# # # Nim's Runtime Library # (c) Copyright 2017 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## Nim's standard random number generator (RNG). ## ## Its implementation is based on the `xoroshiro128+` ## (xor/rotate/shift/rotate) library. ## * More information: http://xoroshiro.di.unimi.it ## * C implementation: http://xoroshiro.di.unimi.it/xoroshiro128plus.c ## ## **Do not use this module for cryptographic purposes!** ## ## Basic usage ## =========== ## runnableExamples: # Call randomize() once to initialize the default random number generator. # If this is not called, the same results will occur every time these # examples are run. randomize() # Pick a number in 0..100. let num = rand(100) doAssert num in 0..100 # Roll a six-sided die. let roll = rand(1..6) doAssert roll in 1..6 # Pick a marble from a bag. let marbles = ["red", "blue", "green", "yellow", "purple"] let pick = sample(marbles) doAssert pick in marbles # Shuffle some cards. var cards = ["Ace", "King", "Queen", "Jack", "Ten"] shuffle(cards) doAssert cards.len == 5 ## These examples all use the default RNG. The ## `Rand type <#Rand>`_ represents the state of an RNG. ## For convenience, this module contains a default Rand state that corresponds ## to the default RNG. Most procs in this module which do ## not take in a Rand parameter, including those called in the above examples, ## use the default generator. Those procs are **not** thread-safe. ## ## Note that the default generator always starts in the same state. ## The `randomize proc <#randomize>`_ can be called to initialize the default ## generator with a seed based on the current time, and it only needs to be ## called once before the first usage of procs from this module. If ## `randomize` is not called, the default generator will always produce ## the same results. ## ## RNGs that are independent of the default one can be created with the ## `initRand proc <#initRand,int64>`_. ## ## Again, it is important to remember that this module must **not** be used for ## cryptographic applications. ## ## See also ## ======== ## * `std/sysrand module `_ for a cryptographically secure pseudorandom number generator ## * `mersenne module `_ for the Mersenne Twister random number generator ## * `math module `_ for basic math routines ## * `stats module `_ for statistical analysis ## * `list of cryptographic and hashing modules `_ ## in the standard library import std/[algorithm, math] import std/private/since include system/inclrtl {.push debugger: off.} when defined(js): type Ui = uint32 const randMax = 4_294_967_295u32 else: type Ui = uint64 const randMax = 18_446_744_073_709_551_615u64 type Rand* = object ## State of a random number generator. ## ## Create a new Rand state using the `initRand proc <#initRand,int64>`_. ## ## The module contains a default Rand state for convenience. ## It corresponds to the default RNG's state. ## The default Rand state always starts with the same values, but the ## `randomize proc <#randomize>`_ can be used to seed the default generator ## with a value based on the current time. ## ## Many procs have two variations: one that takes in a Rand parameter and ## another that uses the default generator. The procs that use the default ## generator are **not** thread-safe! a0, a1: Ui when defined(js): var state = Rand( a0: 0x69B4C98Cu32, a1: 0xFED1DD30u32) # global for backwards compatibility else: # racy for multi-threading but good enough for now: var state = Rand( a0: 0x69B4C98CB8530805u64, a1: 0xFED1DD3004688D67CAu64) # global for backwards compatibility since (1, 5): template randState*(): untyped = ## Makes the default Rand state accessible from other modules. ## Useful for module authors. state proc rotl(x, k: Ui): Ui = result = (x shl k) or (x shr (Ui(64) - k)) proc next*(r: var Rand): uint64 = ## Computes a random `uint64` number using the given state. ## ## **See also:** ## * `rand proc<#rand,Rand,Natural>`_ that returns an integer between zero and ## a given upper bound ## * `rand proc<#rand,Rand,range[]>`_ that returns a float ## * `rand proc<#rand,Rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_ ## that accepts a slice ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type ## * `skipRandomNumbers proc<#skipRandomNumbers,Rand>`_ runnableExamples: var r = initRand(2019) doAssert r.next() == 138_744_656_611_299'u64 doAssert r.next() == 979_810_537_855_049_344'u64 doAssert r.next() == 3_628_232_584_225_300_704'u64 let s0 = r.a0 var s1 = r.a1 result = s0 + s1 s1 = s1 xor s0 r.a0 = rotl(s0, 55) xor s1 xor (s1 shl 14) # a, b r.a1 = rotl(s1, 36) # c proc skipRandomNumbers*(s: var Rand) = ## The jump function for the generator. ## ## This proc is equivalent to `2^64` calls to `next <#next,Rand>`_, and it can ## be used to generate `2^64` non-overlapping subsequences for parallel ## computations. ## ## When multiple threads are generating random numbers, each thread must ## own the `Rand <#Rand>`_ state it is using so that the thread can safely ## obtain random numbers. However, if each thread creates its own Rand state, ## the subsequences of random numbers that each thread generates may overlap, ## even if the provided seeds are unique. This is more likely to happen as the ## number of threads and amount of random numbers generated increases. ## ## If many threads will generate random numbers concurrently, it is better to ## create a single Rand state and pass it to each thread. After passing the ## Rand state to a thread, call this proc before passing it to the next one. ## By using the Rand state this way, the subsequences of random numbers ## generated in each thread will never overlap as long as no thread generates ## more than `2^64` random numbers. ## ## **See also:** ## * `next proc<#next,Rand>`_ runnableExamples("--threads:on"): import std/[random, threadpool] const spawns = 4 const numbers = 100000 proc randomSum(r: Rand): int = var r = r for i in 1..numbers: result += r.rand(0..10) var r = initRand(2019) var vals: array[spawns, FlowVar[int]] for val in vals.mitems: val = spawn randomSum(r) r.skipRandomNumbers() for val in vals: doAssert abs(^val - numbers * 5) / numbers < 0.1 when defined(js): const helper = [0xbeac0467u32, 0xd86b048bu32] else: const helper = [0xbeac0467eba5facbu64, 0xd86b048b86aa9922u64] var s0 = Ui 0 s1 = Ui 0 for i in 0..high(helper): for b in 0 ..< 64: if (helper[i] and (Ui(1) shl Ui(b))) != 0: s0 = s0 xor s.a0 s1 = s1 xor s.a1 discard next(s) s.a0 = s0 s.a1 = s1 proc rand*(r: var Rand; max: Natural): int {.benign.} = ## Returns a random integer in the range `0..max` using the given state. ## ## **See also:** ## * `rand proc<#rand,int>`_ that returns an integer using the default RNG ## * `rand proc<#rand,Rand,range[]>`_ that returns a float ## * `rand proc<#rand,Rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_ ## that accepts a slice ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type runnableExamples: var r = initRand(123) doAssert r.rand(100) == 0 doAssert r.rand(100) == 96 doAssert r.rand(100) == 66 if max == 0: return while true: let x = next(r) if x <= randMax - (randMax mod Ui(max)): return int(x mod (uint64(max) + 1u64)) proc rand*(max: int): int {.benign.} = ## Returns a random integer in the range `0..max`. ## ## If `randomize <#randomize>`_ has not been called, the sequence of random ## numbers returned from this proc will always be the same. ## ## This proc uses the default RNG. Thus, it is **not** thread-safe. ## ## **See also:** ## * `rand proc<#rand,Rand,Natural>`_ that returns an integer using a ## provided state ## * `rand proc<#rand,float>`_ that returns a float ## * `rand proc<#rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_ ## that accepts a slice ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type runnableExamples: randomize(123) doAssert rand(100) == 0 doAssert rand(100) == 96 doAssert rand(100) == 66 rand(state, max) proc rand*(r: var Rand; max: range[0.0 .. high(float)]): float {.benign.} = ## Returns a random floating point number in the range `0.0..max` ## using the given state. ## ## **See also:** ## * `rand proc<#rand,float>`_ that returns a float using the default RNG ## * `rand proc<#rand,Rand,Natural>`_ that returns an integer ## * `rand proc<#rand,Rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_ ## that accepts a slice ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type runnableExamples: var r = initRand(234) let f = r.rand(1.0) # 8.717181376738381e-07 let x = next(r) when defined(js): result = (float(x) / float(high(uint32))) * max else: let u = (0x3FFu64 shl 52u64) or (x shr 12u64) result = (cast[float](u) - 1.0) * max proc rand*(max: float): float {.benign.} = ## Returns a random floating point number in the range `0.0..max`. ## ## If `randomize <#randomize>`_ has not been called, the sequence of random ## numbers returned from this proc will always be the same. ## ## This proc uses the default RNG. Thus, it is **not** thread-safe. ## ## **See also:** ## * `rand proc<#rand,Rand,range[]>`_ that returns a float using a ## provided state ## * `rand proc<#rand,int>`_ that returns an integer ## * `rand proc<#rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_ ## that accepts a slice ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type runnableExamples: randomize(234) let f = rand(1.0) # 8.717181376738381e-07 rand(state, max) proc rand*[T: Ordinal or SomeFloat](r: var Rand; x: HSlice[T, T]): T = ## For a slice `a..b`, returns a value in the range `a..b` using the given ## state. ## ## Allowed types for `T` are integers, floats, and enums without holes. ## ## **See also:** ## * `rand proc<#rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_ ## that accepts a slice and uses the default RNG ## * `rand proc<#rand,Rand,Natural>`_ that returns an integer ## * `rand proc<#rand,Rand,range[]>`_ that returns a float ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type runnableExamples: var r = initRand(345) doAssert r.rand(1..6) == 4 doAssert r.rand(1..6) == 4 doAssert r.rand(1..6) == 6 let f = r.rand(-1.0 .. 1.0) # 0.8741183448756229 assert x.a <= x.b when T is SomeFloat: result = rand(r, x.b - x.a) + x.a else: # Integers and Enum types result = T(rand(r, int(x.b) - int(x.a)) + int(x.a)) proc rand*[T: Ordinal or SomeFloat](x: HSlice[T, T]): T = ## For a slice `a..b`, returns a value in the range `a..b`. ## ## Allowed types for `T` are integers, floats, and enums without holes. ## ## If `randomize <#randomize>`_ has not been called, the sequence of random ## numbers returned from this proc will always be the same. ## ## This proc uses the default RNG. Thus, it is **not** thread-safe. ## ## **See also:** ## * `rand proc<#rand,Rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_ ## that accepts a slice and uses a provided state ## * `rand proc<#rand,int>`_ that returns an integer ## * `rand proc<#rand,float>`_ that returns a floating point number ## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type runnableExamples: randomize(345) doAssert rand(1..6) == 4 doAssert rand(1..6) == 4 doAssert rand(1..6) == 6 result = rand(state, x) proc rand*[T: SomeInteger](t: typedesc[T]): T = ## Returns a random integer in the range `low(T)..high(T)`. ## ## If `randomize <#randomize>`_ has not been called, the sequence of random ## numbers returned from this proc will always be the same. ## ## This proc uses the default RNG. Thus, it is **not** thread-safe. ## ## **See also:** ## * `rand proc<#rand,int>`_ that returns an integer ## * `rand proc<#rand,float>`_ that returns a floating point number ## * `rand proc<#rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_ ## that accepts a slice runnableExamples: randomize(567) doAssert rand(int8) == 55 doAssert rand(int8) == -42 doAssert rand(int8) == 43 doAssert rand(uint32) == 578980729'u32 doAssert rand(uint32) == 4052940463'u32 doAssert rand(uint32) == 2163872389'u32 doAssert rand(range[1..16]) == 11 doAssert rand(range[1..16]) == 4 doAssert rand(range[1..16]) == 16 when T is range: result = rand(state, low(T)..high(T)) else: result = cast[T](state.next) proc sample*[T](r: var Rand; s: set[T]): T = ## Returns a random element from the set `s` using the given state. ## ## **See also:** ## * `sample proc<#sample,set[T]>`_ that uses the default RNG ## * `sample proc<#sample,Rand,openArray[T]>`_ for `openArray`s ## * `sample proc<#sample,Rand,openArray[T],openArray[U]>`_ that uses a ## cumulative distribution function runnableExamples: var r = initRand(987) let s = {1, 3, 5, 7, 9} doAssert r.sample(s) == 5 doAssert r.sample(s) == 7 doAssert r.sample(s) == 1 assert card(s) != 0 var i = rand(r, card(s) - 1) for e in s: if i == 0: return e dec(i) proc sample*[T](s: set[T]): T = ## Returns a random element from the set `s`. ## ## If `randomize <#randomize>`_ has not been called, the order of outcomes ## from this proc will always be the same. ## ## This proc uses the default RNG. Thus, it is **not** thread-safe. ## ## **See also:** ## * `sample proc<#sample,Rand,set[T]>`_ that uses a provided state ## * `sample proc<#sample,openArray[T]>`_ for `openArray`s ## * `sample proc<#sample,openArray[T],openArray[U]>`_ that uses a ## cumulative distribution function runnableExamples: randomize(987) let s = {1, 3, 5, 7, 9} doAssert sample(s) == 5 doAssert sample(s) == 7 doAssert sample(s) == 1 sample(state, s) proc sample*[T](r: var Rand; a: openArray[T]): T = ## Returns a random element from `a` using the given state. ## ## **See also:** ## * `sample proc<#sample,openArray[T]>`_ that uses the default RNG ## * `sample proc<#sample,Rand,openArray[T],openArray[U]>`_ that uses a ## cumulative distribution function ## * `sample proc<#sample,Rand,set[T]>`_ for sets runnableExamples: let marbles = ["red", "blue", "green", "yellow", "purple"] var r = initRand(456) doAssert r.sample(marbles) == "blue" doAssert r.sample(marbles) == "yellow" doAssert r.sample(marbles) == "red" result = a[r.rand(a.low..a.high)] proc sample*[T](a: openArray[T]): T = ## Returns a random element from `a`. ## ## If `randomize <#randomize>`_ has not been called, the order of outcomes ## from this proc will always be the same. ## ## This proc uses the default RNG. Thus, it is **not** thread-safe. ## ## **See also:** ## * `sample proc<#sample,Rand,openArray[T]>`_ that uses a provided state ## * `sample proc<#sample,openArray[T],openArray[U]>`_ that uses a ## cumulative distribution function ## * `sample proc<#sample,set[T]>`_ for sets runnableExamples: let marbles = ["red", "blue", "green", "yellow", "purple"] randomize(456) doAssert sample(marbles) == "blue" doAssert sample(marbles) == "yellow" doAssert sample(marbles) == "red" result = a[rand(a.low..a.high)] proc sample*[T, U](r: var Rand; a: openArray[T]; cdf: openArray[U]): T = ## Returns an element from `a` using a cumulative distribution function ## (CDF) and the given state. ## ## The `cdf` argument does not have to be normalized, and it could contain ## any type of elements that can be converted to a `float`. It must be ## the same length as `a`. Each element in `cdf` should be greater than ## or equal to the previous element. ## ## The outcome of the `cumsum`_ proc and the ## return value of the `cumsummed`_ proc, ## which are both in the math module, can be used as the `cdf` argument. ## ## **See also:** ## * `sample proc<#sample,openArray[T],openArray[U]>`_ that also utilizes ## a CDF but uses the default RNG ## * `sample proc<#sample,Rand,openArray[T]>`_ that does not use a CDF ## * `sample proc<#sample,Rand,set[T]>`_ for sets runnableExamples: from std/math import cumsummed let marbles = ["red", "blue", "green", "yellow", "purple"] let count = [1, 6, 8, 3, 4] let cdf = count.cumsummed var r = initRand(789) doAssert r.sample(marbles, cdf) == "red" doAssert r.sample(marbles, cdf) == "green" doAssert r.sample(marbles, cdf) == "blue" assert(cdf.len == a.len) # Two basic sanity checks. assert(float(cdf[^1]) > 0.0) # While we could check cdf[i-1] <= cdf[i] for i in 1..cdf.len, that could get # awfully expensive even in debugging modes. let u = r.rand(float(cdf[^1])) a[cdf.upperBound(U(u))] proc sample*[T, U](a: openArray[T]; cdf: openArray[U]): T = ## Returns an element from `a` using a cumulative distribution function ## (CDF). ## ## This proc works similarly to ## `sample <#sample,Rand,openArray[T],openArray[U]>`_. ## See that proc's documentation for more details. ## ## If `randomize <#randomize>`_ has not been called, the order of outcomes ## from this proc will always be the same. ## ## This proc uses the default RNG. Thus, it is **not** thread-safe. ## ## **See also:** ## * `sample proc<#sample,Rand,openArray[T],openArray[U]>`_ that also utilizes ## a CDF but uses a provided state ## * `sample proc<#sample,openArray[T]>`_ that does not use a CDF ## * `sample proc<#sample,set[T]>`_ for sets runnableExamples: from std/math import cumsummed let marbles = ["red", "blue", "green", "yellow", "purple"] let count = [1, 6, 8, 3, 4] let cdf = count.cumsummed randomize(789) doAssert sample(marbles, cdf) == "red" doAssert sample(marbles, cdf) == "green" doAssert sample(marbles, cdf) == "blue" state.sample(a, cdf) proc gauss*(r: var Rand; mu = 0.0; sigma = 1.0): float {.since: (1, 3).} = ## Returns a Gaussian random variate, ## with mean `mu` and standard deviation `sigma` ## using the given state. # Ratio of uniforms method for normal # https://www2.econ.osaka-u.ac.jp/~tanizaki/class/2013/econome3/13.pdf const K = sqrt(2 / E) var a = 0.0 b = 0.0 while true: a = rand(r, 1.0) b = (2.0 * rand(r, 1.0) - 1.0) * K if b * b <= -4.0 * a * a * ln(a): break result = mu + sigma * (b / a) proc gauss*(mu = 0.0, sigma = 1.0): float {.since: (1, 3).} = ## Returns a Gaussian random variate, ## with mean `mu` and standard deviation `sigma`. ## ## If `randomize <#randomize>`_ has not been called, the order of outcomes ## from this proc will always be the same. ## ## This proc uses the default RNG. Thus, it is **not** thread-safe. result = gauss(state, mu, sigma) proc initRand*(seed: int64): Rand = ## Initializes a new `Rand <#Rand>`_ state using the given seed. ## ## `seed` must not be zero. Providing a specific seed will produce ## the same results for that seed each time. ## ## The resulting state is independent of the default RNG's state. ## ## **See also:** ## * `initRand proc<#initRand>`_ that uses the current time ## * `randomize proc<#randomize,int64>`_ that accepts a seed for the default RNG ## * `randomize proc<#randomize>`_ that initializes the default RNG using the current time runnableExamples: from std/times import getTime, toUnix, nanosecond var r1 = initRand(123) let now = getTime() var r2 = initRand(now.toUnix * 1_000_000_000 + now.nanosecond) doAssert seed != 0 # 0 causes `rand(int)` to always return 0 for example. result.a0 = Ui(seed shr 16) result.a1 = Ui(seed and 0xffff) discard next(result) proc randomize*(seed: int64) {.benign.} = ## Initializes the default random number generator with the given seed. ## ## `seed` must not be zero. Providing a specific seed will produce ## the same results for that seed each time. ## ## **See also:** ## * `initRand proc<#initRand,int64>`_ that initializes a Rand state ## with a given seed ## * `randomize proc<#randomize>`_ that uses the current time instead ## * `initRand proc<#initRand>`_ that initializes a Rand state using ## the current time runnableExamples: from std/times import getTime, toUnix, nanosecond randomize(123) let now = getTime() randomize(now.toUnix * 1_000_000_000 + now.nanosecond) state = initRand(seed) proc shuffle*[T](r: var Rand; x: var openArray[T]) = ## Shuffles a sequence of elements in-place using the given state. ## ## **See also:** ## * `shuffle proc<#shuffle,openArray[T]>`_ that uses the default RNG runnableExamples: var cards = ["Ace", "King", "Queen", "Jack", "Ten"] var r = initRand(678) r.shuffle(cards) doAssert cards == ["King", "Ace", "Queen", "Ten", "Jack"] for i in countdown(x.high, 1): let j = r.rand(i) swap(x[i], x[j]) proc shuffle*[T](x: var openArray[T]) = ## Shuffles a sequence of elements in-place. ## ## If `randomize <#randomize>`_ has not been called, the order of outcomes ## from this proc will always be the same. ## ## This proc uses the default RNG. Thus, it is **not** thread-safe. ## ## **See also:** ## * `shuffle proc<#shuffle,Rand,openArray[T]>`_ that uses a provided state runnableExamples: var cards = ["Ace", "King", "Queen", "Jack", "Ten"] randomize(678) shuffle(cards) doAssert cards == ["King", "Ace", "Queen", "Ten", "Jack"] shuffle(state, x) when not defined(nimscript) and not defined(standalone): import std/times proc initRand(): Rand = ## Initializes a new Rand state with a seed based on the current time. ## ## The resulting state is independent of the default RNG's state. ## ## **Note:** Does not work for NimScript or the compile-time VM. ## ## See also: ## * `initRand proc<#initRand,int64>`_ that accepts a seed for a new Rand state ## * `randomize proc<#randomize>`_ that initializes the default RNG using the current time ## * `randomize proc<#randomize,int64>`_ that accepts a seed for the default RNG when defined(js): let time = int64(times.epochTime() * 1000) and 0x7fff_ffff result = initRand(time) else: let now = times.getTime() result = initRand(convert(Seconds, Nanoseconds, now.toUnix) + now.nanosecond) since (1, 5, 1): export initRand proc randomize*() {.benign.} = ## Initializes the default random number generator with a seed based on ## the current time. ## ## This proc only needs to be called once, and it should be called before ## the first usage of procs from this module that use the default RNG. ## ## **Note:** Does not work for NimScript or the compile-time VM. ## ## **See also:** ## * `randomize proc<#randomize,int64>`_ that accepts a seed ## * `initRand proc<#initRand>`_ that initializes a Rand state using ## the current time ## * `initRand proc<#initRand,int64>`_ that initializes a Rand state ## with a given seed state = initRand() {.pop.}