# # # Nim's Runtime Library # (c) Copyright 2013 Robert Persson # # See the file "copying.txt", included in this # distribution, for details about the copyright. # import math import strutils import numeric type Poly* = object cofs:seq[float] {.deprecated: [TPoly: Poly].} proc degree*(p:Poly):int= ## Returns the degree of the polynomial, ## that is the number of coefficients-1 return p.cofs.len-1 proc eval*(p:Poly,x:float):float= ## Evaluates a polynomial function value for `x` ## quickly using Horners method var n=p.degree result=p.cofs[n] dec n while n>=0: result = result*x+p.cofs[n] dec n proc `[]` *(p:Poly;idx:int):float= ## Gets a coefficient of the polynomial. ## p[2] will returns the quadric term, p[3] the cubic etc. ## Out of bounds index will return 0.0. if idx<0 or idx>p.degree: return 0.0 return p.cofs[idx] proc `[]=` *(p:var Poly;idx:int,v:float)= ## Sets an coefficient of the polynomial by index. ## p[2] set the quadric term, p[3] the cubic etc. ## If index is out of range for the coefficients, ## the polynomial grows to the smallest needed degree. assert(idx>=0) if idx>p.degree: #polynomial must grow var oldlen=p.cofs.len p.cofs.setLen(idx+1) for q in oldlen.. =0: yield p[i] dec i proc clean*(p:var Poly;zerotol=0.0)= ## Removes leading zero coefficients of the polynomial. ## An optional tolerance can be given for what's considered zero. var n=p.degree var relen=false while n>0 and abs(p[n])<=zerotol: # >0 => keep at least one coefficient dec n relen=true if relen: p.cofs.setLen(n+1) proc `$` *(p:Poly):string = ## Gets a somewhat reasonable string representation of the polynomial ## The format should be compatible with most online function plotters, ## for example directly in google search result="" var first=true #might skip + sign if first coefficient for idx in countdown(p.degree,0): let a=p[idx] if a==0.0: continue if a>= 0.0 and not first: result.add('+') first=false if a!=1.0 or idx==0: result.add(formatFloat(a,ffDefault,0)) if idx>=2: result.add("x^" & $idx) elif idx==1: result.add("x") if result=="": result="0" proc derivative*(p: Poly): Poly= ## Returns a new polynomial, which is the derivative of `p` newSeq[float](result.cofs,p.degree) for idx in 0..high(result.cofs): result.cofs[idx]=p.cofs[idx+1]*float(idx+1) proc diff*(p:Poly,x:float):float= ## Evaluates the differentiation of a polynomial with ## respect to `x` quickly using a modifed Horners method var n=p.degree result=p[n]*float(n) dec n while n>=1: result = result*x+p[n]*float(n) dec n proc integral*(p:Poly):Poly= ## Returns a new polynomial which is the indefinite ## integral of `p`. The constant term is set to 0.0 newSeq(result.cofs,p.cofs.len+1) result.cofs[0]=0.0 #constant arbitrary term, use 0.0 for i in 1..high(result.cofs): result.cofs[i]=p.cofs[i-1]/float(i) proc integrate*(p:Poly;xmin,xmax:float):float= ## Computes the definite integral of `p` between `xmin` and `xmax` ## quickly using a modified version of Horners method var n=p.degree s1=p[n]/float(n+1) s2=s1 fac:float dec n while n>=0: fac=p[n]/float(n+1) s1 = s1*xmin+fac s2 = s2*xmax+fac dec n result=s2*xmax-s1*xmin proc initPoly*(cofs:varargs[float]):Poly= ## Initializes a polynomipx; padding-right: 5px; } td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } .highlight .hll { background-color: #ffffcc } .highlight .c { color: #888888 } /* Comment */ .highlight .err { color: #a61717; background-color: #e3d2d2 } /* Error */ .highlight .k { color: #008800; font-weight: bold } /* Keyword */ .highlight .ch { color: #888888 } /* Comment.Hashbang */ .highlight .cm { color: #888888 } /* Comment.Multiline */ .highlight .cp { color: #cc0000; font-weight: bold } /* Comment.Preproc */ .highlight .cpf { color: #888888 } /* Comment.PreprocFile */ .highlight .c1 { color: #888888 } /* Comment.Single */ .highlight .cs { color: #cc0000; font-weight: bold; background-color: #fff0f0 } /* Comment.Special */ .highlight .gd { color: #000000; background-color: #ffdddd } /* Generic.Deleted */ .highlight .ge { font-style: italic } /* Generic.Emph */ .highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ .highlight .gr { color: #aa0000 } /* Generic.Error */ .highlight .gh { color: #333333 } /* Generic.Heading */ .highlight .gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */ .highlight .go { color: #888888 } /* Generic.Output */ .highlight .gp { color: #555555 } /* Generic.Prompt */ .highlight .gs { font-weight: bold } /* Generic.Strong */ .highlight .gu { color: #666666 } /* Generic.Subheading */ .highlight .gt { color: #aa0000 } /* Generic.Traceback */ .highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */ .highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */ .highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */ .highlight .kp { color: #008800 } /* Keyword.Pseudo */ .highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */ .highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */ .highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */ .highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */ .highlight .na { color: #336699 } /* Name.Attribute */ .highlight .nb { color: #003388 } /* Name.Builtin */ .highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */ .highlight .no { color: #003366; font-weight: bold } /* Name.Constant */ .highlight .nd { color: #555555 } /* Name.Decorator */ .highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */ .highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */ .highlight .nl { color: #336699; font-style: italic } /* Name.Label */ .highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */ .highlight .py { color: #336699; font-weight: bold } /* Name.Property */ .highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */ .highlight .nv { color: #336699 } /* Name.Variable */ .highlight .ow { color: #008800 } /* Operator.Word */ .highlight .w { color: #bbbbbb } /* Text.Whitespace */ .highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */ .highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */ .highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */ .highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */ .highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */ .highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */ .highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */ .highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */ .highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */ .highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */ .highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */ .highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */ .highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */ .highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */ .highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */ .highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */ .highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */ .highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */ .highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */ .highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */ .highlight .vc { color: #336699 } /* Name.Variable.Class */ .highlight .vg { color: #dd7700 } /* Name.Variable.Global */ .highlight .vi { color: #3333bb } /* Name.Variable.Instance */ .highlight .vm { color: #336699 } /* Name.Variable.Magic */ .highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
*~
*.pyc
*.pyo
stuff/*
en reached. ## `zerotol` is the tolerance, which is 'close enough' to zero to be considered a root ## and is used to find roots for curves that only 'touch' the x-axis. ## `mergetol` is the tolerance, of which two x-values are considered beeing the same root. ## `maxiter` can be used to limit the number of iterations for each root. ## Returns a (possibly empty) sorted sequence with the solutions. var deg=p.degree if deg<=0: #constant only => no roots return @[] elif p.degree==1: #linear var linrt= -p.cofs[0]/p.cofs[1] if linrt==Inf or linrt==NegInf: return @[] #constant only => no roots return @[linrt] elif p.degree==2: return solveQuadric(p.cofs[2],p.cofs[1],p.cofs[0],zerotol) else: # degree >=3 , find min/max points of polynomial with recursive # derivative and do a numerical search for root between each min/max var range=p.getRangeForRoots() var minmax=p.derivative.roots(tol,zerotol,mergetol) result= @[] if minmax!=nil: #ie. we have minimas/maximas in this function for x in minmax.items: addRoot(p,result,range.xmin,x,tol,zerotol,mergetol,maxiter) range.xmin=x addRoot(p,result,range.xmin,range.xmax,tol,zerotol,mergetol,maxiter)