#
#
#            Nimrod's Runtime Library
#        (c) Copyright 2011 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

##   Constructive mathematics is naturally typed. -- Simon Thompson
## 
## Basic math routines for Nimrod.
## This module is available for the ECMAScript target.

{.push debugger:off .} # the user does not want to trace a part
                       # of the standard library!

{.push checks:off, line_dir:off, stack_trace:off.}

when defined(Posix): 
  {.passl: "-lm".}

const
  PI* = 3.1415926535897932384626433 ## the circle constant PI (Ludolph's number)
  E* = 2.71828182845904523536028747 ## Euler's number

  MaxFloat64Precision* = 16 ## maximum number of meaningful digits
                            ## after the decimal point for Nimrod's
                            ## ``float64`` type.
  MaxFloat32Precision* = 8  ## maximum number of meaningful digits
                            ## after the decimal point for Nimrod's
                            ## ``float32`` type.
  MaxFloatPrecision* = MaxFloat64Precision ## maximum number of 
                                           ## meaningful digits
                                           ## after the decimal point 
                                           ## for Nimrod's ``float`` type.

type
  TFloatClass* = enum ## describes the class a floating point value belongs to.
                      ## This is the type that is returned by `classify`.
    fcNormal,    ## value is an ordinary nonzero floating point value
    fcSubnormal, ## value is a subnormal (a very small) floating point value
    fcZero,      ## value is zero
    fcNegZero,   ## value is the negative zero
    fcNan,       ## value is Not-A-Number (NAN)
    fcInf,       ## value is positive infinity
    fcNegInf     ## value is negative infinity

proc classify*(x: float): TFloatClass = 
  ## classifies a floating point value. Returns `x`'s class as specified by
  ## `TFloatClass`.
    
  # ECMAScript and most C compilers have no classify:
  if x == 0.0:
    if 1.0/x == Inf:
      return fcZero
    else:
      return fcNegZero
  if x*0.5 == x:
    if x > 0.0: return fcInf
    else: return fcNegInf
  if x != x: return fcNan
  return fcNormal
  # XXX: fcSubnormal is not detected!


proc binom*(n, k: int): int {.noSideEffect.} = 
  ## computes the binomial coefficient
  if k <= 0: return 1
  if 2*k > n: return binom(n, n-k)
  result = n
  for i in countup(2, k):
    result = (result * (n + 1 - i)) div i
    
proc fac*(n: int): int {.noSideEffect.} = 
  ## computes the faculty function
  result = 1
  for i in countup(2, n):
    result = result * i

proc isPowerOfTwo*(x: int): bool {.noSideEffect.} =
  ## returns true, if x is a power of two, false otherwise.
  ## Negative numbers are not a power of two.
  return (x and -x) == x

proc nextPowerOfTwo*(x: int): int =
  ## returns the nearest power of two, so that
  ## result**2 >= x > (result-1)**2.
  result = x - 1
  when defined(cpu64):
    result = result or (result shr 32)
  result = result or (result shr 16)
  result = result or (result shr 8)
  result = result or (result shr 4)
  result = result or (result shr 2)
  result = result or (result shr 1)
  Inc(result)

proc countBits32*(n: int32): int {.noSideEffect.} =
  ## counts the set bits in `n`.
  var v = n
  v = v -% ((v shr 1'i32) and 0x55555555'i32)
  v = (v and 0x33333333'i32) +% ((v shr 2'i32) and 0x33333333'i32)
  result = ((v +% (v shr 4'i32) and 0xF0F0F0F'i32) *% 0x1010101'i32) shr 24'i32

proc sum*[T](x: openarray[T]): T {.noSideEffect.} = 
  ## computes the sum of the elements in `x`. 
  ## If `x` is empty, 0 is returned.
  for i in items(x): result = result + i

proc mean*(x: openarray[float]): float {.noSideEffect.} = 
  ## computes the mean of the elements in `x`. 
  ## If `x` is empty, NaN is returned.
  result = sum(x) / toFloat(len(x))

proc variance*(x: openarray[float]): float {.noSideEffect.} = 
  ## computes the variance of the elements in `x`. 
  ## If `x` is empty, NaN is returned.
  result = 0.0
  var m = mean(x)
  for i in 0 .. high(x):
    var diff = x[i] - m
    result = result + diff*diff
  result = result / toFloat(len(x))

when not defined(ECMAScript):
  proc random*(max: int): int
    ## returns a random number in the range 0..max-1. The sequence of
    ## random number is always the same, unless `randomize` is called
    ## which initializes the random number generator with a "random"
    ## number, i.e. a tickcount.
  proc randomize*()
    ## initializes the random number generator with a "random"
    ## number, i.e. a tickcount. Note: Does nothing for the ECMAScript target,
    ## as ECMAScript does not support this.
  
  proc sqrt*(x: float): float {.importc: "sqrt", header: "<math.h>".}
    ## computes the square root of `x`.
  
  proc ln*(x: float): float {.importc: "log", header: "<math.h>".}
    ## computes ln(x).
  proc log10*(x: float): float {.importc: "log10", header: "<math.h>".}
  proc log2*(x: float): float = return ln(x) / ln(2.0)
  proc exp*(x: float): float {.importc: "exp", header: "<math.h>".}
    ## computes e**x.
  
  proc frexp*(x: float, exponent: var int): float {.
    importc: "frexp", header: "<math.h>".}
    ## Split a number into mantissa and exponent.
    ## `frexp` calculates the mantissa m (a float greater than or equal to 0.5
    ## and less than 1) and the integer value n such that `x` (the original
    ## float value) equals m * 2**n. frexp stores n in `exponent` and returns
    ## m.
  
  proc round*(x: float): int {.importc: "lrint", nodecl.}
    ## converts a float to an int by rounding.  
  
  proc arccos*(x: float): float {.importc: "acos", header: "<math.h>".}
  proc arcsin*(x: float): float {.importc: "asin", header: "<math.h>".}
  proc arctan*(x: float): float {.importc: "atan", header: "<math.h>".}
  proc arctan2*(y, x: float): float {.importc: "atan2", header: "<math.h>".}
    ## Calculate the arc tangent of `y` / `x`.
    ## `atan2` returns the arc tangent of `y` / `x`; it produces correct
    ## results even when the resulting angle is near pi/2 or -pi/2
    ## (`x` near 0).
  
  proc cos*(x: float): float {.importc: "cos", header: "<math.h>".}
  proc cosh*(x: float): float {.importc: "cosh", header: "<math.h>".}
  proc hypot*(x, y: float): float {.importc: "hypot", header: "<math.h>".}
    ## same as ``sqrt(x*x + y*y)``.
  
  proc sinh*(x: float): float {.importc: "sinh", header: "<math.h>".}
  proc sin*(x: float): float {.importc: "sin", header: "<math.h>".}
  proc tan*(x: float): float {.importc: "tan", header: "<math.h>".}
  proc tanh*(x: float): float {.importc: "tanh", header: "<math.h>".}
  proc pow*(x, y: float): float {.importc: "pow", header: "<math.h>".}
    ## computes x to power raised of y.
    
  # C procs:
  proc gettime(dummy: ptr cint): cint {.importc: "time", header: "<time.h>".}
  proc srand(seed: cint) {.importc: "srand", nodecl.}
  proc rand(): cint {.importc: "rand", nodecl.}
    
  proc randomize() = srand(gettime(nil))
  proc random(max: int): int = return int(rand()) mod max

  proc trunc*(x: float): float {.importc: "trunc", nodecl.}
  proc floor*(x: float): float {.importc: "floor", nodecl.}

else:  
  proc mathrandom(): float {.importc: "Math.random", nodecl.}
  proc floor*(x: float): float {.importc: "Math.floor", nodecl.}
  proc random*(max: int): int = return floor(mathrandom() * max)
  proc randomize*() = nil
  
  proc sqrt*(x: float): float {.importc: "Math.sqrt", nodecl.}
  proc ln*(x: float): float {.importc: "Math.log", nodecl.}
  proc log10*(x: float): float = return ln(x) / ln(10.0)
  proc log2*(x: float): float = return ln(x) / ln(2.0)

  proc exp*(x: float): float {.importc: "Math.exp", nodecl.}
  proc round*(x: float): int {.importc: "Math.round", nodecl.}
  proc pow*(x, y: float): float {.importc: "Math.pow", nodecl.}
  
  proc frexp*(x: float, exponent: var int): float =
    if x == 0.0:
      exponent = 0.0
      result = 0.0
    elif x < 0.0:
      result = -frexp(-x, exponent)
    else:
      var ex = floor(log2(x))
      exponent = round(ex)
      result = x / pow(2.0, ex)

  proc arccos*(x: float): float {.importc: "Math.acos", nodecl.}
  proc arcsin*(x: float): float {.importc: "Math.asin", nodecl.}
  proc arctan*(x: float): float {.importc: "Math.atan", nodecl.}
  proc arctan2*(y, x: float): float {.importc: "Math.atan2", nodecl.}
  
  proc cos*(x: float): float {.importc: "Math.cos", nodecl.}
  proc cosh*(x: float): float = return (exp(x)+exp(-x))*0.5
  proc hypot*(x, y: float): float = return sqrt(x*x + y*y)
  proc sinh*(x: float): float = return (exp(x)-exp(-x))*0.5
  proc sin*(x: float): float {.importc: "Math.sin", nodecl.}
  proc tan*(x: float): float {.importc: "Math.tan", nodecl.}
  proc tanh*(x: float): float =
    var y = exp(2.0*x)
    return (y-1.0)/(y+1.0)

type
  TRunningStat* = object  ## an accumulator for statistical data
    n*: int               ## number of pushed data
    sum*, min*, max*, mean*: float ## self-explaining
    oldM, oldS, newS: float

proc push*(s: var TRunningStat, x: float) = 
  ## pushes a value `x` for processing
  inc(s.n)
  # See Knuth TAOCP vol 2, 3rd edition, page 232
  if s.n == 1:
    s.min = x
    s.max = x
    s.oldM = x
    s.mean = x
    s.oldS = 0.0
  else:
    if s.min > x: s.min = x
    if s.max < x: s.max = x
    s.mean = s.oldM + (x - s.oldM)/toFloat(s.n)
    s.newS = s.oldS + (x - s.oldM)*(x - s.mean)

    # set up for next iteration:
    s.oldM = s.mean
    s.oldS = s.newS
  s.sum = s.sum + x
  
proc push*(s: var TRunningStat, x: int) = 
  ## pushes a value `x` for processing. `x` is simply converted to ``float``
  ## and the other push operation is called.
  push(s, toFloat(x))
  
proc variance*(s: TRunningStat): float = 
  ## computes the current variance of `s`
  if s.n > 1: result = s.newS / (toFloat(s.n - 1))

proc standardDeviation*(s: TRunningStat): float = 
  ## computes the current standard deviation of `s`
  result = sqrt(variance(s))

{.pop.}
{.pop.}