# # # Nim's Runtime Library # (c) Copyright 2015 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## *Constructive mathematics is naturally typed.* -- Simon Thompson ## ## Basic math routines for Nim. ## ## Note that the trigonometric functions naturally operate on radians. ## The helper functions `degToRad <#degToRad,T>`_ and `radToDeg <#radToDeg,T>`_ ## provide conversion between radians and degrees. runnableExamples: from std/fenv import epsilon from std/random import rand proc generateGaussianNoise(mu: float = 0.0, sigma: float = 1.0): (float, float) = # Generates values from a normal distribution. # Translated from https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform#Implementation. var u1: float var u2: float while true: u1 = rand(1.0) u2 = rand(1.0) if u1 > epsilon(float): break let mag = sigma * sqrt(-2 * ln(u1)) let z0 = mag * cos(2 * PI * u2) + mu let z1 = mag * sin(2 * PI * u2) + mu (z0, z1) echo generateGaussianNoise() ## This module is available for the `JavaScript target ## `_. ## ## See also ## ======== ## * `complex module `_ for complex numbers and their ## mathematical operations ## * `rationals module `_ for rational numbers and their ## mathematical operations ## * `fenv module `_ for handling of floating-point rounding ## and exceptions (overflow, zero-divide, etc.) ## * `random module `_ for a fast and tiny random number generator ## * `mersenne module `_ for the Mersenne Twister random number generator ## * `stats module `_ for statistical analysis ## * `strformat module `_ for formatting floats for printing ## * `system module `_ for some very basic and trivial math operators ## (`shr`, `shl`, `xor`, `clamp`, etc.) import std/private/since {.push debugger: off.} # the user does not want to trace a part # of the standard library! import std/[bitops, fenv] when defined(c) or defined(cpp): proc c_isnan(x: float): bool {.importc: "isnan", header: "".} # a generic like `x: SomeFloat` might work too if this is implemented via a C macro. proc c_copysign(x, y: cfloat): cfloat {.importc: "copysignf", header: "".} proc c_copysign(x, y: cdouble): cdouble {.importc: "copysign", header: "".} proc c_signbit(x: SomeFloat): cint {.importc: "signbit", header: "".} func c_frexp*(x: cfloat, exponent: var cint): cfloat {. importc: "frexpf", header: "", deprecated: "Use `frexp` instead".} func c_frexp*(x: cdouble, exponent: var cint): cdouble {. importc: "frexp", header: "", deprecated: "Use `frexp` instead".} # don't export `c_frexp` in the future and remove `c_frexp2`. func c_frexp2(x: cfloat, exponent: var cint): cfloat {. importc: "frexpf", header: "".} func c_frexp2(x: cdouble, exponent: var cint): cdouble {. importc: "frexp", header: "".} func binom*(n, k: int): int = ## Computes the [binomial coefficient](https://en.wikipedia.org/wiki/Binomial_coefficient). runnableExamples: doAssert binom(6, 2) == 15 doAssert binom(-6, 2) == 1 doAssert binom(6, 0) == 1 if k <= 0: return 1 if 2 * k > n: return binom(n, n - k) result = n for i in countup(2, k): result = (result * (n + 1 - i)) div i func createFactTable[N: static[int]]: array[N, int] = result[0] = 1 for i in 1 ..< N: result[i] = result[i - 1] * i func fac*(n: int): int = ## Computes the [factorial](https://en.wikipedia.org/wiki/Factorial) of ## a non-negative integer `n`. ## ## **See also:** ## * `prod func <#prod,openArray[T]>`_ runnableExamples: doAssert fac(0) == 1 doAssert fac(4) == 24 doAssert fac(10) == 3628800 const factTable = when sizeof(int) == 2: createFactTable[5]() elif sizeof(int) == 4: createFactTable[13]() else: createFactTable[21]() assert(n >= 0, $n & " must not be negative.") assert(n < factTable.len, $n & " is too large to look up in the table") factTable[n] {.push checks: off, line_dir: off, stack_trace: off.} when defined(posix) and not defined(genode): {.passl: "-lm".} const PI* = 3.1415926535897932384626433 ## The circle constant PI (Ludolph's number). TAU* = 2.0 * PI ## The circle constant TAU (= 2 * PI). E* = 2.71828182845904523536028747 ## Euler's number. MaxFloat64Precision* = 16 ## Maximum number of meaningful digits ## after the decimal point for Nim's ## `float64` type. MaxFloat32Precision* = 8 ## Maximum number of meaningful digits ## after the decimal point for Nim's ## `float32` type. MaxFloatPrecision* = MaxFloat64Precision ## Maximum number of ## meaningful digits ## after the decimal point ## for Nim's `float` type. MinFloatNormal* = 2.225073858507201e-308 ## Smallest normal number for Nim's ## `float` type (= 2^-1022). RadPerDeg = PI / 180.0 ## Number of radians per degree. type FloatClass* = enum ## Describes the class a floating point value belongs to. ## This is the type that is returned by the ## `classify func <#classify,float>`_. fcNormal, ## value is an ordinary nonzero floating point value fcSubnormal, ## value is a subnormal (a very small) floating point value fcZero, ## value is zero fcNegZero, ## value is the negative zero fcNan, ## value is Not a Number (NaN) fcInf, ## value is positive infinity fcNegInf ## value is negative infinity func isNaN*(x: SomeFloat): bool {.inline, since: (1,5,1).} = ## Returns whether `x` is a `NaN`, more efficiently than via `classify(x) == fcNan`. ## Works even with `--passc:-ffast-math`. runnableExamples: doAssert NaN.isNaN doAssert not Inf.isNaN doAssert not isNaN(3.1415926) template fn: untyped = result = x != x when nimvm: fn() else: when defined(js): fn() else: result = c_isnan(x) when defined(js): import std/private/jsutils proc toBitsImpl(x: float): array[2, uint32] = let buffer = newArrayBuffer(8) let a = newFloat64Array(buffer) let b = newUint32Array(buffer) a[0] = x {.emit: "`result` = `b`;".} # result = cast[array[2, uint32]](b) proc jsSetSign(x: float, sgn: bool): float = let buffer = newArrayBuffer(8) let a = newFloat64Array(buffer) let b = newUint32Array(buffer) a[0] = x asm """ function updateBit(num, bitPos, bitVal) { return (num & ~(1 << bitPos)) | (bitVal << bitPos); } `b`[1] = updateBit(`b`[1], 31, `sgn`); `result` = `a`[0] """ proc signbit*(x: SomeFloat): bool {.inline, since: (1, 5, 1).} = ## Returns true if `x` is negative, false otherwise. runnableExamples: doAssert not signbit(0.0) doAssert signbit(-0.0) doAssert signbit(-0.1) doAssert not signbit(0.1) when defined(js): let uintBuffer = toBitsImpl(x) result = (uintBuffer[1] shr 31) != 0 else: result = c_signbit(x) != 0 func copySign*[T: SomeFloat](x, y: T): T {.inline, since: (1, 5, 1).} = ## Returns a value with the magnitude of `x` and the sign of `y`; ## this works even if x or y are NaN, infinity or zero, all of which can carry a sign. runnableExamples: doAssert copySign(10.0, 1.0) == 10.0 doAssert copySign(10.0, -1.0) == -10.0 doAssert copySign(-Inf, -0.0) == -Inf doAssert copySign(NaN, 1.0).isNaN doAssert copySign(1.0, copySign(NaN, -1.0)) == -1.0 # TODO: use signbit for examples when defined(js): let uintBuffer = toBitsImpl(y) let sgn = (uintBuffer[1] shr 31) != 0 result = jsSetSign(x, sgn) else: when nimvm: # not exact but we have a vmops for recent enough nim if y > 0.0 or (y == 0.0 and 1.0 / y > 0.0): result = abs(x) elif y <= 0.0: result = -abs(x) else: # must be NaN result = abs(x) else: result = c_copysign(x, y) func classify*(x: float): FloatClass = ## Classifies a floating point value. ## ## Returns `x`'s class as specified by the `FloatClass enum<#FloatClass>`_. ## Doesn't work with `--passc:-ffast-math`. runnableExamples: doAssert classify(0.3) == fcNormal doAssert classify(0.0) == fcZero doAssert classify(0.3 / 0.0) == fcInf doAssert classify(-0.3 / 0.0) == fcNegInf doAssert classify(5.0e-324) == fcSubnormal # JavaScript and most C compilers have no classify: if x == 0.0: if 1.0 / x == Inf: return fcZero else: return fcNegZero if x * 0.5 == x: if x > 0.0: return fcInf else: return fcNegInf if x != x: return fcNan if abs(x) < MinFloatNormal: return fcSubnormal return fcNormal func almostEqual*[T: SomeFloat](x, y: T; unitsInLastPlace: Natural = 4): bool {. since: (1, 5), inline.} = ## Checks if two float values are almost equal, using the ## [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon). ## ## `unitsInLastPlace` is the max number of ## [units in the last place](https://en.wikipedia.org/wiki/Unit_in_the_last_place) ## difference tolerated when comparing two numbers. The larger the value, the ## more error is allowed. A `0` value means that two numbers must be exactly the ## same to be considered equal. ## ## The machine epsilon has to be scaled to the magnitude of the values used ## and multiplied by the desired precision in ULPs unless the difference is ## subnormal. ## # taken from: https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon runnableExamples: doAssert almostEqual(PI, 3.14159265358979) doAssert almostEqual(Inf, Inf) doAssert not almostEqual(NaN, NaN) if x == y: # short circuit exact equality -- needed to catch two infinities of # the same sign. And perhaps speeds things up a bit sometimes. return true let diff = abs(x - y) result = diff <= epsilon(T) * abs(x + y) * T(unitsInLastPlace) or diff < minimumPositiveValue(T) func isPowerOfTwo*(x: int): bool = ## Returns `true`, if `x` is a power of two, `false` otherwise. ## ## Zero and negative numbers are not a power of two. ## ## **See also:** ## * `nextPowerOfTwo func <#nextPowerOfTwo,int>`_ runnableExamples: doAssert isPowerOfTwo(16) doAssert not isPowerOfTwo(5) doAssert not isPowerOfTwo(0) doAssert not isPowerOfTwo(-16) return (x > 0) and ((x and (x - 1)) == 0) func nextPowerOfTwo*(x: int): int = ## Returns `x` rounded up to the nearest power of two. ## ## Zero and negative numbers get rounded up to 1. ## ## **See also:** ## * `isPowerOfTwo func <#isPowerOfTwo,int>`_ runnableExamples: doAssert nextPowerOfTwo(16) == 16 doAssert nextPowerOfTwo(5) == 8 doAssert nextPowerOfTwo(0) == 1 doAssert nextPowerOfTwo(-16) == 1 result = x - 1 when defined(cpu64): result = result or (result shr 32) when sizeof(int) > 2: result = result or (result shr 16) when sizeof(int) > 1: result = result or (result shr 8) result = result or (result shr 4) result = result or (result shr 2) result = result or (result shr 1) result += 1 + ord(x <= 0) func sum*[T](x: openArray[T]): T = ## Computes the sum of the elements in `x`. ## ## If `x` is empty, 0 is returned. ## ## **See also:** ## * `prod func <#prod,openArray[T]>`_ ## * `cumsum func <#cumsum,openArray[T]>`_ ## * `cumsummed func <#cumsummed,openArray[T]>`_ runnableExamples: doAssert sum([1, 2, 3, 4]) == 10 doAssert sum([-4, 3, 5]) == 4 for i in items(x): result = result + i func prod*[T](x: openArray[T]): T = ## Computes the product of the elements in `x`. ## ## If `x` is empty, 1 is returned. ## ## **See also:** ## * `sum func <#sum,openArray[T]>`_ ## * `fac func <#fac,int>`_ runnableExamples: doAssert prod([1, 2, 3, 4]) == 24 doAssert prod([-4, 3, 5]) == -60 result = T(1) for i in items(x): result = result * i func cumsummed*[T](x: openArray[T]): seq[T] = ## Returns the cumulative (aka prefix) summation of `x`. ## ## If `x` is empty, `@[]` is returned. ## ## **See also:** ## * `sum func <#sum,openArray[T]>`_ ## * `cumsum func <#cumsum,openArray[T]>`_ for the in-place version runnableExamples: doAssert cumsummed([1, 2, 3, 4]) == @[1, 3, 6, 10] let xLen = x.len if xLen == 0: return @[] result.setLen(xLen) result[0] = x[0] for i in 1 ..< xLen: result[i] = result[i - 1] + x[i] func cumsum*[T](x: var openArray[T]) = ## Transforms `x` in-place (must be declared as `var`) into its ## cumulative (aka prefix) summation. ## ## **See also:** ## * `sum func <#sum,openArray[T]>`_ ## * `cumsummed func <#cumsummed,openArray[T]>`_ for a version which ## returns a cumsummed sequence runnableExamples: var a = [1, 2, 3, 4] cumsum(a) doAssert a == @[1, 3, 6, 10] for i in 1 ..< x.len: x[i] = x[i - 1] + x[i] when not defined(js): # C func sqrt*(x: float32): float32 {.importc: "sqrtf", header: "".} func sqrt*(x: float64): float64 {.importc: "sqrt", header: "".} = ## Computes the square root of `x`. ## ## **See also:** ## * `cbrt func <#cbrt,float64>`_ for the cube root runnableExamples: doAssert almostEqual(sqrt(4.0), 2.0) doAssert almostEqual(sqrt(1.44), 1.2) func cbrt*(x: float32): float32 {.importc: "cbrtf", header: "".} func cbrt*(x: float64): float64 {.importc: "cbrt", header: "".} = ## Computes the cube root of `x`. ## ## **See also:** ## * `sqrt func <#sqrt,float64>`_ for the square root runnableExamples: doAssert almostEqual(cbrt(8.0), 2.0) doAssert almostEqual(cbrt(2.197), 1.3) doAssert almostEqual(cbrt(-27.0), -3.0) func ln*(x: float32): float32 {.importc: "logf", header: "".} func ln*(x: float64): float64 {.importc: "log", header: "".} = ## Computes the [natural logarithm](https://en.wikipedia.org/wiki/Natural_logarithm) ## of `x`. ## ## **See also:** ## * `log func <#log,T,T>`_ ## * `log10 func <#log10,float64>`_ ## * `log2 func <#log2,float64>`_ ## * `exp func <#exp,float64>`_ runnableExamples: doAssert almostEqual(ln(exp(4.0)), 4.0) doAssert almostEqual(ln(1.0), 0.0) doAssert almostEqual(ln(0.0), -Inf) doAssert ln(-7.0).isNaN else: # JS func sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.} func sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.} func cbrt*(x: float32): float32 {.importc: "Math.cbrt", nodecl.} func cbrt*(x: float64): float64 {.importc: "Math.cbrt", nodecl.} func ln*(x: float32): float32 {.importc: "Math.log", nodecl.} func ln*(x: float64): float64 {.importc: "Math.log", nodecl.} func log*[T: SomeFloat](x, base: T): T = ## Computes the logarithm of `x` to base `base`. ## ## **See also:** ## * `ln func <#ln,float64>`_ ## * `log10 func <#log10,float64>`_ ## * `log2 func <#log2,float64>`_ runnableExamples: doAssert almostEqual(log(9.0, 3.0), 2.0) doAssert almostEqual(log(0.0, 2.0), -Inf) doAssert log(-7.0, 4.0).isNaN doAssert log(8.0, -2.0).isNaN ln(x) / ln(base) when not defined(js): # C func log10*(x: float32): float32 {.importc: "log10f", header: "".} func log10*(x: float64): float64 {.importc: "log10", header: "".} = ## Computes the common logarithm (base 10) of `x`. ## ## **See also:** ## * `ln func <#ln,float64>`_ ## * `log func <#log,T,T>`_ ## * `log2 func <#log2,float64>`_ runnableExamples: doAssert almostEqual(log10(100.0) , 2.0) doAssert almostEqual(log10(0.0), -Inf) doAssert log10(-100.0).isNaN func exp*(x: float32): float32 {.importc: "expf", header: "".} func exp*(x: float64): float64 {.importc: "exp", header: "".} = ## Computes the exponential function of `x` (`e^x`). ## ## **See also:** ## * `ln func <#ln,float64>`_ runnableExamples: doAssert almostEqual(exp(1.0), E) doAssert almostEqual(ln(exp(4.0)), 4.0) doAssert almostEqual(exp(0.0), 1.0) func sin*(x: float32): float32 {.importc: "sinf", header: "".} func sin*(x: float64): float64 {.importc: "sin", header: "".} = ## Computes the sine of `x`. ## ## **See also:** ## * `arcsin func <#arcsin,float64>`_ runnableExamples: doAssert almostEqual(sin(PI / 6), 0.5) doAssert almostEqual(sin(degToRad(90.0)), 1.0) func cos*(x: float32): float32 {.importc: "cosf", header: "".} func cos*(x: float64): float64 {.importc: "cos", header: "".} = ## Computes the cosine of `x`. ## ## **See also:** ## * `arccos func <#arccos,float64>`_ runnableExamples: doAssert almostEqual(cos(2 * PI), 1.0) doAssert almostEqual(cos(degToRad(60.0)), 0.5) func tan*(x: float32): float32 {.importc: "tanf", header: "".} func tan*(x: float64): float64 {.importc: "tan", header: "".} = ## Computes the tangent of `x`. ## ## **See also:** ## * `arctan func <#arctan,float64>`_ runnableExamples: doAssert almostEqual(tan(degToRad(45.0)), 1.0) doAssert almostEqual(tan(PI / 4), 1.0) func sinh*(x: float32): float32 {.importc: "sinhf", header: "".} func sinh*(x: float64): float64 {.importc: "sinh", header: "".} = ## Computes the [hyperbolic sine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`. ## ## **See also:** ## * `arcsinh func <#arcsinh,float64>`_ runnableExamples: doAssert almostEqual(sinh(0.0), 0.0) doAssert almostEqual(sinh(1.0), 1.175201193643801) func cosh*(x: float32): float32 {.importc: "coshf", header: "".} func cosh*(x: float64): float64 {.importc: "cosh", header: "".} = ## Computes the [hyperbolic cosine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`. ## ## **See also:** ## * `arccosh func <#arccosh,float64>`_ runnableExamples: doAssert almostEqual(cosh(0.0), 1.0) doAssert almostEqual(cosh(1.0), 1.543080634815244) func tanh*(x: float32): float32 {.importc: "tanhf", header: "".} func tanh*(x: float64): float64 {.importc: "tanh", header: "".} = ## Computes the [hyperbolic tangent](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`. ## ## **See also:** ## * `arctanh func <#arctanh,float64>`_ runnableExamples: doAssert almostEqual(tanh(0.0), 0.0) doAssert almostEqual(tanh(1.0), 0.7615941559557649) func arcsin*(x: float32): float32 {.importc: "asinf", header: "".} func arcsin*(x: float64): float64 {.importc: "asin", header: "".} = ## Computes the arc sine of `x`. ## ## **See also:** ## * `sin func <#sin,float64>`_ runnableExamples: doAssert almostEqual(radToDeg(arcsin(0.0)), 0.0) doAssert almostEqual(radToDeg(arcsin(1.0)), 90.0) func arccos*(x: float32): float32 {.importc: "acosf", header: "".} func arccos*(x: float64): float64 {.importc: "acos", header: "".} = ## Computes the arc cosine of `x`. ## ## **See also:** ## * `cos func <#cos,float64>`_ runnableExamples: doAssert almostEqual(radToDeg(arccos(0.0)), 90.0) doAssert almostEqual(radToDeg(arccos(1.0)), 0.0) func arctan*(x: float32): float32 {.importc: "atanf", header: "".} func arctan*(x: float64): float64 {.importc: "atan", header: "".} = ## Calculate the arc tangent of `x`. ## ## **See also:** ## * `arctan2 func <#arctan2,float64,float64>`_ ## * `tan func <#tan,float64>`_ runnableExamples: doAssert almostEqual(arctan(1.0), 0.7853981633974483) doAssert almostEqual(radToDeg(arctan(1.0)), 45.0) func arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "".} func arctan2*(y, x: float64): float64 {.importc: "atan2", header: "".} = ## Calculate the arc tangent of `y/x`. ## ## It produces correct results even when the resulting angle is near ## `PI/2` or `-PI/2` (`x` near 0). ## ## **See also:** ## * `arctan func <#arctan,float64>`_ runnableExamples: doAssert almostEqual(arctan2(1.0, 0.0), PI / 2.0) doAssert almostEqual(radToDeg(arctan2(1.0, 0.0)), 90.0) func arcsinh*(x: float32): float32 {.importc: "asinhf", header: "".} func arcsinh*(x: float64): float64 {.importc: "asinh", header: "".} ## Computes the inverse hyperbolic sine of `x`. ## ## **See also:** ## * `sinh func <#sinh,float64>`_ func arccosh*(x: float32): float32 {.importc: "acoshf", header: "".} func arccosh*(x: float64): float64 {.importc: "acosh", header: "".} ## Computes the inverse hyperbolic cosine of `x`. ## ## **See also:** ## * `cosh func <#cosh,float64>`_ func arctanh*(x: float32): float32 {.importc: "atanhf", header: "".} func arctanh*(x: float64): float64 {.importc: "atanh", header: "".} ## Computes the inverse hyperbolic tangent of `x`. ## ## **See also:** ## * `tanh func <#tanh,float64>`_ else: # JS func log10*(x: float32): float32 {.importc: "Math.log10", nodecl.} func log10*(x: float64): float64 {.importc: "Math.log10", nodecl.} func log2*(x: float32): float32 {.importc: "Math.log2", nodecl.} func log2*(x: float64): float64 {.importc: "Math.log2", nodecl.} func exp*(x: float32): float32 {.importc: "Math.exp", nodecl.} func exp*(x: float64): float64 {.importc: "Math.exp", nodecl.} func sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.} func cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.} func tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.} func sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.} func cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.} func tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.} func arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.} # keep this as generic or update test in `tvmops.nim` to make sure we # keep testing that generic importc procs work func arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.} func arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.} func arctan2*[T: float32|float64](y, x: T): T {.importc: "Math.atan2", nodecl.} func arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.} func arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.} func arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.} func cot*[T: float32|float64](x: T): T = 1.0 / tan(x) ## Computes the cotangent of `x` (`1/tan(x)`). func sec*[T: float32|float64](x: T): T = 1.0 / cos(x) ## Computes the secant of `x` (`1/cos(x)`). func csc*[T: float32|float64](x: T): T = 1.0 / sin(x) ## Computes the cosecant of `x` (`1/sin(x)`). func coth*[T: float32|float64](x: T): T = 1.0 / tanh(x) ## Computes the hyperbolic cotangent of `x` (`1/tanh(x)`). func sech*[T: float32|float64](x: T): T = 1.0 / cosh(x) ## Computes the hyperbolic secant of `x` (`1/cosh(x)`). func csch*[T: float32|float64](x: T): T = 1.0 / sinh(x) ## Computes the hyperbolic cosecant of `x` (`1/sinh(x)`). func arccot*[T: float32|float64](x: T): T = arctan(1.0 / x) ## Computes the inverse cotangent of `x` (`arctan(1/x)`). func arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x) ## Computes the inverse secant of `x` (`arccos(1/x)`). func arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x) ## Computes the inverse cosecant of `x` (`arcsin(1/x)`). func arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x) ## Computes the inverse hyperbolic cotangent of `x` (`arctanh(1/x)`). func arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x) ## Computes the inverse hyperbolic secant of `x` (`arccosh(1/x)`). func arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x) ## Computes the inverse hyperbolic cosecant of `x` (`arcsinh(1/x)`). const windowsCC89 = defined(windows) and defined(bcc) when not defined(js): # C func hypot*(x, y: float32): float32 {.importc: "hypotf", header: "".} func hypot*(x, y: float64): float64 {.importc: "hypot", header: "".} = ## Computes the length of the hypotenuse of a right-angle triangle with ## `x` as its base and `y` as its height. Equivalent to `sqrt(x*x + y*y)`. runnableExamples: doAssert almostEqual(hypot(3.0, 4.0), 5.0) func pow*(x, y: float32): float32 {.importc: "powf", header: "".} func pow*(x, y: float64): float64 {.importc: "pow", header: "".} = ## Computes `x` raised to the power of `y`. ## ## To compute the power between integers (e.g. 2^6), ## use the `^ func <#^,T,Natural>`_. ## ## **See also:** ## * `^ func <#^,T,Natural>`_ ## * `sqrt func <#sqrt,float64>`_ ## * `cbrt func <#cbrt,float64>`_ runnableExamples: doAssert almostEqual(pow(100, 1.5), 1000.0) doAssert almostEqual(pow(16.0, 0.5), 4.0) # TODO: add C89 version on windows when not windowsCC89: func erf*(x: float32): float32 {.importc: "erff", header: "".} func erf*(x: float64): float64 {.importc: "erf", header: "".} ## Computes the [error function](https://en.wikipedia.org/wiki/Error_function) for `x`. ## ## **Note:** Not available for the JS backend. func erfc*(x: float32): float32 {.importc: "erfcf", header: "".} func erfc*(x: float64): float64 {.importc: "erfc", header: "".} ## Computes the [complementary error function](https://en.wikipedia.org/wiki/Error_function#Complementary_error_function) for `x`. ## ## **Note:** Not available for the JS backend. func gamma*(x: float32): float32 {.importc: "tgammaf", header: "".} func gamma*(x: float64): float64 {.importc: "tgamma", header: "".} = ## Computes the [gamma function](https://en.wikipedia.org/wiki/Gamma_function) for `x`. ## ## **Note:** Not available for the JS backend. ## ## **See also:** ## * `lgamma func <#lgamma,float64>`_ for the natural logarithm of the gamma function runnableExamples: doAssert almostEqual(gamma(1.0), 1.0) doAssert almostEqual(gamma(4.0), 6.0) doAssert almostEqual(gamma(11.0), 3628800.0) func lgamma*(x: float32): float32 {.importc: "lgammaf", header: "".} func lgamma*(x: float64): float64 {.importc: "lgamma", header: "".} = ## Computes the natural logarithm of the gamma function for `x`. ## ## **Note:** Not available for the JS backend. ## ## **See also:** ## * `gamma func <#gamma,float64>`_ for gamma function func floor*(x: float32): float32 {.importc: "floorf", header: "".} func floor*(x: float64): float64 {.importc: "floor", header: "".} = ## Computes the floor function (i.e. the largest integer not greater than `x`). ## ## **See also:** ## * `ceil func <#ceil,float64>`_ ## * `round func <#round,float64>`_ ## * `trunc func <#trunc,float64>`_ runnableExamples: doAssert floor(2.1) == 2.0 doAssert floor(2.9) == 2.0 doAssert floor(-3.5) == -4.0 func ceil*(x: float32): float32 {.importc: "ceilf", header: "".} func ceil*(x: float64): float64 {.importc: "ceil", header: "".} = ## Computes the ceiling function (i.e. the smallest integer not smaller ## than `x`). ## ## **See also:** ## * `floor func <#floor,float64>`_ ## * `round func <#round,float64>`_ ## * `trunc func <#trunc,float64>`_ runnableExamples: doAssert ceil(2.1) == 3.0 doAssert ceil(2.9) == 3.0 doAssert ceil(-2.1) == -2.0 when windowsCC89: # MSVC 2010 don't have trunc/truncf # this implementation was inspired by Go-lang Math.Trunc func truncImpl(f: float64): float64 = const mask: uint64 = 0x7FF shift: uint64 = 64 - 12 bias: uint64 = 0x3FF if f < 1: if f < 0: return -truncImpl(-f) elif f == 0: return f # Return -0 when f == -0 else: return 0 var x = cast[uint64](f) let e = (x shr shift) and mask - bias # Keep the top 12+e bits, the integer part; clear the rest. if e < 64 - 12: x = x and (not (1'u64 shl (64'u64 - 12'u64 - e) - 1'u64)) result = cast[float64](x) func truncImpl(f: float32): float32 = const mask: uint32 = 0xFF shift: uint32 = 32 - 9 bias: uint32 = 0x7F if f < 1: if f < 0: return -truncImpl(-f) elif f == 0: return f # Return -0 when f == -0 else: return 0 var x = cast[uint32](f) let e = (x shr shift) and mask - bias # Keep the top 9+e bits, the integer part; clear the rest. if e < 32 - 9: x = x and (not (1'u32 shl (32'u32 - 9'u32 - e) - 1'u32)) result = cast[float32](x) func trunc*(x: float64): float64 = if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x result = truncImpl(x) func trunc*(x: float32): float32 = if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x result = truncImpl(x) func round*[T: float32|float64](x: T): T = ## Windows compilers prior to MSVC 2012 do not implement 'round', ## 'roundl' or 'roundf'. result = if x < 0.0: ceil(x - T(0.5)) else: floor(x + T(0.5)) else: func round*(x: float32): float32 {.importc: "roundf", header: "".} func round*(x: float64): float64 {.importc: "round", header: "".} = ## Rounds a float to zero decimal places. ## ## Used internally by the `round func <#round,T,int>`_ ## when the specified number of places is 0. ## ## **See also:** ## * `round func <#round,T,int>`_ for rounding to the specific ## number of decimal places ## * `floor func <#floor,float64>`_ ## * `ceil func <#ceil,float64>`_ ## * `trunc func <#trunc,float64>`_ runnableExamples: doAssert round(3.4) == 3.0 doAssert round(3.5) == 4.0 doAssert round(4.5) == 5.0 func trunc*(x: float32): float32 {.importc: "truncf", header: "".} func trunc*(x: float64): float64 {.importc: "trunc", header: "".} = ## Truncates `x` to the decimal point. ## ## **See also:** ## * `floor func <#floor,float64>`_ ## * `ceil func <#ceil,float64>`_ ## * `round func <#round,float64>`_ runnableExamples: doAssert trunc(PI) == 3.0 doAssert trunc(-1.85) == -1.0 func `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "".} func `mod`*(x, y: float64): float64 {.importc: "fmod", header: "".} = ## Computes the modulo operation for float values (the remainder of `x` divided by `y`). ## ## **See also:** ## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior runnableExamples: doAssert 6.5 mod 2.5 == 1.5 doAssert -6.5 mod 2.5 == -1.5 doAssert 6.5 mod -2.5 == 1.5 doAssert -6.5 mod -2.5 == -1.5 else: # JS func hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.} func hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.} func pow*(x, y: float32): float32 {.importc: "Math.pow", nodecl.} func pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.} func floor*(x: float32): float32 {.importc: "Math.floor", nodecl.} func floor*(x: float64): float64 {.importc: "Math.floor", nodecl.} func ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.} func ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.} when (NimMajor, NimMinor) < (1, 5) or defined(nimLegacyJsRound): func round*(x: float): float {.importc: "Math.round", nodecl.} else: func jsRound(x: float): float {.importc: "Math.round", nodecl.} func round*[T: float64 | float32](x: T): T = if x >= 0: result = jsRound(x) else: result = ceil(x) if result - x >= T(0.5): result -= T(1.0) func trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.} func trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.} func `mod`*(x, y: float32): float32 {.importjs: "(# % #)".} func `mod`*(x, y: float64): float64 {.importjs: "(# % #)".} = ## Computes the modulo operation for float values (the remainder of `x` divided by `y`). runnableExamples: doAssert 6.5 mod 2.5 == 1.5 doAssert -6.5 mod 2.5 == -1.5 doAssert 6.5 mod -2.5 == 1.5 doAssert -6.5 mod -2.5 == -1.5 func round*[T: float32|float64](x: T, places: int): T = ## Decimal rounding on a binary floating point number. ## ## This function is NOT reliable. Floating point numbers cannot hold ## non integer decimals precisely. If `places` is 0 (or omitted), ## round to the nearest integral value following normal mathematical ## rounding rules (e.g. `round(54.5) -> 55.0`). If `places` is ## greater than 0, round to the given number of decimal places, ## e.g. `round(54.346, 2) -> 54.350000000000001421…`. If `places` is negative, round ## to the left of the decimal place, e.g. `round(537.345, -1) -> 540.0`. runnableExamples: doAssert round(PI, 2) == 3.14 doAssert round(PI, 4) == 3.1416 if places == 0: result = round(x) else: var mult = pow(10.0, T(places)) result = round(x * mult) / mult func floorDiv*[T: SomeInteger](x, y: T): T = ## Floor division is conceptually defined as `floor(x / y)`. ## ## This is different from the `system.div `_ ## operator, which is defined as `trunc(x / y)`. ## That is, `div` rounds towards `0` and `floorDiv` rounds down. ## ## **See also:** ## * `system.div proc `_ for integer division ## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior runnableExamples: doAssert floorDiv( 13, 3) == 4 doAssert floorDiv(-13, 3) == -5 doAssert floorDiv( 13, -3) == -5 doAssert floorDiv(-13, -3) == 4 result = x div y let r = x mod y if (r > 0 and y < 0) or (r < 0 and y > 0): result.dec 1 func floorMod*[T: SomeNumber](x, y: T): T = ## Floor modulo is conceptually defined as `x - (floorDiv(x, y) * y)`. ## ## This func behaves the same as the `%` operator in Python. ## ## **See also:** ## * `mod func <#mod,float64,float64>`_ ## * `floorDiv func <#floorDiv,T,T>`_ runnableExamples: doAssert floorMod( 13, 3) == 1 doAssert floorMod(-13, 3) == 2 doAssert floorMod( 13, -3) == -2 doAssert floorMod(-13, -3) == -1 result = x mod y if (result > 0 and y < 0) or (result < 0 and y > 0): result += y func euclDiv*[T: SomeInteger](x, y: T): T {.since: (1, 5, 1).} = ## Returns euclidean division of `x` by `y`. runnableExamples: doAssert euclDiv(13, 3) == 4 doAssert euclDiv(-13, 3) == -5 doAssert euclDiv(13, -3) == -4 doAssert euclDiv(-13, -3) == 5 result = x div y if x mod y < 0: if y > 0: dec result else: inc result func euclMod*[T: SomeNumber](x, y: T): T {.since: (1, 5, 1).} = ## Returns euclidean modulo of `x` by `y`. ## `euclMod(x, y)` is non-negative. runnableExamples: doAssert euclMod(13, 3) == 1 doAssert euclMod(-13, 3) == 2 doAssert euclMod(13, -3) == 1 doAssert euclMod(-13, -3) == 2 result = x mod y if result < 0: result += abs(y) func frexp*[T: float32|float64](x: T): tuple[frac: T, exp: int] {.inline.} = ## Splits `x` into a normalized fraction `frac` and an integral power of 2 `exp`, ## such that `abs(frac) in 0.5..<1` and `x == frac * 2 ^ exp`, except for special ## cases shown below. runnableExamples: doAssert frexp(8.0) == (0.5, 4) doAssert frexp(-8.0) == (-0.5, 4) doAssert frexp(0.0) == (0.0, 0) # special cases: when not defined(windows): doAssert frexp(-0.0) == (-0.0, 0) # signbit preserved for +-0 doAssert frexp(Inf).frac == Inf # +- Inf preserved doAssert frexp(NaN).frac.isNaN when not defined(js): var exp: cint result.frac = c_frexp2(x, exp) result.exp = exp else: if x == 0.0: result = (0.0, 0) elif x < 0.0: result = frexp(-x) result.frac = -result.frac else: var ex = trunc(log2(x)) result.exp = int(ex) result.frac = x / pow(2.0, ex) if abs(result.frac) >= 1: inc(result.exp) result.frac = result.frac / 2 if result.exp == 1024 and result.frac == 0.0: result.frac = 0.99999999999999988898 func frexp*[T: float32|float64](x: T, exponent: var int): T {.inline.} = ## Overload of `frexp` that calls `(result, exponent) = frexp(x)`. runnableExamples: var x: int doAssert frexp(5.0, x) == 0.625 doAssert x == 3 (result, exponent) = frexp(x) when not defined(js): when windowsCC89: # taken from Go-lang Math.Log2 const ln2 = 0.693147180559945309417232121458176568075500134360255254120680009 template log2Impl[T](x: T): T = var exp: int32 var frac = frexp(x, exp) # Make sure exact powers of two give an exact answer. # Don't depend on Log(0.5)*(1/Ln2)+exp being exactly exp-1. if frac == 0.5: return T(exp - 1) log10(frac) * (1 / ln2) + T(exp) func log2*(x: float32): float32 = log2Impl(x) func log2*(x: float64): float64 = log2Impl(x) ## Log2 returns the binary logarithm of x. ## The special cases are the same as for Log. else: func log2*(x: float32): float32 {.importc: "log2f", header: "".} func log2*(x: float64): float64 {.importc: "log2", header: "".} = ## Computes the binary logarithm (base 2) of `x`. ## ## **See also:** ## * `log func <#log,T,T>`_ ## * `log10 func <#log10,float64>`_ ## * `ln func <#ln,float64>`_ runnableExamples: doAssert almostEqual(log2(8.0), 3.0) doAssert almostEqual(log2(1.0), 0.0) doAssert almostEqual(log2(0.0), -Inf) doAssert log2(-2.0).isNaN func splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] = ## Breaks `x` into an integer and a fractional part. ## ## Returns a tuple containing `intpart` and `floatpart`, representing ## the integer part and the fractional part, respectively. ## ## Both parts have the same sign as `x`. Analogous to the `modf` ## function in C. runnableExamples: doAssert splitDecimal(5.25) == (intpart: 5.0, floatpart: 0.25) doAssert splitDecimal(-2.73) == (intpart: -2.0, floatpart: -0.73) var absolute: T absolute = abs(x) result.intpart = floor(absolute) result.floatpart = absolute - result.intpart if x < 0: result.intpart = -result.intpart result.floatpart = -result.floatpart func degToRad*[T: float32|float64](d: T): T {.inline.} = ## Converts from degrees to radians. ## ## **See also:** ## * `radToDeg func <#radToDeg,T>`_ runnableExamples: doAssert almostEqual(degToRad(180.0), PI) result = d * T(RadPerDeg) func radToDeg*[T: float32|float64](d: T): T {.inline.} = ## Converts from radians to degrees. ## ## **See also:** ## * `degToRad func <#degToRad,T>`_ runnableExamples: doAssert almostEqual(radToDeg(2 * PI), 360.0) result = d / T(RadPerDeg) func sgn*[T: SomeNumber](x: T): int {.inline.} = ## Sign function. ## ## Returns: ## * `-1` for negative numbers and `NegInf`, ## * `1` for positive numbers and `Inf`, ## * `0` for positive zero, negative zero and `NaN` runnableExamples: doAssert sgn(5) == 1 doAssert sgn(0) == 0 doAssert sgn(-4.1) == -1 ord(T(0) < x) - ord(x < T(0)) {.pop.} {.pop.} func `^`*[T: SomeNumber](x: T, y: Natural): T = ## Computes `x` to the power of `y`. ## ## The exponent `y` must be non-negative, use ## `pow <#pow,float64,float64>`_ for negative exponents. ## ## **See also:** ## * `pow func <#pow,float64,float64>`_ for negative exponent or ## floats ## * `sqrt func <#sqrt,float64>`_ ## * `cbrt func <#cbrt,float64>`_ runnableExamples: doAssert -3 ^ 0 == 1 doAssert -3 ^ 1 == -3 doAssert -3 ^ 2 == 9 case y of 0: result = 1 of 1: result = x of 2: result = x * x of 3: result = x * x * x else: var (x, y) = (x, y) result = 1 while true: if (y and 1) != 0: result *= x y = y shr 1 if y == 0: break x *= x func gcd*[T](x, y: T): T = ## Computes the greatest common (positive) divisor of `x` and `y`. ## ## Note that for floats, the result cannot always be interpreted as ## "greatest decimal `z` such that `z*N == x and z*M == y` ## where N and M are positive integers". ## ## **See also:** ## * `gcd func <#gcd,SomeInteger,SomeInteger>`_ for an integer version ## * `lcm func <#lcm,T,T>`_ runnableExamples: doAssert gcd(13.5, 9.0) == 4.5 var (x, y) = (x, y) while y != 0: x = x mod y swap x, y abs x func gcd*(x, y: SomeInteger): SomeInteger = ## Computes the greatest common (positive) divisor of `x` and `y`, ## using the binary GCD (aka Stein's) algorithm. ## ## **See also:** ## * `gcd func <#gcd,T,T>`_ for a float version ## * `lcm func <#lcm,T,T>`_ runnableExamples: doAssert gcd(12, 8) == 4 doAssert gcd(17, 63) == 1 when x is SomeSignedInt: var x = abs(x) else: var x = x when y is SomeSignedInt: var y = abs(y) else: var y = y if x == 0: return y if y == 0: return x let shift = countTrailingZeroBits(x or y) y = y shr countTrailingZeroBits(y) while x != 0: x = x shr countTrailingZeroBits(x) if y > x: swap y, x x -= y y shl shift func gcd*[T](x: openArray[T]): T {.since: (1, 1).} = ## Computes the greatest common (positive) divisor of the elements of `x`. ## ## **See also:** ## * `gcd func <#gcd,T,T>`_ for a version with two arguments runnableExamples: doAssert gcd(@[13.5, 9.0]) == 4.5 result = x[0] for i in 1 ..< x.len: result = gcd(result, x[i]) func lcm*[T](x, y: T): T = ## Computes the least common multiple of `x` and `y`. ## ## **See also:** ## * `gcd func <#gcd,T,T>`_ runnableExamples: doAssert lcm(24, 30) == 120 doAssert lcm(13, 39) == 39 x div gcd(x, y) * y func clamp*[T](val: T, bounds: Slice[T]): T {.since: (1, 5), inline.} = ## Like `system.clamp`, but takes a slice, so you can easily clamp within a range. runnableExamples: assert clamp(10, 1 .. 5) == 5 assert clamp(1, 1 .. 3) == 1 type A = enum a0, a1, a2, a3, a4, a5 assert a1.clamp(a2..a4) == a2 assert clamp((3, 0), (1, 0) .. (2, 9)) == (2, 9) doAssertRaises(AssertionDefect): discard clamp(1, 3..2) # invalid bounds assert bounds.a <= bounds.b, $(bounds.a, bounds.b) clamp(val, bounds.a, bounds.b) func lcm*[T](x: openArray[T]): T {.since: (1, 1).} = ## Computes the least common multiple of the elements of `x`. ## ## **See also:** ## * `lcm func <#lcm,T,T>`_ for a version with two arguments runnableExamples: doAssert lcm(@[24, 30]) == 120 result = x[0] for i in 1 ..< x.len: result = lcm(result, x[i])