# # # Nim's Runtime Library # (c) Copyright 2010 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This module implements complex numbers ## and basic mathematical operations on them. ## ## Complex numbers are currently generic over 64-bit or 32-bit floats. runnableExamples: from std/math import almostEqual, sqrt func almostEqual(a, b: Complex): bool = almostEqual(a.re, b.re) and almostEqual(a.im, b.im) let z1 = complex(1.0, 2.0) z2 = complex(3.0, -4.0) assert almostEqual(z1 + z2, complex(4.0, -2.0)) assert almostEqual(z1 - z2, complex(-2.0, 6.0)) assert almostEqual(z1 * z2, complex(11.0, 2.0)) assert almostEqual(z1 / z2, complex(-0.2, 0.4)) assert almostEqual(abs(z1), sqrt(5.0)) assert almostEqual(conjugate(z1), complex(1.0, -2.0)) let (r, phi) = z1.polar assert almostEqual(rect(r, phi), z1) {.push checks: off, line_dir: off, stack_trace: off, debugger: off.} # the user does not want to trace a part of the standard library! import std/[math, strformat] type Complex*[T: SomeFloat] = object ## A complex number, consisting of a real and an imaginary part. re*, im*: T Complex64* = Complex[float64] ## Alias for a complex number using 64-bit floats. Complex32* = Complex[float32] ## Alias for a complex number using 32-bit floats. func complex*[T: SomeFloat](re: T; im: T = 0.0): Complex[T] = ## Returns a `Complex[T]` with real part `re` and imaginary part `im`. result.re = re result.im = im func complex32*(re: float32; im: float32 = 0.0): Complex32 = ## Returns a `Complex32` with real part `re` and imaginary part `im`. result.re = re result.im = im func complex64*(re: float64; im: float64 = 0.0): Complex64 = ## Returns a `Complex64` with real part `re` and imaginary part `im`. result.re = re result.im = im template im*(arg: typedesc[float32]): Complex32 = complex32(0, 1) ## Returns the imaginary unit (`complex32(0, 1)`). template im*(arg: typedesc[float64]): Complex64 = complex64(0, 1) ## Returns the imaginary unit (`complex64(0, 1)`). template im*(arg: float32): Complex32 = complex32(0, arg) ## Returns `arg` as an imaginary number (`complex32(0, arg)`). template im*(arg: float64): Complex64 = complex64(0, arg) ## Returns `arg` as an imaginary number (`complex64(0, arg)`). func abs*[T](z: Complex[T]): T = ## Returns the absolute value of `z`, ## that is the distance from (0, 0) to `z`. result = hypot(z.re, z.im) func abs2*[T](z: Complex[T]): T = ## Returns the squared absolute value of `z`, ## that is the squared distance from (0, 0) to `z`. ## This is more efficient than `abs(z) ^ 2`. result = z.re * z.re + z.im * z.im func sgn*[T](z: Complex[T]): Complex[T] = ## Returns the phase of `z` as a unit complex number, ## or 0 if `z` is 0. let a = abs(z) if a != 0: result = z / a func conjugate*[T](z: Complex[T]): Complex[T] = ## Returns the complex conjugate of `z` (`complex(z.re, -z.im)`). result.re = z.re result.im = -z.im func inv*[T](z: Complex[T]): Complex[T] = ## Returns the multiplicative inverse of `z` (`1/z`). conjugate(z) / abs2(z) func `==`*[T](x, y: Complex[T]): bool = ## Compares two complex numbers for equality. result = x.re == y.re and x.im == y.im func `+`*[T](x: T; y: Complex[T]): Complex[T] = ## Adds a real number to a complex number. result.re = x + y.re result.im = y.im func `+`*[T](x: Complex[T]; y: T): Complex[T] = ## Adds a complex number to a real number. result.re = x.re + y result.im = x.im func `+`*[T](x, y: Complex[T]): Complex[T] = ## Adds two complex numbers. result.re = x.re + y.re result.im = x.im + y.im func `-`*[T](z: Complex[T]): Complex[T] = ## Unary minus for complex numbers. result.re = -z.re result.im = -z.im func `-`*[T](x: T; y: Complex[T]): Complex[T] = ## Subtracts a complex number from a real number. result.re = x - y.re result.im = -y.im func `-`*[T](x: Complex[T]; y: T): Complex[T] = ## Subtracts a real number from a complex number. result.re = x.re - y result.im = x.im func `-`*[T](x, y: Complex[T]): Complex[T] = ## Subtracts two complex numbers. result.re = x.re - y.re result.im = x.im - y.im func `*`*[T](x: T; y: Complex[T]): Complex[T] = ## Multiplies a real number with a complex number. result.re = x * y.re result.im = x * y.im func `*`*[T](x: Complex[T]; y: T): Complex[T] = ## Multiplies a complex number with a real number. result.re = x.re * y result.im = x.im * y func `*`*[T](x, y: Complex[T]): Complex[T] = ## Multiplies two complex numbers. result.re = x.re * y.re - x.im * y.im result.im = x.im * y.re + x.re * y.im func `/`*[T](x: Complex[T]; y: T): Complex[T] = ## Divides a complex number by a real number. result.re = x.re / y result.im = x.im / y func `/`*[T](x: T; y: Complex[T]): Complex[T] = ## Divides a real number by a complex number. result = x * inv(y) func `/`*[T](x, y: Complex[T]): Complex[T] = ## Divides two complex numbers. x * conjugate(y) / abs2(y) func `+=`*[T](x: var Complex[T]; y: Complex[T]) = ## Adds `y` to `x`. x.re += y.re x.im += y.im func `-=`*[T](x: var Complex[T]; y: Complex[T]) = ## Subtracts `y` from `x`. x.re -= y.re x.im -= y.im func `*=`*[T](x: var Complex[T]; y: Complex[T]) = ## Multiplies `x` by `y`. let im = x.im * y.re + x.re * y.im x.re = x.re * y.re - x.im * y.im x.im = im func `/=`*[T](x: var Complex[T]; y: Complex[T]) = ## Divides `x` by `y` in place. x = x / y func sqrt*[T](z: Complex[T]): Complex[T] = ## Computes the ## ([principal](https://en.wikipedia.org/wiki/Square_root#Principal_square_root_of_a_complex_number)) ## square root of a complex number `z`. var x, y, w, r: T if z.re == 0.0 and z.im == 0.0: result = z else: x = abs(z.re) y = abs(z.im) if x >= y: r = y / x w = sqrt(x) * sqrt(0.5 * (1.0 + sqrt(1.0 + r * r))) else: r = x / y w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r))) if z.re >= 0.0: result.re = w result.im = z.im / (w * 2.0) else: result.im = if z.im >= 0.0: w else: -w result.re = z.im / (result.im + result.im) func exp*[T](z: Complex[T]): Complex[T] = ## Computes the exponential function (`e^z`). let rho = exp(z.re) theta = z.im result.re = rho * cos(theta) result.im = rho * sin(theta) func ln*[T](z: Complex[T]): Complex[T] = ## Returns the ## ([principal value](https://en.wikipedia.org/wiki/Complex_logarithm#Principal_value) ## of the) natural logarithm of `z`. result.re = ln(abs(z)) result.im = arctan2(z.im, z.re) func log10*[T](z: Complex[T]): Complex[T] = ## Returns the logarithm base 10 of `z`. ## ## **See also:** ## * `ln func<#ln,Complex[T]>`_ result = ln(z) / ln(10.0) func log2*[T](z: Complex[T]): Complex[T] = ## Returns the logarithm base 2 of `z`. ## ## **See also:** ## * `ln func<#ln,Complex[T]>`_ result = ln(z) / ln(2.0) func pow*[T](x, y: Complex[T]): Complex[T] = ## `x` raised to the power of `y`. if x.re == 0.0 and x.im == 0.0: if y.re == 0.0 and y.im == 0.0: result.re = 1.0 result.im = 0.0 else: result.re = 0.0 result.im = 0.0 elif y.re == 1.0 and y.im == 0.0: result = x elif y.re == -1.0 and y.im == 0.0: result = T(1.0) / x else: let rho = abs(x) theta = arctan2(x.im, x.re) s = pow(rho, y.re) * exp(-y.im * theta) r = y.re * theta + y.im * ln(rho) result.re = s * cos(r) result.im = s * sin(r) func pow*[T](x: Complex[T]; y: T): Complex[T] = ## The complex number `x` raised to the power of the real number `y`. pow(x, complex[T](y)) func sin*[T](z: Complex[T]): Complex[T] = ## Returns the sine of `z`. result.re = sin(z.re) * cosh(z.im) result.im = cos(z.re) * sinh(z.im) func arcsin*[T](z: Complex[T]): Complex[T] = ## Returns the inverse sine of `z`. result = -im(T) * ln(im(T) * z + sqrt(T(1.0) - z*z)) func cos*[T](z: Complex[T]): Complex[T] = ## Returns the cosine of `z`. result.re = cos(z.re) * cosh(z.im) result.im = -sin(z.re) * sinh(z.im) func arccos*[T](z: Complex[T]): Complex[T] = ## Returns the inverse cosine of `z`. result = -im(T) * ln(z + sqrt(z*z - T(1.0))) func tan*[T](z: Complex[T]): Complex[T] = ## Returns the tangent of `z`. result = sin(z) / cos(z) func arctan*[T](z: Complex[T]): Complex[T] = ## Returns the inverse tangent of `z`. result = T(0.5)*im(T) * (ln(T(1.0) - im(T)*z) - ln(T(1.0) + im(T)*z)) func cot*[T](z: Complex[T]): Complex[T] = ## Returns the cotangent of `z`. result = cos(z)/sin(z) func arccot*[T](z: Complex[T]): Complex[T] = ## Returns the inverse cotangent of `z`. result = T(0.5)*im(T) * (ln(T(1.0) - im(T)/z) - ln(T(1.0) + im(T)/z)) func sec*[T](z: Complex[T]): Complex[T] = ## Returns the secant of `z`. result = T(1.0) / cos(z) func arcsec*[T](z: Complex[T]): Complex[T] = ## Returns the inverse secant of `z`. result = -im(T) * ln(im(T) * sqrt(1.0 - 1.0/(z*z)) + T(1.0)/z) func csc*[T](z: Complex[T]): Complex[T] = ## Returns the cosecant of `z`. result = T(1.0) / sin(z) func arccsc*[T](z: Complex[T]): Complex[T] = ## Returns the inverse cosecant of `z`. result = -im(T) * ln(sqrt(T(1.0) - T(1.0)/(z*z)) + im(T)/z) func sinh*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic sine of `z`. result = T(0.5) * (exp(z) - exp(-z)) func arcsinh*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic sine of `z`. result = ln(z + sqrt(z*z + 1.0)) func cosh*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic cosine of `z`. result = T(0.5) * (exp(z) + exp(-z)) func arccosh*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic cosine of `z`. result = ln(z + sqrt(z*z - T(1.0))) func tanh*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic tangent of `z`. result = sinh(z) / cosh(z) func arctanh*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic tangent of `z`. result = T(0.5) * (ln((T(1.0)+z) / (T(1.0)-z))) func coth*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic cotangent of `z`. result = cosh(z) / sinh(z) func arccoth*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic cotangent of `z`. result = T(0.5) * (ln(T(1.0) + T(1.0)/z) - ln(T(1.0) - T(1.0)/z)) func sech*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic secant of `z`. result = T(2.0) / (exp(z) + exp(-z)) func arcsech*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic secant of `z`. result = ln(1.0/z + sqrt(T(1.0)/z+T(1.0)) * sqrt(T(1.0)/z-T(1.0))) func csch*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic cosecant of `z`. result = T(2.0) / (exp(z) - exp(-z)) func arccsch*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic cosecant of `z`. result = ln(T(1.0)/z + sqrt(T(1.0)/(z*z) + T(1.0))) func phase*[T](z: Complex[T]): T = ## Returns the phase (or argument) of `z`, that is the angle in polar representation. ## ## | `result = arctan2(z.im, z.re)` arctan2(z.im, z.re) func polar*[T](z: Complex[T]): tuple[r, phi: T] = ## Returns `z` in polar coordinates. ## ## | `result.r = abs(z)` ## | `result.phi = phase(z)` ## ## **See also:** ## * `rect func<#rect,T,T>`_ for the inverse operation (r: abs(z), phi: phase(z)) func rect*[T](r, phi: T): Complex[T] = ## Returns the complex number with polar coordinates `r` and `phi`. ## ## | `result.re = r * cos(phi)` ## | `result.im = r * sin(phi)` ## ## **See also:** ## * `polar func<#polar,Complex[T]>`_ for the inverse operation complex(r * cos(phi), r * sin(phi)) func `$`*(z: Complex): string = ## Returns `z`'s string representation as `"(re, im)"`. runnableExamples: doAssert $complex(1.0, 2.0) == "(1.0, 2.0)" result = "(" & $z.re & ", " & $z.im & ")" proc formatValueAsTuple(result: var string; value: Complex; specifier: string) = ## Format implementation for `Complex` representing the value as a (real, imaginary) tuple. result.add "(" formatValue(result, value.re, specifier) result.add ", " formatValue(result, value.im, specifier) result.add ")" proc formatValueAsComplexNumber(result: var string; value: Complex; specifier: string) = ## Format implementation for `Complex` representing the value as a (RE+IMj) number ## By default, the real and imaginary parts are formatted using the general ('g') format let specifier = if specifier.contains({'e', 'E', 'f', 'F', 'g', 'G'}): specifier.replace("j") else: specifier.replace('j', 'g') result.add "(" formatValue(result, value.re, specifier) if value.im >= 0 and not specifier.contains({'+', '-'}): result.add "+" formatValue(result, value.im, specifier) result.add "j)" proc formatValue*(result: var string; value: Complex; specifier: string) = ## Standard format implementation for `Complex`. It makes little ## sense to call this directly, but it is required to exist ## by the `&` macro. ## For complex numbers, we add a specific 'j' specifier, which formats ## the value as (A+Bj) like in mathematics. if specifier.len == 0: result.add $value elif 'j' in specifier: formatValueAsComplexNumber(result, value, specifier) else: formatValueAsTuple(result, value, specifier) {.pop.}