9) == false assert any(len0seq, proc (x: int): bool = return true) == false assert any(anumbers, proc (x: int): bool = return x > 8) == true assert any(anumbers, proc (x: int): bool = return x > 9) == false block: # anyIt let numbers = @[1, 4, 5, 8, 9, 7, 4] anumbers = [1, 4, 5, 8, 9, 7, 4] len0seq : seq[int] = @[] assert anyIt(numbers, it > 8) == true assert anyIt(numbers, it > 9) == false assert anyIt(len0seq, true) == false assert anyIt(anumbers, it > 8) == true assert anyIt(anumbers, it > 9) == false block: # toSeq test block: let numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9] odd_numbers = toSeq(filter(numeric) do (x: int) -> bool: if x mod 2 == 1: result = true) assert odd_numbers == @[1, 3, 5, 7, 9] block: doAssert [1,2].toSeq == @[1,2] doAssert @[1,2].toSeq == @[1,2] doAssert @[1,2].toSeq == @[1,2] doAssert toSeq(@[1,2]) == @[1,2] block: iterator myIter(seed:int):auto= for i in 0..