# # # Nim's Runtime Library # (c) Copyright 2015 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## *Constructive mathematics is naturally typed.* -- Simon Thompson ## ## Basic math routines for Nim. ## ## Note that the trigonometric functions naturally operate on radians. ## The helper functions `degToRad<#degToRad,T>`_ and `radToDeg<#radToDeg,T>`_ ## provide conversion between radians and degrees. ## ## .. code-block:: ## ## import math ## from sequtils import map ## ## let a = [0.0, PI/6, PI/4, PI/3, PI/2] ## ## echo a.map(sin) ## # @[0.0, 0.499…, 0.707…, 0.866…, 1.0] ## ## echo a.map(tan) ## # @[0.0, 0.577…, 0.999…, 1.732…, 1.633…e+16] ## ## echo cos(degToRad(180.0)) ## # -1.0 ## ## echo sqrt(-1.0) ## # nan (use `complex` module) ## ## This module is available for the `JavaScript target ## `_. ## ## **See also:** ## * `complex module`_ for complex numbers and their ## mathematical operations ## * `rationals module`_ for rational numbers and their ## mathematical operations ## * `fenv module`_ for handling of floating-point rounding ## and exceptions (overflow, zero-divide, etc.) ## * `random module`_ for fast and tiny random number generator ## * `mersenne module`_ for Mersenne twister random number generator ## * `stats module`_ for statistical analysis ## * `strformat module`_ for formatting floats for print ## * `system module`_ Some very basic and trivial math operators ## are on system directly, to name a few ``shr``, ``shl``, ``xor``, ``clamp``, etc. import std/private/since {.push debugger: off.} # the user does not want to trace a part # of the standard library! import std/[bitops, fenv] when defined(c) or defined(cpp): proc c_isnan(x: float): bool {.importc: "isnan", header: "".} # a generic like `x: SomeFloat` might work too if this is implemented via a C macro. proc c_copysign(x, y: cfloat): cfloat {.importc: "copysignf", header: "".} proc c_copysign(x, y: cdouble): cdouble {.importc: "copysign", header: "".} proc c_signbit(x: SomeFloat): cint {.importc: "signbit", header: "".} func binom*(n, k: int): int = ## Computes the `binomial coefficient `_. runnableExamples: doAssert binom(6, 2) == binom(6, 4) doAssert binom(6, 2) == 15 doAssert binom(-6, 2) == 1 doAssert binom(6, 0) == 1 if k <= 0: return 1 if 2*k > n: return binom(n, n-k) result = n for i in countup(2, k): result = (result * (n + 1 - i)) div i func createFactTable[N: static[int]]: array[N, int] = result[0] = 1 for i in 1 ..< N: result[i] = result[i - 1] * i func fac*(n: int): int = ## Computes the `factorial `_ of ## a non-negative integer ``n``. ## ## See also: ## * `prod func <#prod,openArray[T]>`_ runnableExamples: doAssert fac(3) == 6 doAssert fac(4) == 24 doAssert fac(10) == 3628800 const factTable = when sizeof(int) == 2: createFactTable[5]() elif sizeof(int) == 4: createFactTable[13]() else: createFactTable[21]() assert(n >= 0, $n & " must not be negative.") assert(n < factTable.len, $n & " is too large to look up in the table") factTable[n] {.push checks: off, line_dir: off, stack_trace: off.} when defined(Posix) and not defined(genode): {.passl: "-lm".} const PI* = 3.1415926535897932384626433 ## The circle constant PI (Ludolph's number) TAU* = 2.0 * PI ## The circle constant TAU (= 2 * PI) E* = 2.71828182845904523536028747 ## Euler's number MaxFloat64Precision* = 16 ## Maximum number of meaningful digits ## after the decimal point for Nim's ## ``float64`` type. MaxFloat32Precision* = 8 ## Maximum number of meaningful digits ## after the decimal point for Nim's ## ``float32`` type. MaxFloatPrecision* = MaxFloat64Precision ## Maximum number of ## meaningful digits ## after the decimal point ## for Nim's ``float`` type. MinFloatNormal* = 2.225073858507201e-308 ## Smallest normal number for Nim's ## ``float`` type. (= 2^-1022). RadPerDeg = PI / 180.0 ## Number of radians per degree type FloatClass* = enum ## Describes the class a floating point value belongs to. ## This is the type that is returned by ## `classify func <#classify,float>`_. fcNormal, ## value is an ordinary nonzero floating point value fcSubnormal, ## value is a subnormal (a very small) floating point value fcZero, ## value is zero fcNegZero, ## value is the negative zero fcNan, ## value is Not-A-Number (NAN) fcInf, ## value is positive infinity fcNegInf ## value is negative infinity func isNaN*(x: SomeFloat): bool {.inline, since: (1,5,1).} = ## Returns whether `x` is a `NaN`, more efficiently than via `classify(x) == fcNan`. ## Works even with: `--passc:-ffast-math`. runnableExamples: doAssert NaN.isNaN doAssert not Inf.isNaN doAssert isNaN(Inf - Inf) doAssert not isNaN(3.1415926) doAssert not isNaN(0'f32) template fn: untyped = result = x != x when nimvm: fn() else: when defined(js): fn() else: result = c_isnan(x) when defined(js): proc toBitsImpl(x: float): array[2, uint32] = asm """ const buffer = new ArrayBuffer(8); const floatBuffer = new Float64Array(buffer); const uintBuffer = new Uint32Array(buffer); floatBuffer[0] = `x`; `result` = uintBuffer """ proc signbit*(x: SomeFloat): bool {.inline, since: (1, 5, 1).} = ## Returns true if `x` is negative, false otherwise. runnableExamples: doAssert not signbit(0.0) doAssert signbit(-0.0) doAssert signbit(-0.1) doAssert not signbit(0.1) when defined(js): let uintBuffer = toBitsImpl(x) result = (uintBuffer[1] shr 31) != 0 else: result = c_signbit(x) != 0 func copySign*[T: SomeFloat](x, y: T): T {.inline, since: (1, 5, 1).} = ## Returns a value with the magnitude of `x` and the sign of `y`; ## this works even if x or y are NaN or zero, both of which can carry a sign. runnableExamples: doAssert copySign(1.0, -0.0) == -1.0 doAssert copySign(0.0, -0.0) == -0.0 doAssert copySign(-1.0, 0.0) == 1.0 doAssert copySign(10.0, 0.0) == 10.0 doAssert copySign(Inf, -1.0) == -Inf doAssert copySign(-Inf, 1.0) == Inf doAssert copySign(-1.0, NaN) == 1.0 doAssert copySign(10.0, NaN) == 10.0 doAssert copySign(NaN, 0.0).isNaN doAssert copySign(NaN, -0.0).isNaN # fails in VM and JS backend doAssert copySign(1.0, copySign(NaN, -1.0)) == -1.0 # TODO use signbit for examples template impl() = if y > 0.0 or (y == 0.0 and 1.0 / y > 0.0): result = abs(x) elif y <= 0.0: result = -abs(x) else: # must be NaN result = abs(x) when defined(js): impl() else: when nimvm: impl() else: result = c_copysign(x, y) func classify*(x: float): FloatClass = ## Classifies a floating point value. ## ## Returns ``x``'s class as specified by `FloatClass enum<#FloatClass>`_. ## Doesn't work with: `--passc:-ffast-math`. runnableExamples: doAssert classify(0.3) == fcNormal doAssert classify(0.0) == fcZero doAssert classify(0.3/0.0) == fcInf doAssert classify(-0.3/0.0) == fcNegInf doAssert classify(5.0e-324) == fcSubnormal # JavaScript and most C compilers have no classify: if x == 0.0: if 1.0/x == Inf: return fcZero else: return fcNegZero if x*0.5 == x: if x > 0.0: return fcInf else: return fcNegInf if x != x: return fcNan if abs(x) < MinFloatNormal: return fcSubnormal return fcNormal func almostEqual*[T: SomeFloat](x, y: T; unitsInLastPlace: Natural = 4): bool {. since: (1, 5), inline.} = ## Checks if two float values are almost equal, using ## `machine epsilon `_. ## ## `unitsInLastPlace` is the max number of ## `units in last place `_ ## difference tolerated when comparing two numbers. The larger the value, the ## more error is allowed. A ``0`` value means that two numbers must be exactly the ## same to be considered equal. ## ## The machine epsilon has to be scaled to the magnitude of the values used ## and multiplied by the desired precision in ULPs unless the difference is ## subnormal. ## # taken from: https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon runnableExamples: doAssert almostEqual(3.141592653589793, 3.1415926535897936) doAssert almostEqual(1.6777215e7'f32, 1.6777216e7'f32) doAssert almostEqual(Inf, Inf) doAssert almostEqual(-Inf, -Inf) doAssert almostEqual(Inf, -Inf) == false doAssert almostEqual(-Inf, Inf) == false doAssert almostEqual(Inf, NaN) == false doAssert almostEqual(NaN, NaN) == false if x == y: # short circuit exact equality -- needed to catch two infinities of # the same sign. And perhaps speeds things up a bit sometimes. return true let diff = abs(x - y) result = diff <= epsilon(T) * abs(x + y) * T(unitsInLastPlace) or diff < minimumPositiveValue(T) func isPowerOfTwo*(x: int): bool = ## Returns ``true``, if ``x`` is a power of two, ``false`` otherwise. ## ## Zero and negative numbers are not a power of two. ## ## See also: ## * `nextPowerOfTwo func<#nextPowerOfTwo,int>`_ runnableExamples: doAssert isPowerOfTwo(16) == true doAssert isPowerOfTwo(5) == false doAssert isPowerOfTwo(0) == false doAssert isPowerOfTwo(-16) == false return (x > 0) and ((x and (x - 1)) == 0) func nextPowerOfTwo*(x: int): int = ## Returns ``x`` rounded up to the nearest power of two. ## ## Zero and negative numbers get rounded up to 1. ## ## See also: ## * `isPowerOfTwo func<#isPowerOfTwo,int>`_ runnableExamples: doAssert nextPowerOfTwo(16) == 16 doAssert nextPowerOfTwo(5) == 8 doAssert nextPowerOfTwo(0) == 1 doAssert nextPowerOfTwo(-16) == 1 result = x - 1 when defined(cpu64): result = result or (result shr 32) when sizeof(int) > 2: result = result or (result shr 16) when sizeof(int) > 1: result = result or (result shr 8) result = result or (result shr 4) result = result or (result shr 2) result = result or (result shr 1) result += 1 + ord(x <= 0) func sum*[T](x: openArray[T]): T = ## Computes the sum of the elements in ``x``. ## ## If ``x`` is empty, 0 is returned. ## ## See also: ## * `prod func <#prod,openArray[T]>`_ ## * `cumsum func <#cumsum,openArray[T]>`_ ## * `cumsummed func <#cumsummed,openArray[T]>`_ runnableExamples: doAssert sum([1, 2, 3, 4]) == 10 doAssert sum([-1.5, 2.7, -0.1]) == 1.1 for i in items(x): result = result + i func prod*[T](x: openArray[T]): T = ## Computes the product of the elements in ``x``. ## ## If ``x`` is empty, 1 is returned. ## ## See also: ## * `sum func <#sum,openArray[T]>`_ ## * `fac func <#fac,int>`_ runnableExamples: doAssert prod([1, 2, 3, 4]) == 24 doAssert prod([-4, 3, 5]) == -60 result = 1.T for i in items(x): result = result * i func cumsummed*[T](x: openArray[T]): seq[T] = ## Return cumulative (aka prefix) summation of ``x``. ## ## See also: ## * `sum func <#sum,openArray[T]>`_ ## * `cumsum func <#cumsum,openArray[T]>`_ for the in-place version runnableExamples: let a = [1, 2, 3, 4] doAssert cumsummed(a) == @[1, 3, 6, 10] result.setLen(x.len) result[0] = x[0] for i in 1 ..< x.len: result[i] = result[i-1] + x[i] func cumsum*[T](x: var openArray[T]) = ## Transforms ``x`` in-place (must be declared as `var`) into its ## cumulative (aka prefix) summation. ## ## See also: ## * `sum func <#sum,openArray[T]>`_ ## * `cumsummed func <#cumsummed,openArray[T]>`_ for a version which ## returns cumsummed sequence runnableExamples: var a = [1, 2, 3, 4] cumsum(a) doAssert a == @[1, 3, 6, 10] for i in 1 ..< x.len: x[i] = x[i-1] + x[i] when not defined(js): # C func sqrt*(x: float32): float32 {.importc: "sqrtf", header: "".} func sqrt*(x: float64): float64 {.importc: "sqrt", header: "".} ## Computes the square root of ``x``. ## ## See also: ## * `cbrt func <#cbrt,float64>`_ for cubic root ## ## .. code-block:: nim ## echo sqrt(4.0) ## 2.0 ## echo sqrt(1.44) ## 1.2 ## echo sqrt(-4.0) ## nan func cbrt*(x: float32): float32 {.importc: "cbrtf", header: "".} func cbrt*(x: float64): float64 {.importc: "cbrt", header: "".} ## Computes the cubic root of ``x``. ## ## See also: ## * `sqrt func <#sqrt,float64>`_ for square root ## ## .. code-block:: nim ## echo cbrt(8.0) ## 2.0 ## echo cbrt(2.197) ## 1.3 ## echo cbrt(-27.0) ## -3.0 func ln*(x: float32): float32 {.importc: "logf", header: "".} func ln*(x: float64): float64 {.importc: "log", header: "".} ## Computes the `natural logarithm `_ ## of ``x``. ## ## See also: ## * `log func <#log,T,T>`_ ## * `log10 func <#log10,float64>`_ ## * `log2 func <#log2,float64>`_ ## * `exp func <#exp,float64>`_ ## ## .. code-block:: nim ## echo ln(exp(4.0)) ## 4.0 ## echo ln(1.0)) ## 0.0 ## echo ln(0.0) ## -inf ## echo ln(-7.0) ## nan else: # JS func sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.} func sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.} func cbrt*(x: float32): float32 {.importc: "Math.cbrt", nodecl.} func cbrt*(x: float64): float64 {.importc: "Math.cbrt", nodecl.} func ln*(x: float32): float32 {.importc: "Math.log", nodecl.} func ln*(x: float64): float64 {.importc: "Math.log", nodecl.} func log*[T: SomeFloat](x, base: T): T = ## Computes the logarithm of ``x`` to base ``base``. ## ## See also: ## * `ln func <#ln,float64>`_ ## * `log10 func <#log10,float64>`_ ## * `log2 func <#log2,float64>`_ ## * `exp func <#exp,float64>`_ ## ## .. code-block:: nim ## echo log(9.0, 3.0) ## 2.0 ## echo log(32.0, 2.0) ## 5.0 ## echo log(0.0, 2.0) ## -inf ## echo log(-7.0, 4.0) ## nan ## echo log(8.0, -2.0) ## nan ln(x) / ln(base) when not defined(js): # C func log10*(x: float32): float32 {.importc: "log10f", header: "".} func log10*(x: float64): float64 {.importc: "log10", header: "".} ## Computes the common logarithm (base 10) of ``x``. ## ## See also: ## * `ln func <#ln,float64>`_ ## * `log func <#log,T,T>`_ ## * `log2 func <#log2,float64>`_ ## * `exp func <#exp,float64>`_ ## ## .. code-block:: nim ## echo log10(100.0) ## 2.0 ## echo log10(0.0) ## nan ## echo log10(-100.0) ## -inf func exp*(x: float32): float32 {.importc: "expf", header: "".} func exp*(x: float64): float64 {.importc: "exp", header: "".} ## Computes the exponential function of ``x`` (e^x). ## ## See also: ## * `ln func <#ln,float64>`_ ## * `log func <#log,T,T>`_ ## * `log10 func <#log10,float64>`_ ## * `log2 func <#log2,float64>`_ ## ## .. code-block:: nim ## echo exp(1.0) ## 2.718281828459045 ## echo ln(exp(4.0)) ## 4.0 ## echo exp(0.0) ## 1.0 ## echo exp(-1.0) ## 0.3678794411714423 func sin*(x: float32): float32 {.importc: "sinf", header: "".} func sin*(x: float64): float64 {.importc: "sin", header: "".} ## Computes the sine of ``x``. ## ## See also: ## * `cos func <#cos,float64>`_ ## * `tan func <#tan,float64>`_ ## * `arcsin func <#arcsin,float64>`_ ## * `sinh func <#sinh,float64>`_ ## ## .. code-block:: nim ## echo sin(PI / 6) ## 0.4999999999999999 ## echo sin(degToRad(90.0)) ## 1.0 func cos*(x: float32): float32 {.importc: "cosf", header: "".} func cos*(x: float64): float64 {.importc: "cos", header: "".} ## Computes the cosine of ``x``. ## ## See also: ## * `sin func <#sin,float64>`_ ## * `tan func <#tan,float64>`_ ## * `arccos func <#arccos,float64>`_ ## * `cosh func <#cosh,float64>`_ ## ## .. code-block:: nim ## echo cos(2 * PI) ## 1.0 ## echo cos(degToRad(60.0)) ## 0.5000000000000001 func tan*(x: float32): float32 {.importc: "tanf", header: "".} func tan*(x: float64): float64 {.importc: "tan", header: "".} ## Computes the tangent of ``x``. ## ## See also: ## * `sin func <#sin,float64>`_ ## * `cos func <#cos,float64>`_ ## * `arctan func <#arctan,float64>`_ ## * `tanh func <#tanh,float64>`_ ## ## .. code-block:: nim ## echo tan(degToRad(45.0)) ## 0.9999999999999999 ## echo tan(PI / 4) ## 0.9999999999999999 func sinh*(x: float32): float32 {.importc: "sinhf", header: "".} func sinh*(x: float64): float64 {.importc: "sinh", header: "".} ## Computes the `hyperbolic sine `_ of ``x``. ## ## See also: ## * `cosh func <#cosh,float64>`_ ## * `tanh func <#tanh,float64>`_ ## * `arcsinh func <#arcsinh,float64>`_ ## * `sin func <#sin,float64>`_ ## ## .. code-block:: nim ## echo sinh(0.0) ## 0.0 ## echo sinh(1.0) ## 1.175201193643801 ## echo sinh(degToRad(90.0)) ## 2.301298902307295 func cosh*(x: float32): float32 {.importc: "coshf", header: "".} func cosh*(x: float64): float64 {.importc: "cosh", header: "".} ## Computes the `hyperbolic cosine `_ of ``x``. ## ## See also: ## * `sinh func <#sinh,float64>`_ ## * `tanh func <#tanh,float64>`_ ## * `arccosh func <#arccosh,float64>`_ ## * `cos func <#cos,float64>`_ ## ## .. code-block:: nim ## echo cosh(0.0) ## 1.0 ## echo cosh(1.0) ## 1.543080634815244 ## echo cosh(degToRad(90.0)) ## 2.509178478658057 func tanh*(x: float32): float32 {.importc: "tanhf", header: "".} func tanh*(x: float64): float64 {.importc: "tanh", header: "".} ## Computes the `hyperbolic tangent `_ of ``x``. ## ## See also: ## * `sinh func <#sinh,float64>`_ ## * `cosh func <#cosh,float64>`_ ## * `arctanh func <#arctanh,float64>`_ ## * `tan func <#tan,float64>`_ ## ## .. code-block:: nim ## echo tanh(0.0) ## 0.0 ## echo tanh(1.0) ## 0.7615941559557649 ## echo tanh(degToRad(90.0)) ## 0.9171523356672744 func arccos*(x: float32): float32 {.importc: "acosf", header: "".} func arccos*(x: float64): float64 {.importc: "acos", header: "".} ## Computes the arc cosine of ``x``. ## ## See also: ## * `arcsin func <#arcsin,float64>`_ ## * `arctan func <#arctan,float64>`_ ## * `arctan2 func <#arctan2,float64,float64>`_ ## * `cos func <#cos,float64>`_ ## ## .. code-block:: nim ## echo radToDeg(arccos(0.0)) ## 90.0 ## echo radToDeg(arccos(1.0)) ## 0.0 func arcsin*(x: float32): float32 {.importc: "asinf", header: "".} func arcsin*(x: float64): float64 {.importc: "asin", header: "".} ## Computes the arc sine of ``x``. ## ## See also: ## * `arccos func <#arccos,float64>`_ ## * `arctan func <#arctan,float64>`_ ## * `arctan2 func <#arctan2,float64,float64>`_ ## * `sin func <#sin,float64>`_ ## ## .. code-block:: nim ## echo radToDeg(arcsin(0.0)) ## 0.0 ## echo radToDeg(arcsin(1.0)) ## 90.0 func arctan*(x: float32): float32 {.importc: "atanf", header: "".} func arctan*(x: float64): float64 {.importc: "atan", header: "".} ## Calculate the arc tangent of ``x``. ## ## See also: ## * `arcsin func <#arcsin,float64>`_ ## * `arccos func <#arccos,float64>`_ ## * `arctan2 func <#arctan2,float64,float64>`_ ## * `tan func <#tan,float64>`_ ## ## .. code-block:: nim ## echo arctan(1.0) ## 0.7853981633974483 ## echo radToDeg(arctan(1.0)) ## 45.0 func arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "".} func arctan2*(y, x: float64): float64 {.importc: "atan2", header: "".} ## Calculate the arc tangent of ``y`` / ``x``. ## ## It produces correct results even when the resulting angle is near ## pi/2 or -pi/2 (``x`` near 0). ## ## See also: ## * `arcsin func <#arcsin,float64>`_ ## * `arccos func <#arccos,float64>`_ ## * `arctan func <#arctan,float64>`_ ## * `tan func <#tan,float64>`_ ## ## .. code-block:: nim ## echo arctan2(1.0, 0.0) ## 1.570796326794897 ## echo radToDeg(arctan2(1.0, 0.0)) ## 90.0 func arcsinh*(x: float32): float32 {.importc: "asinhf", header: "".} func arcsinh*(x: float64): float64 {.importc: "asinh", header: "".} ## Computes the inverse hyperbolic sine of ``x``. func arccosh*(x: float32): float32 {.importc: "acoshf", header: "".} func arccosh*(x: float64): float64 {.importc: "acosh", header: "".} ## Computes the inverse hyperbolic cosine of ``x``. func arctanh*(x: float32): float32 {.importc: "atanhf", header: "".} func arctanh*(x: float64): float64 {.importc: "atanh", header: "".} ## Computes the inverse hyperbolic tangent of ``x``. else: # JS func log10*(x: float32): float32 {.importc: "Math.log10", nodecl.} func log10*(x: float64): float64 {.importc: "Math.log10", nodecl.} func log2*(x: float32): float32 {.importc: "Math.log2", nodecl.} func log2*(x: float64): float64 {.importc: "Math.log2", nodecl.} func exp*(x: float32): float32 {.importc: "Math.exp", nodecl.} func exp*(x: float64): float64 {.importc: "Math.exp", nodecl.} func sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.} func cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.} func tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.} func sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.} func cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.} func tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.} func arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.} # keep this as generic or update test in `tvmops.nim` to make sure we # keep testing that generic importc procs work func arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.} func arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.} func arctan2*[T: float32|float64](y, x: T): T {.importc: "Math.atan2", nodecl.} func arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.} func arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.} func arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.} func cot*[T: float32|float64](x: T): T = 1.0 / tan(x) ## Computes the cotangent of ``x`` (1 / tan(x)). func sec*[T: float32|float64](x: T): T = 1.0 / cos(x) ## Computes the secant of ``x`` (1 / cos(x)). func csc*[T: float32|float64](x: T): T = 1.0 / sin(x) ## Computes the cosecant of ``x`` (1 / sin(x)). func coth*[T: float32|float64](x: T): T = 1.0 / tanh(x) ## Computes the hyperbolic cotangent of ``x`` (1 / tanh(x)). func sech*[T: float32|float64](x: T): T = 1.0 / cosh(x) ## Computes the hyperbolic secant of ``x`` (1 / cosh(x)). func csch*[T: float32|float64](x: T): T = 1.0 / sinh(x) ## Computes the hyperbolic cosecant of ``x`` (1 / sinh(x)). func arccot*[T: float32|float64](x: T): T = arctan(1.0 / x) ## Computes the inverse cotangent of ``x``. func arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x) ## Computes the inverse secant of ``x``. func arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x) ## Computes the inverse cosecant of ``x``. func arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x) ## Computes the inverse hyperbolic cotangent of ``x``. func arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x) ## Computes the inverse hyperbolic secant of ``x``. func arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x) ## Computes the inverse hyperbolic cosecant of ``x``. const windowsCC89 = defined(windows) and defined(bcc) when not defined(js): # C func hypot*(x, y: float32): float32 {.importc: "hypotf", header: "".} func hypot*(x, y: float64): float64 {.importc: "hypot", header: "".} ## Computes the hypotenuse of a right-angle triangle with ``x`` and ## ``y`` as its base and height. Equivalent to ``sqrt(x*x + y*y)``. ## ## .. code-block:: nim ## echo hypot(4.0, 3.0) ## 5.0 func pow*(x, y: float32): float32 {.importc: "powf", header: "".} func pow*(x, y: float64): float64 {.importc: "pow", header: "".} ## Computes x to power raised of y. ## ## To compute power between integers (e.g. 2^6), use `^ func<#^,T,Natural>`_. ## ## See also: ## * `^ func<#^,T,Natural>`_ ## * `sqrt func <#sqrt,float64>`_ ## * `cbrt func <#cbrt,float64>`_ ## ## .. code-block:: nim ## echo pow(100, 1.5) ## 1000.0 ## echo pow(16.0, 0.5) ## 4.0 # TODO: add C89 version on windows when not windowsCC89: func erf*(x: float32): float32 {.importc: "erff", header: "".} func erf*(x: float64): float64 {.importc: "erf", header: "".} ## Computes the `error function `_ for ``x``. ## ## Note: Not available for JS backend. func erfc*(x: float32): float32 {.importc: "erfcf", header: "".} func erfc*(x: float64): float64 {.importc: "erfc", header: "".} ## Computes the `complementary error function `_ for ``x``. ## ## Note: Not available for JS backend. func gamma*(x: float32): float32 {.importc: "tgammaf", header: "".} func gamma*(x: float64): float64 {.importc: "tgamma", header: "".} ## Computes the `gamma function `_ for ``x``. ## ## Note: Not available for JS backend. ## ## See also: ## * `lgamma func <#lgamma,float64>`_ for a natural log of gamma function ## ## .. code-block:: Nim ## echo gamma(1.0) # 1.0 ## echo gamma(4.0) # 6.0 ## echo gamma(11.0) # 3628800.0 ## echo gamma(-1.0) # nan func lgamma*(x: float32): float32 {.importc: "lgammaf", header: "".} func lgamma*(x: float64): float64 {.importc: "lgamma", header: "".} ## Computes the natural log of the gamma function for ``x``. ## ## Note: Not available for JS backend. ## ## See also: ## * `gamma func <#gamma,float64>`_ for gamma function ## ## .. code-block:: Nim ## echo lgamma(1.0) # 1.0 ## echo lgamma(4.0) # 1.791759469228055 ## echo lgamma(11.0) # 15.10441257307552 ## echo lgamma(-1.0) # inf func floor*(x: float32): float32 {.importc: "floorf", header: "".} func floor*(x: float64): float64 {.importc: "floor", header: "".} ## Computes the floor function (i.e., the largest integer not greater than ``x``). ## ## See also: ## * `ceil func <#ceil,float64>`_ ## * `round func <#round,float64>`_ ## * `trunc func <#trunc,float64>`_ ## ## .. code-block:: nim ## echo floor(2.1) ## 2.0 ## echo floor(2.9) ## 2.0 ## echo floor(-3.5) ## -4.0 func ceil*(x: float32): float32 {.importc: "ceilf", header: "".} func ceil*(x: float64): float64 {.importc: "ceil", header: "".} ## Computes the ceiling function (i.e., the smallest integer not smaller ## than ``x``). ## ## See also: ## * `floor func <#floor,float64>`_ ## * `round func <#round,float64>`_ ## * `trunc func <#trunc,float64>`_ ## ## .. code-block:: nim ## echo ceil(2.1) ## 3.0 ## echo ceil(2.9) ## 3.0 ## echo ceil(-2.1) ## -2.0 when windowsCC89: # MSVC 2010 don't have trunc/truncf # this implementation was inspired by Go-lang Math.Trunc func truncImpl(f: float64): float64 = const mask: uint64 = 0x7FF shift: uint64 = 64 - 12 bias: uint64 = 0x3FF if f < 1: if f < 0: return -truncImpl(-f) elif f == 0: return f # Return -0 when f == -0 else: return 0 var x = cast[uint64](f) let e = (x shr shift) and mask - bias # Keep the top 12+e bits, the integer part; clear the rest. if e < 64-12: x = x and (not (1'u64 shl (64'u64-12'u64-e) - 1'u64)) result = cast[float64](x) func truncImpl(f: float32): float32 = const mask: uint32 = 0xFF shift: uint32 = 32 - 9 bias: uint32 = 0x7F if f < 1: if f < 0: return -truncImpl(-f) elif f == 0: return f # Return -0 when f == -0 else: return 0 var x = cast[uint32](f) let e = (x shr shift) and mask - bias # Keep the top 9+e bits, the integer part; clear the rest. if e < 32-9: x = x and (not (1'u32 shl (32'u32-9'u32-e) - 1'u32)) result = cast[float32](x) func trunc*(x: float64): float64 = if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x result = truncImpl(x) func trunc*(x: float32): float32 = if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x result = truncImpl(x) func round*[T: float32|float64](x: T): T = ## Windows compilers prior to MSVC 2012 do not implement 'round', ## 'roundl' or 'roundf'. result = if x < 0.0: ceil(x - T(0.5)) else: floor(x + T(0.5)) else: func round*(x: float32): float32 {.importc: "roundf", header: "".} func round*(x: float64): float64 {.importc: "round", header: "".} ## Rounds a float to zero decimal places. ## ## Used internally by the `round func <#round,T,int>`_ ## when the specified number of places is 0. ## ## See also: ## * `round func <#round,T,int>`_ for rounding to the specific ## number of decimal places ## * `floor func <#floor,float64>`_ ## * `ceil func <#ceil,float64>`_ ## * `trunc func <#trunc,float64>`_ ## ## .. code-block:: nim ## echo round(3.4) ## 3.0 ## echo round(3.5) ## 4.0 ## echo round(4.5) ## 5.0 func trunc*(x: float32): float32 {.importc: "truncf", header: "".} func trunc*(x: float64): float64 {.importc: "trunc", header: "".} ## Truncates ``x`` to the decimal point. ## ## See also: ## * `floor func <#floor,float64>`_ ## * `ceil func <#ceil,float64>`_ ## * `round func <#round,float64>`_ ## ## .. code-block:: nim ## echo trunc(PI) # 3.0 ## echo trunc(-1.85) # -1.0 func `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "".} func `mod`*(x, y: float64): float64 {.importc: "fmod", header: "".} ## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``). ## ## See also: ## * `floorMod func <#floorMod,T,T>`_ for Python-like (% operator) behavior ## ## .. code-block:: nim ## ( 6.5 mod 2.5) == 1.5 ## (-6.5 mod 2.5) == -1.5 ## ( 6.5 mod -2.5) == 1.5 ## (-6.5 mod -2.5) == -1.5 else: # JS func hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.} func hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.} func pow*(x, y: float32): float32 {.importc: "Math.pow", nodecl.} func pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.} func floor*(x: float32): float32 {.importc: "Math.floor", nodecl.} func floor*(x: float64): float64 {.importc: "Math.floor", nodecl.} func ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.} func ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.} when (NimMajor, NimMinor) < (1, 5) or defined(nimLegacyJsRound): func round*(x: float): float {.importc: "Math.round", nodecl.} else: func jsRound(x: float): float {.importc: "Math.round", nodecl.} func round*[T: float64 | float32](x: T): T = if x >= 0: result = jsRound(x) else: result = ceil(x) if result - x >= T(0.5): result -= T(1.0) func trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.} func trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.} func `mod`*(x, y: float32): float32 {.importcpp: "# % #".} func `mod`*(x, y: float64): float64 {.importcpp: "# % #".} ## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``). ## ## .. code-block:: nim ## ( 6.5 mod 2.5) == 1.5 ## (-6.5 mod 2.5) == -1.5 ## ( 6.5 mod -2.5) == 1.5 ## (-6.5 mod -2.5) == -1.5 func round*[T: float32|float64](x: T, places: int): T = ## Decimal rounding on a binary floating point number. ## ## This function is NOT reliable. Floating point numbers cannot hold ## non integer decimals precisely. If ``places`` is 0 (or omitted), ## round to the nearest integral value following normal mathematical ## rounding rules (e.g. ``round(54.5) -> 55.0``). If ``places`` is ## greater than 0, round to the given number of decimal places, ## e.g. ``round(54.346, 2) -> 54.350000000000001421…``. If ``places`` is negative, round ## to the left of the decimal place, e.g. ``round(537.345, -1) -> ## 540.0`` ## ## .. code-block:: Nim ## echo round(PI, 2) ## 3.14 ## echo round(PI, 4) ## 3.1416 if places == 0: result = round(x) else: var mult = pow(10.0, places.T) result = round(x*mult)/mult func floorDiv*[T: SomeInteger](x, y: T): T = ## Floor division is conceptually defined as ``floor(x / y)``. ## ## This is different from the `system.div `_ ## operator, which is defined as ``trunc(x / y)``. ## That is, ``div`` rounds towards ``0`` and ``floorDiv`` rounds down. ## ## See also: ## * `system.div proc `_ for integer division ## * `floorMod func <#floorMod,T,T>`_ for Python-like (% operator) behavior ## ## .. code-block:: nim ## echo floorDiv( 13, 3) # 4 ## echo floorDiv(-13, 3) # -5 ## echo floorDiv( 13, -3) # -5 ## echo floorDiv(-13, -3) # 4 result = x div y let r = x mod y if (r > 0 and y < 0) or (r < 0 and y > 0): result.dec 1 func floorMod*[T: SomeNumber](x, y: T): T = ## Floor modulus is conceptually defined as ``x - (floorDiv(x, y) * y)``. ## ## This func behaves the same as the ``%`` operator in Python. ## ## See also: ## * `mod func <#mod,float64,float64>`_ ## * `floorDiv func <#floorDiv,T,T>`_ ## ## .. code-block:: nim ## echo floorMod( 13, 3) # 1 ## echo floorMod(-13, 3) # 2 ## echo floorMod( 13, -3) # -2 ## echo floorMod(-13, -3) # -1 result = x mod y if (result > 0 and y < 0) or (result < 0 and y > 0): result += y func euclDiv*[T: SomeInteger](x, y: T): T {.since: (1, 5, 1).} = ## Returns euclidean division of `x` by `y`. runnableExamples: assert euclDiv(13, 3) == 4 assert euclDiv(-13, 3) == -5 assert euclDiv(13, -3) == -4 assert euclDiv(-13, -3) == 5 result = x div y if x mod y < 0: if y > 0: dec result else: inc result func euclMod*[T: SomeNumber](x, y: T): T {.since: (1, 5, 1).} = ## Returns euclidean modulo of `x` by `y`. ## `euclMod(x, y)` is non-negative. runnableExamples: assert euclMod(13, 3) == 1 assert euclMod(-13, 3) == 2 assert euclMod(13, -3) == 1 assert euclMod(-13, -3) == 2 result = x mod y if result < 0: result += abs(y) when not defined(js): func c_frexp*(x: float32, exponent: var int32): float32 {. importc: "frexp", header: "".} func c_frexp*(x: float64, exponent: var int32): float64 {. importc: "frexp", header: "".} func frexp*[T, U](x: T, exponent: var U): T = ## Split a number into mantissa and exponent. ## ## ``frexp`` calculates the mantissa m (a float greater than or equal to 0.5 ## and less than 1) and the integer value n such that ``x`` (the original ## float value) equals ``m * 2**n``. frexp stores n in `exponent` and returns ## m. ## runnableExamples: var x: int doAssert frexp(5.0, x) == 0.625 doAssert x == 3 var exp: int32 result = c_frexp(x, exp) exponent = exp when windowsCC89: # taken from Go-lang Math.Log2 const ln2 = 0.693147180559945309417232121458176568075500134360255254120680009 template log2Impl[T](x: T): T = var exp: int32 var frac = frexp(x, exp) # Make sure exact powers of two give an exact answer. # Don't depend on Log(0.5)*(1/Ln2)+exp being exactly exp-1. if frac == 0.5: return T(exp - 1) log10(frac)*(1/ln2) + T(exp) func log2*(x: float32): float32 = log2Impl(x) func log2*(x: float64): float64 = log2Impl(x) ## Log2 returns the binary logarithm of x. ## The special cases are the same as for Log. else: func log2*(x: float32): float32 {.importc: "log2f", header: "".} func log2*(x: float64): float64 {.importc: "log2", header: "".} ## Computes the binary logarithm (base 2) of ``x``. ## ## See also: ## * `log func <#log,T,T>`_ ## * `log10 func <#log10,float64>`_ ## * `ln func <#ln,float64>`_ ## * `exp func <#exp,float64>`_ ## ## .. code-block:: Nim ## echo log2(8.0) # 3.0 ## echo log2(1.0) # 0.0 ## echo log2(0.0) # -inf ## echo log2(-2.0) # nan else: func frexp*[T: float32|float64](x: T, exponent: var int): T = if x == 0.0: exponent = 0 result = 0.0 elif x < 0.0: result = -frexp(-x, exponent) else: var ex = trunc(log2(x)) exponent = int(ex) result = x / pow(2.0, ex) if abs(result) >= 1: inc(exponent) result = result / 2 if exponent == 1024 and result == 0.0: result = 0.99999999999999988898 func splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] = ## Breaks ``x`` into an integer and a fractional part. ## ## Returns a tuple containing ``intpart`` and ``floatpart`` representing ## the integer part and the fractional part respectively. ## ## Both parts have the same sign as ``x``. Analogous to the ``modf`` ## function in C. ## runnableExamples: doAssert splitDecimal(5.25) == (intpart: 5.0, floatpart: 0.25) doAssert splitDecimal(-2.73) == (intpart: -2.0, floatpart: -0.73) var absolute: T absolute = abs(x) result.intpart = floor(absolute) result.floatpart = absolute - result.intpart if x < 0: result.intpart = -result.intpart result.floatpart = -result.floatpart func degToRad*[T: float32|float64](d: T): T {.inline.} = ## Convert from degrees to radians. ## ## See also: ## * `radToDeg func <#radToDeg,T>`_ ## runnableExamples: doAssert degToRad(180.0) == 3.141592653589793 result = T(d) * RadPerDeg func radToDeg*[T: float32|float64](d: T): T {.inline.} = ## Convert from radians to degrees. ## ## See also: ## * `degToRad func <#degToRad,T>`_ ## runnableExamples: doAssert radToDeg(2 * PI) == 360.0 result = T(d) / RadPerDeg func sgn*[T: SomeNumber](x: T): int {.inline.} = ## Sign function. ## ## Returns: ## * `-1` for negative numbers and ``NegInf``, ## * `1` for positive numbers and ``Inf``, ## * `0` for positive zero, negative zero and ``NaN`` ## runnableExamples: doAssert sgn(5) == 1 doAssert sgn(0) == 0 doAssert sgn(-4.1) == -1 ord(T(0) < x) - ord(x < T(0)) {.pop.} {.pop.} func `^`*[T: SomeNumber](x: T, y: Natural): T = ## Computes ``x`` to the power ``y``. ## ## Exponent ``y`` must be non-negative, use ## `pow func <#pow,float64,float64>`_ for negative exponents. ## ## See also: ## * `pow func <#pow,float64,float64>`_ for negative exponent or ## floats ## * `sqrt func <#sqrt,float64>`_ ## * `cbrt func <#cbrt,float64>`_ ## runnableExamples: assert -3.0^0 == 1.0 assert -3^1 == -3 assert -3^2 == 9 assert -3.0^3 == -27.0 assert -3.0^4 == 81.0 case y of 0: result = 1 of 1: result = x of 2: result = x * x of 3: result = x * x * x else: var (x, y) = (x, y) result = 1 while true: if (y and 1) != 0: result *= x y = y shr 1 if y == 0: break x *= x func gcd*[T](x, y: T): T = ## Computes the greatest common (positive) divisor of ``x`` and ``y``. ## ## Note that for floats, the result cannot always be interpreted as ## "greatest decimal `z` such that ``z*N == x and z*M == y`` ## where N and M are positive integers." ## ## See also: ## * `gcd func <#gcd,SomeInteger,SomeInteger>`_ for integer version ## * `lcm func <#lcm,T,T>`_ runnableExamples: doAssert gcd(13.5, 9.0) == 4.5 var (x, y) = (x, y) while y != 0: x = x mod y swap x, y abs x func gcd*(x, y: SomeInteger): SomeInteger = ## Computes the greatest common (positive) divisor of ``x`` and ``y``, ## using binary GCD (aka Stein's) algorithm. ## ## See also: ## * `gcd func <#gcd,T,T>`_ for floats version ## * `lcm func <#lcm,T,T>`_ runnableExamples: doAssert gcd(12, 8) == 4 doAssert gcd(17, 63) == 1 when x is SomeSignedInt: var x = abs(x) else: var x = x when y is SomeSignedInt: var y = abs(y) else: var y = y if x == 0: return y if y == 0: return x let shift = countTrailingZeroBits(x or y) y = y shr countTrailingZeroBits(y) while x != 0: x = x shr countTrailingZeroBits(x) if y > x: swap y, x x -= y y shl shift func gcd*[T](x: openArray[T]): T {.since: (1, 1).} = ## Computes the greatest common (positive) divisor of the elements of ``x``. ## ## See also: ## * `gcd func <#gcd,T,T>`_ for integer version runnableExamples: doAssert gcd(@[13.5, 9.0]) == 4.5 result = x[0] var i = 1 while i < x.len: result = gcd(result, x[i]) inc(i) func lcm*[T](x, y: T): T = ## Computes the least common multiple of ``x`` and ``y``. ## ## See also: ## * `gcd func <#gcd,T,T>`_ runnableExamples: doAssert lcm(24, 30) == 120 doAssert lcm(13, 39) == 39 x div gcd(x, y) * y func lcm*[T](x: openArray[T]): T {.since: (1, 1).} = ## Computes the least common multiple of the elements of ``x``. ## ## See also: ## * `gcd func <#gcd,T,T>`_ for integer version runnableExamples: doAssert lcm(@[24, 30]) == 120 result = x[0] var i = 1 while i < x.len: result = lcm(result, x[i]) inc(i)