# # # Nim's Runtime Library # (c) Copyright 2010 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This module implements complex numbers. ## Complex numbers are currently implemented as generic on a 64-bit or 32-bit float. {.push checks: off, line_dir: off, stack_trace: off, debugger: off.} # the user does not want to trace a part of the standard library! import math type Complex*[T: SomeFloat] = object re*, im*: T ## A complex number, consisting of a real and an imaginary part. Complex64* = Complex[float64] ## Alias for a pair of 64-bit floats. Complex32* = Complex[float32] ## Alias for a pair of 32-bit floats. proc complex*[T: SomeFloat](re: T; im: T = 0.0): Complex[T] = result.re = re result.im = im proc complex32*(re: float32; im: float32 = 0.0): Complex[float32] = result.re = re result.im = im proc complex64*(re: float64; im: float64 = 0.0): Complex[float64] = result.re = re result.im = im template im*(arg: typedesc[float32]): Complex32 = complex[float32](0, 1) template im*(arg: typedesc[float64]): Complex64 = complex[float64](0, 1) template im*(arg: float32): Complex32 = complex[float32](0, arg) template im*(arg: float64): Complex64 = complex[float64](0, arg) proc abs*[T](z: Complex[T]): T = ## Returns the distance from (0,0) to ``z``. result = hypot(z.re, z.im) proc abs2*[T](z: Complex[T]): T = ## Returns the squared distance from (0,0) to ``z``. result = z.re*z.re + z.im*z.im proc conjugate*[T](z: Complex[T]): Complex[T] = ## Conjugates of complex number ``z``. result.re = z.re result.im = -z.im proc inv*[T](z: Complex[T]): Complex[T] = ## Multiplicatives inverse of complex number ``z``. conjugate(z) / abs2(z) proc `==` *[T](x, y: Complex[T]): bool = ## Compares two complex numbers ``x`` and ``y`` for equality. result = x.re == y.re and x.im == y.im proc `+` *[T](x: T; y: Complex[T]): Complex[T] = ## Adds a real number to a complex number. result.re = x + y.re result.im = y.im proc `+` *[T](x: Complex[T]; y: T): Complex[T] = ## Adds a complex number to a real number. result.re = x.re + y result.im = x.im proc `+` *[T](x, y: Complex[T]): Complex[T] = ## Adds two complex numbers. result.re = x.re + y.re result.im = x.im + y.im proc `-` *[T](z: Complex[T]): Complex[T] = ## Unary minus for complex numbers. result.re = -z.re result.im = -z.im proc `-` *[T](x: T; y: Complex[T]): Complex[T] = ## Subtracts a complex number from a real number. x + (-y) proc `-` *[T](x: Complex[T]; y: T): Complex[T] = ## Subtracts a real number from a complex number. result.re = x.re - y result.im = x.im proc `-` *[T](x, y: Complex[T]): Complex[T] = ## Subtracts two complex numbers. result.re = x.re - y.re result.im = x.im - y.im proc `/` *[T](x: Complex[T]; y: T): Complex[T] = ## Divides complex number ``x`` by real number ``y``. result.re = x.re / y result.im = x.im / y proc `/` *[T](x: T; y: Complex[T]): Complex[T] = ## Divides real number ``x`` by complex number ``y``. result = x * inv(y) proc `/` *[T](x, y: Complex[T]): Complex[T] = ## Divides ``x`` by ``y``. var r, den: T if abs(y.re) < abs(y.im): r = y.re / y.im den = y.im + r * y.re result.re = (x.re * r + x.im) / den result.im = (x.im * r - x.re) / den else: r = y.im / y.re den = y.re + r * y.im result.re = (x.re + r * x.im) / den result.im = (x.im - r * x.re) / den proc `*` *[T](x: T; y: Complex[T]): Complex[T] = ## Multiplies a real number and a complex number. result.re = x * y.re result.im = x * y.im proc `*` *[T](x: Complex[T]; y: T): Complex[T] = ## Multiplies a complex number with a real number. result.re = x.re * y result.im = x.im * y proc `*` *[T](x, y: Complex[T]): Complex[T] = ## Multiplies ``x`` with ``y``. result.re = x.re * y.re - x.im * y.im result.im = x.im * y.re + x.re * y.im proc `+=` *[T](x: var Complex[T]; y: Complex[T]) = ## Adds ``y`` to ``x``. x.re += y.re x.im += y.im proc `-=` *[T](x: var Complex[T]; y: Complex[T]) = ## Subtracts ``y`` from ``x``. x.re -= y.re x.im -= y.im proc `*=` *[T](x: var Complex[T]; y: Complex[T]) = ## Multiplies ``y`` to ``x``. let im = x.im * y.re + x.re * y.im x.re = x.re * y.re - x.im * y.im x.im = im proc `/=` *[T](x: var Complex[T]; y: Complex[T]) = ## Divides ``x`` by ``y`` in place. x = x / y proc sqrt*[T](z: Complex[T]): Complex[T] = ## Square root for a complex number ``z``. var x, y, w, r: T if z.re == 0.0 and z.im == 0.0: result = z else: x = abs(z.re) y = abs(z.im) if x >= y: r = y / x w = sqrt(x) * sqrt(0.5 * (1.0 + sqrt(1.0 + r * r))) else: r = x / y w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r))) if z.re >= 0.0: result.re = w result.im = z.im / (w * 2.0) else: result.im = if z.im >= 0.0: w else: -w result.re = z.im / (result.im + result.im) proc exp*[T](z: Complex[T]): Complex[T] = ## ``e`` raised to the power ``z``. var rho = exp(z.re) theta = z.im result.re = rho * cos(theta) result.im = rho * sin(theta) proc ln*[T](z: Complex[T]): Complex[T] = ## Returns the natural log of ``z``. result.re = ln(abs(z)) result.im = arctan2(z.im, z.re) proc log10*[T](z: Complex[T]): Complex[T] = ## Returns the log base 10 of ``z``. result = ln(z) / ln(10.0) proc log2*[T](z: Complex[T]): Complex[T] = ## Returns the log base 2 of ``z``. result = ln(z) / ln(2.0) proc pow*[T](x, y: Complex[T]): Complex[T] = ## ``x`` raised to the power ``y``. if x.re == 0.0 and x.im == 0.0: if y.re == 0.0 and y.im == 0.0: result.re = 1.0 result.im = 0.0 else: result.re = 0.0 result.im = 0.0 elif y.re == 1.0 and y.im == 0.0: result = x elif y.re == -1.0 and y.im == 0.0: result = T(1.0) / x else: var rho = abs(x) theta = arctan2(x.im, x.re) s = pow(rho, y.re) * exp(-y.im * theta) r = y.re * theta + y.im * ln(rho) result.re = s * cos(r) result.im = s * sin(r) proc pow*[T](x: Complex[T]; y: T): Complex[T] = ## Complex number ``x`` raised to the power ``y``. pow(x, complex[T](y)) proc sin*[T](z: Complex[T]): Complex[T] = ## Returns the sine of ``z``. result.re = sin(z.re) * cosh(z.im) result.im = cos(z.re) * sinh(z.im) proc arcsin*[T](z: Complex[T]): Complex[T] = ## Returns the inverse sine of ``z``. result = -im(T) * ln(im(T) * z + sqrt(T(1.0) - z*z)) proc cos*[T](z: Complex[T]): Complex[T] = ## Returns the cosine of ``z``. result.re = cos(z.re) * cosh(z.im) result.im = -sin(z.re) * sinh(z.im) proc arccos*[T](z: Complex[T]): Complex[T] = ## Returns the inverse cosine of ``z``. result = -im(T) * ln(z + sqrt(z*z - T(1.0))) proc tan*[T](z: Complex[T]): Complex[T] = ## Returns the tangent of ``z``. result = sin(z) / cos(z) proc arctan*[T](z: Complex[T]): Complex[T] = ## Returns the inverse tangent of ``z``. result = T(0.5)*im(T) * (ln(T(1.0) - im(T)*z) - ln(T(1.0) + im(T)*z)) proc cot*[T](z: Complex[T]): Complex[T] = ## Returns the cotangent of ``z``. result = cos(z)/sin(z) proc arccot*[T](z: Complex[T]): Complex[T] = ## Returns the inverse cotangent of ``z``. result = T(0.5)*im(T) * (ln(T(1.0) - im(T)/z) - ln(T(1.0) + im(T)/z)) proc sec*[T](z: Complex[T]): Complex[T] = ## Returns the secant of ``z``. result = T(1.0) / cos(z) proc arcsec*[T](z: Complex[T]): Complex[T] = ## Returns the inverse secant of ``z``. result = -im(T) * ln(im(T) * sqrt(1.0 - 1.0/(z*z)) + T(1.0)/z) proc csc*[T](z: Complex[T]): Complex[T] = ## Returns the cosecant of ``z``. result = T(1.0) / sin(z) proc arccsc*[T](z: Complex[T]): Complex[T] = ## Returns the inverse cosecant of ``z``. result = -im(T) * ln(sqrt(T(1.0) - T(1.0)/(z*z)) + im(T)/z) proc sinh*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic sine of ``z``. result = T(0.5) * (exp(z) - exp(-z)) proc arcsinh*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic sine of ``z``. result = ln(z + sqrt(z*z + 1.0)) proc cosh*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic cosine of ``z``. result = T(0.5) * (exp(z) + exp(-z)) proc arccosh*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic cosine of ``z``. result = ln(z + sqrt(z*z - T(1.0))) proc tanh*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic tangent of ``z``. result = sinh(z) / cosh(z) proc arctanh*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic tangent of ``z``. result = T(0.5) * (ln((T(1.0)+z) / (T(1.0)-z))) proc sech*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic secant of ``z``. result = T(2.0) / (exp(z) + exp(-z)) proc arcsech*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic secant of ``z``. result = ln(1.0/z + sqrt(T(1.0)/z+T(1.0)) * sqrt(T(1.0)/z-T(1.0))) proc csch*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic cosecant of ``z``. result = T(2.0) / (exp(z) - exp(-z)) proc arccsch*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic cosecant of ``z``. result = ln(T(1.0)/z + sqrt(T(1.0)/(z*z) + T(1.0))) proc coth*[T](z: Complex[T]): Complex[T] = ## Returns the hyperbolic cotangent of ``z``. result = cosh(z) / sinh(z) proc arccoth*[T](z: Complex[T]): Complex[T] = ## Returns the inverse hyperbolic cotangent of ``z``. result = T(0.5) * (ln(T(1.0) + T(1.0)/z) - ln(T(1.0) - T(1.0)/z)) proc phase*[T](z: Complex[T]): T = ## Returns the phase of ``z``. arctan2(z.im, z.re) proc polar*[T](z: Complex[T]): tuple[r, phi: T] = ## Returns ``z`` in polar coordinates. (r: abs(z), phi: phase(z)) proc rect*[T](r, phi: T): Complex[T] = ## Returns the complex number with polar coordinates ``r`` and ``phi``. ## ## | ``result.re = r * cos(phi)`` ## | ``result.im = r * sin(phi)`` complex(r * cos(phi), r * sin(phi)) proc `$`*(z: Complex): string = ## Returns ``z``'s string representation as ``"(re, im)"``. result = "(" & $z.re & ", " & $z.im & ")" {.pop.}