# # # Nimrod's Runtime Library # (c) Copyright 2012 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## Constructive mathematics is naturally typed. -- Simon Thompson ## ## Basic math routines for Nimrod. ## This module is available for the `JavaScript target ## `_. include "system/inclrtl" {.push debugger:off .} # the user does not want to trace a part # of the standard library! {.push checks:off, line_dir:off, stack_trace:off.} when defined(Posix) and not defined(haiku): {.passl: "-lm".} when not defined(js): import times const PI* = 3.1415926535897932384626433 ## the circle constant PI (Ludolph's number) E* = 2.71828182845904523536028747 ## Euler's number MaxFloat64Precision* = 16 ## maximum number of meaningful digits ## after the decimal point for Nimrod's ## ``float64`` type. MaxFloat32Precision* = 8 ## maximum number of meaningful digits ## after the decimal point for Nimrod's ## ``float32`` type. MaxFloatPrecision* = MaxFloat64Precision ## maximum number of ## meaningful digits ## after the decimal point ## for Nimrod's ``float`` type. type TFloatClass* = enum ## describes the class a floating point value belongs to. ## This is the type that is returned by `classify`. fcNormal, ## value is an ordinary nonzero floating point value fcSubnormal, ## value is a subnormal (a very small) floating point value fcZero, ## value is zero fcNegZero, ## value is the negative zero fcNan, ## value is Not-A-Number (NAN) fcInf, ## value is positive infinity fcNegInf ## value is negative infinity proc classify*(x: float): TFloatClass = ## classifies a floating point value. Returns `x`'s class as specified by ## `TFloatClass`. # JavaScript and most C compilers have no classify: if x == 0.0: if 1.0/x == Inf: return fcZero else: return fcNegZero if x*0.5 == x: if x > 0.0: return fcInf else: return fcNegInf if x != x: return fcNan return fcNormal # XXX: fcSubnormal is not detected! proc binom*(n, k: int): int {.noSideEffect.} = ## computes the binomial coefficient if k <= 0: return 1 if 2*k > n: return binom(n, n-k) result = n for i in countup(2, k): result = (result * (n + 1 - i)) div i proc fac*(n: int): int {.noSideEffect.} = ## computes the faculty/factorial function. result = 1 for i in countup(2, n): result = result * i proc isPowerOfTwo*(x: int): bool {.noSideEffect.} = ## returns true, if `x` is a power of two, false otherwise. ## Zero and negative numbers are not a power of two. return (x != 0) and ((x and (x - 1)) == 0) proc nextPowerOfTwo*(x: int): int {.noSideEffect.} = ## returns `x` rounded up to the nearest power of two. ## Zero and negative numbers get rounded up to 1. result = x - 1 when defined(cpu64): result = result or (result shr 32) when sizeof(int) > 16: result = result or (result shr 16) when sizeof(int) > 8: result = result or (result shr 8) result = result or (result shr 4) result = result or (result shr 2) result = result or (result shr 1) result += 1 + ord(x<=0) proc countBits32*(n: int32): int {.noSideEffect.} = ## counts the set bits in `n`. var v = n v = v -% ((v shr 1'i32) and 0x55555555'i32) v = (v and 0x33333333'i32) +% ((v shr 2'i32) and 0x33333333'i32) result = ((v +% (v shr 4'i32) and 0xF0F0F0F'i32) *% 0x1010101'i32) shr 24'i32 proc sum*[T](x: openArray[T]): T {.noSideEffect.} = ## computes the sum of the elements in `x`. ## If `x` is empty, 0 is returned. for i in items(x): result = result + i proc mean*(x: openArray[float]): float {.noSideEffect.} = ## computes the mean of the elements in `x`. ## If `x` is empty, NaN is returned. result = sum(x) / toFloat(len(x)) proc variance*(x: openArray[float]): float {.noSideEffect.} = ## computes the variance of the elements in `x`. ## If `x` is empty, NaN is returned. result = 0.0 var m = mean(x) for i in 0 .. high(x): var diff = x[i] - m result = result + diff*diff result = result / toFloat(len(x)) proc random*(max: int): int {.gcsafe.} ## returns a random number in the range 0..max-1. The sequence of ## random number is always the same, unless `randomize` is called ## which initializes the random number generator with a "random" ## number, i.e. a tickcount. proc random*(max: float): float {.gcsafe.} ## returns a random number in the range 0..".} ## computes the square root of `x`. proc ln*(x: float): float {.importc: "log", header: "".} ## computes ln(x). proc log10*(x: float): float {.importc: "log10", header: "".} proc log2*(x: float): float = return ln(x) / ln(2.0) proc exp*(x: float): float {.importc: "exp", header: "".} ## computes e**x. proc frexp*(x: float, exponent: var int): float {. importc: "frexp", header: "".} ## Split a number into mantissa and exponent. ## `frexp` calculates the mantissa m (a float greater than or equal to 0.5 ## and less than 1) and the integer value n such that `x` (the original ## float value) equals m * 2**n. frexp stores n in `exponent` and returns ## m. proc round*(x: float): int {.importc: "lrint", header: "".} ## converts a float to an int by rounding. proc arccos*(x: float): float {.importc: "acos", header: "".} proc arcsin*(x: float): float {.importc: "asin", header: "".} proc arctan*(x: float): float {.importc: "atan", header: "".} proc arctan2*(y, x: float): float {.importc: "atan2", header: "".} ## Calculate the arc tangent of `y` / `x`. ## `atan2` returns the arc tangent of `y` / `x`; it produces correct ## results even when the resulting angle is near pi/2 or -pi/2 ## (`x` near 0). proc cos*(x: float): float {.importc: "cos", header: "".} proc cosh*(x: float): float {.importc: "cosh", header: "".} proc hypot*(x, y: float): float {.importc: "hypot", header: "".} ## same as ``sqrt(x*x + y*y)``. proc sinh*(x: float): float {.importc: "sinh", header: "".} proc sin*(x: float): float {.importc: "sin", header: "".} proc tan*(x: float): float {.importc: "tan", header: "".} proc tanh*(x: float): float {.importc: "tanh", header: "".} proc pow*(x, y: float): float {.importc: "pow", header: "".} ## computes x to power raised of y. # C procs: proc gettime(dummy: ptr cint): cint {.importc: "time", header: "".} proc srand(seed: cint) {.importc: "srand", header: "".} proc rand(): cint {.importc: "rand", header: "".} when not defined(windows): proc srand48(seed: clong) {.importc: "srand48", header: "".} proc drand48(): float {.importc: "drand48", header: "".} proc random(max: float): float = result = drand48() * max when defined(windows): proc random(max: float): float = # we are hardcodeing this because # importcing macros is extremely problematic # and because the value is publicly documented # on MSDN and very unlikely to change const rand_max = 32767 result = (float(rand()) / float(rand_max)) * max proc randomize() = randomize(cast[int](epochTime())) proc randomize(seed: int) = srand(cint(seed)) when defined(srand48): srand48(seed) proc random(max: int): int = result = int(rand()) mod max proc trunc*(x: float): float {.importc: "trunc", header: "".} proc floor*(x: float): float {.importc: "floor", header: "".} proc ceil*(x: float): float {.importc: "ceil", header: "".} proc fmod*(x, y: float): float {.importc: "fmod", header: "".} else: proc mathrandom(): float {.importc: "Math.random", nodecl.} proc floor*(x: float): float {.importc: "Math.floor", nodecl.} proc ceil*(x: float): float {.importc: "Math.ceil", nodecl.} proc random(max: int): int = result = int(floor(mathrandom() * float(max))) proc random(max: float): float = result = float(mathrandom() * float(max)) proc randomize() = discard proc randomize(seed: int) = discard proc sqrt*(x: float): float {.importc: "Math.sqrt", nodecl.} proc ln*(x: float): float {.importc: "Math.log", nodecl.} proc log10*(x: float): float = return ln(x) / ln(10.0) proc log2*(x: float): float = return ln(x) / ln(2.0) proc exp*(x: float): float {.importc: "Math.exp", nodecl.} proc round*(x: float): int {.importc: "Math.round", nodecl.} proc pow*(x, y: float): float {.importc: "Math.pow", nodecl.} proc frexp*(x: float, exponent: var int): float = if x == 0.0: exponent = 0 result = 0.0 elif x < 0.0: result = -frexp(-x, exponent) else: var ex = floor(log2(x)) exponent = round(ex) result = x / pow(2.0, ex) proc arccos*(x: float): float {.importc: "Math.acos", nodecl.} proc arcsin*(x: float): float {.importc: "Math.asin", nodecl.} proc arctan*(x: float): float {.importc: "Math.atan", nodecl.} proc arctan2*(y, x: float): float {.importc: "Math.atan2", nodecl.} proc cos*(x: float): float {.importc: "Math.cos", nodecl.} proc cosh*(x: float): float = return (exp(x)+exp(-x))*0.5 proc hypot*(x, y: float): float = return sqrt(x*x + y*y) proc sinh*(x: float): float = return (exp(x)-exp(-x))*0.5 proc sin*(x: float): float {.importc: "Math.sin", nodecl.} proc tan*(x: float): float {.importc: "Math.tan", nodecl.} proc tanh*(x: float): float = var y = exp(2.0*x) return (y-1.0)/(y+1.0) proc `mod`*(x, y: float): float = result = if y == 0.0: x else: x - y * (x/y).floor proc random*[T](x: TSlice[T]): T = result = random(x.b - x.a) + x.a type TRunningStat* {.pure,final.} = object ## an accumulator for statistical data n*: int ## number of pushed data sum*, min*, max*, mean*: float ## self-explaining oldM, oldS, newS: float proc push*(s: var TRunningStat, x: float) = ## pushes a value `x` for processing inc(s.n) # See Knuth TAOCP vol 2, 3rd edition, page 232 if s.n == 1: s.min = x s.max = x s.oldM = x s.mean = x s.oldS = 0.0 else: if s.min > x: s.min = x if s.max < x: s.max = x s.mean = s.oldM + (x - s.oldM)/toFloat(s.n) s.newS = s.oldS + (x - s.oldM)*(x - s.mean) # set up for next iteration: s.oldM = s.mean s.oldS = s.newS s.sum = s.sum + x proc push*(s: var TRunningStat, x: int) = ## pushes a value `x` for processing. `x` is simply converted to ``float`` ## and the other push operation is called. push(s, toFloat(x)) proc variance*(s: TRunningStat): float = ## computes the current variance of `s` if s.n > 1: result = s.newS / (toFloat(s.n - 1)) proc standardDeviation*(s: TRunningStat): float = ## computes the current standard deviation of `s` result = sqrt(variance(s)) {.pop.} {.pop.} when isMainModule and not defined(JS): # Verifies random seed initialization. let seed = gettime(nil) randomize(seed) const SIZE = 10 var buf : array[0..SIZE, int] # Fill the buffer with random values for i in 0..SIZE-1: buf[i] = random(high(int)) # Check that the second random calls are the same for each position. randomize(seed) for i in 0..SIZE-1: assert buf[i] == random(high(int)), "non deterministic random seeding" echo "random values equal after reseeding"