# # # Nimrod's Runtime Library # (c) Copyright 2010 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This module implements complex numbers. {.push checks:off, line_dir:off, stack_trace:off, debugger:off.} # the user does not want to trace a part # of the standard library! import math const EPS = 5.0e-6 ## Epsilon used for float comparisons (should be smaller ## if float is really float64, but w/ the current version ## it seems to be float32?) type TComplex* = tuple[re, im: float] ## a complex number, consisting of a real and an imaginary part proc `==` *(x, y: TComplex): bool = ## Compare two complex numbers `x` and `y` for equality. result = x.re == y.re and x.im == y.im proc `=~` *(x, y: TComplex): bool = ## Compare two complex numbers `x` and `y` approximately. result = abs(x.re-y.re) y: temp = y / x result = x * sqrt(1.0 + temp * temp) else: temp = x / y result = y * sqrt(1.0 + temp * temp) proc sqrt*(z: TComplex): TComplex = ## Square root for a complex number `z`. var x, y, w, r: float if z.re == 0.0 and z.im == 0.0: result = z else: x = abs(z.re) y = abs(z.im) if x >= y: r = y / x w = sqrt(x) * sqrt(0.5 * (1.0 + sqrt(1.0 + r * r))) else: r = x / y w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r))) if z.re >= 0.0: result.re = w result.im = z.im / (w * 2.0) else: if z.im >= 0.0: result.im = w else: result.im = -w result.re = z.im / (result.im + result.im) proc exp*(z: TComplex): TComplex = ## e raised to the power `z`. var rho = exp(z.re) var theta = z.im result.re = rho*cos(theta) result.im = rho*sin(theta) proc ln*(z: TComplex): TComplex = ## Returns the natural log of `z`. result.re = ln(abs(z)) result.im = arctan2(z.im,z.re) proc log10*(z: TComplex): TComplex = ## Returns the log base 10 of `z`. result = ln(z)/ln(10.0) proc log2*(z: TComplex): TComplex = ## Returns the log base 2 of `z`. result = ln(z)/ln(2.0) proc pow*(x, y: TComplex): TComplex = ## `x` raised to the power `y`. if x.re == 0.0 and x.im == 0.0: if y.re == 0.0 and y.im == 0.0: result.re = 1.0 result.im = 0.0 else: result.re = 0.0 result.im = 0.0 elif y.re == 1.0 and y.im == 0.0: result = x elif y.re == -1.0 and y.im == 0.0: result = 1.0/x else: var rho = sqrt(x.re*x.re + x.im*x.im) var theta = arctan2(x.im,x.re) var s = pow(rho,y.re) * exp(-y.im*theta) var r = y.re*theta + y.im*ln(rho) result.re = s*cos(r) result.im = s*sin(r) proc sin*(z: TComplex): TComplex = ## Returns the sine of `z`. result.re = sin(z.re)*cosh(z.im) result.im = cos(z.re)*sinh(z.im) proc arcsin*(z: TComplex): TComplex = ## Returns the inverse sine of `z`. var i: TComplex = (0.0,1.0) result = -i*ln(i*z + sqrt(1.0-z*z)) proc cos*(z: TComplex): TComplex = ## Returns the cosine of `z`. result.re = cos(z.re)*cosh(z.im) result.im = -sin(z.re)*sinh(z.im) proc arccos*(z: TComplex): TComplex = ## Returns the inverse cosine of `z`. var i: TComplex = (0.0,1.0) result = -i*ln(z + sqrt(z*z-1.0)) proc tan*(z: TComplex): TComplex = ## Returns the tangent of `z`. result = sin(z)/cos(z) proc cot*(z: TComplex): TComplex = ## Returns the cotangent of `z`. result = cos(z)/sin(z) proc sec*(z: TComplex): TComplex = ## Returns the secant of `z`. result = 1.0/cos(z) proc csc*(z: TComplex): TComplex = ## Returns the cosecant of `z`. result = 1.0/sin(z) proc sinh*(z: TComplex): TComplex = ## Returns the hyperbolic sine of `z`. result = 0.5*(exp(z)-exp(-z)) proc cosh*(z: TComplex): TComplex = ## Returns the hyperbolic cosine of `z`. result = 0.5*(exp(z)+exp(-z)) proc `$`*(z: TComplex): string = ## Returns `z`'s string representation as ``"(re, im)"``. result = "(" & $z.re & ", " & $z.im & ")" {.pop.} when isMainModule: var z = (0.0, 0.0) var oo = (1.0,1.0) var a = (1.0, 2.0) var b = (-1.0, -2.0) var m1 = (-1.0, 0.0) var i = (0.0,1.0) var one = (1.0,0.0) var tt = (10.0, 20.0) var ipi = (0.0, -PI) assert( a == a ) assert( (a-a) == z ) assert( (a+b) == z ) assert( (a/b) == m1 ) assert( (1.0/a) == (0.2, -0.4) ) assert( (a*b) == (3.0, -4.0) ) assert( 10.0*a == tt ) assert( a*10.0 == tt ) assert( tt/10.0 == a ) assert( oo+(-1.0) == i ) assert( (-1.0)+oo == i ) assert( abs(oo) == sqrt(2.0) ) assert( sqrt(m1) == i ) assert( exp(ipi) =~ m1 ) assert( pow(a,b) =~ (-3.72999124927876, -1.68815826725068) ) assert( pow(z,a) =~ (0.0, 0.0) ) assert( pow(z,z) =~ (1.0, 0.0) ) assert( pow(a,one) =~ a ) assert( pow(a,m1) =~ (0.2, -0.4) ) assert( ln(a) =~ (0.804718956217050, 1.107148717794090) ) assert( log10(a) =~ (0.349485002168009, 0.480828578784234) ) assert( log2(a) =~ (1.16096404744368, 1.59727796468811) ) assert( sin(a) =~ (3.16577851321617, 1.95960104142161) ) assert( cos(a) =~ (2.03272300701967, -3.05189779915180) ) assert( tan(a) =~ (0.0338128260798967, 1.0147936161466335) ) assert( cot(a) =~ 1.0/tan(a) ) assert( sec(a) =~ 1.0/cos(a) ) assert( csc(a) =~ 1.0/sin(a) ) assert( arcsin(a) =~ (0.427078586392476, 1.528570919480998) ) assert( arccos(a) =~ (1.14371774040242, -1.52857091948100) ) assert( cosh(a) =~ (-0.642148124715520, 1.068607421382778) ) assert( sinh(a) =~ (-0.489056259041294, 1.403119250622040) )