# # # Nim's Runtime Library # (c) Copyright 2015 Dennis Felsing # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This module implements rational numbers, consisting of a numerator `num` and ## a denominator `den`, both of type int. The denominator can not be 0. import math import hashes type Rational*[T] = object ## a rational number, consisting of a numerator and denominator num*, den*: T proc initRational*[T: SomeInteger](num, den: T): Rational[T] = ## Create a new rational number. assert(den != 0, "a denominator of zero value is invalid") result.num = num result.den = den proc `//`*[T](num, den: T): Rational[T] = initRational[T](num, den) ## A friendlier version of `initRational`. Example usage: ## ## .. code-block:: nim ## var x = 1//3 + 1//5 proc `$`*[T](x: Rational[T]): string = ## Turn a rational number into a string. result = $x.num & "/" & $x.den proc toRational*[T: SomeInteger](x: T): Rational[T] = ## Convert some integer `x` to a rational number. result.num = x result.den = 1 proc toRational*(x: float, n: int = high(int) shr (sizeof(int) div 2 * 8)): Rational[int] = ## Calculates the best rational numerator and denominator ## that approximates to `x`, where the denominator is ## smaller than `n` (default is the largest possible ## int to give maximum resolution). ## ## The algorithm is based on the theory of continued fractions. ## ## .. code-block:: Nim ## import math, rationals ## for i in 1..10: ## let t = (10 ^ (i+3)).int ## let x = toRational(PI, t) ## let newPI = x.num / x.den ## echo x, " ", newPI, " error: ", PI - newPI, " ", t # David Eppstein / UC Irvine / 8 Aug 1993 # With corrections from Arno Formella, May 2008 var m11, m22 = 1 m12, m21 = 0 ai = int(x) x = x while m21 * ai + m22 <= n: swap m12, m11 swap m22, m21 m11 = m12 * ai + m11 m21 = m22 * ai + m21 if x == float(ai): break # division by zero x = 1/(x - float(ai)) if x > float(high(int32)): break # representation failure ai = int(x) result = m11 // m21 proc toFloat*[T](x: Rational[T]): float = ## Convert a rational number `x` to a float. x.num / x.den proc toInt*[T](x: Rational[T]): int = ## Convert a rational number `x` to an int. Conversion rounds towards 0 if ## `x` does not contain an integer value. x.num div x.den proc reduce*[T: SomeInteger](x: var Rational[T]) = ## Reduce rational `x`. let common = gcd(x.num, x.den) if x.den > 0: x.num = x.num div common x.den = x.den div common elif x.den < 0: x.num = -x.num div common x.den = -x.den div common else: raise newException(DivByZeroDefect, "division by zero") proc `+` *[T](x, y: Rational[T]): Rational[T] = ## Add two rational numbers. let common = lcm(x.den, y.den) result.num = common div x.den * x.num + common div y.den * y.num result.den = common reduce(result) proc `+` *[T](x: Rational[T], y: T): Rational[T] = ## Add rational `x` to int `y`. result.num = x.num + y * x.den result.den = x.den proc `+` *[T](x: T, y: Rational[T]): Rational[T] = ## Add int `x` to rational `y`. result.num = x * y.den + y.num result.den = y.den proc `+=` *[T](x: var Rational[T], y: Rational[T]) = ## Add rational `y` to rational `x`. let common = lcm(x.den, y.den) x.num = common div x.den * x.num + common div y.den * y.num x.den = common reduce(x) proc `+=` *[T](x: var Rational[T], y: T) = ## Add int `y` to rational `x`. x.num += y * x.den proc `-` *[T](x: Rational[T]): Rational[T] = ## Unary minus for rational numbers. result.num = -x.num result.den = x.den proc `-` *[T](x, y: Rational[T]): Rational[T] = ## Subtract two rational numbers. let common = lcm(x.den, y.den) result.num = common div x.den * x.num - common div y.den * y.num result.den = common reduce(result) proc `-` *[T](x: Rational[T], y: T): Rational[T] = ## Subtract int `y` from rational `x`. result.num = x.num - y * x.den result.den = x.den proc `-` *[T](x: T, y: Rational[T]): Rational[T] = ## Subtract rational `y` from int `x`. result.num = x * y.den - y.num result.den = y.den proc `-=` *[T](x: var Rational[T], y: Rational[T]) = ## Subtract rational `y` from rational `x`. let common = lcm(x.den, y.den) x.num = common div x.den * x.num - common div y.den * y.num x.den = common reduce(x) proc `-=` *[T](x: var Rational[T], y: T) = ## Subtract int `y` from rational `x`. x.num -= y * x.den proc `*` *[T](x, y: Rational[T]): Rational[T] = ## Multiply two rational numbers. result.num = x.num * y.num result.den = x.den * y.den reduce(result) proc `*` *[T](x: Rational[T], y: T): Rational[T] = ## Multiply rational `x` with int `y`. result.num = x.num * y result.den = x.den reduce(result) proc `*` *[T](x: T, y: Rational[T]): Rational[T] = ## Multiply int `x` with rational `y`. result.num = x * y.num result.den = y.den reduce(result) proc `*=` *[T](x: var Rational[T], y: Rational[T]) = ## Multiply rationals `y` to `x`. x.num *= y.num x.den *= y.den reduce(x) proc `*=` *[T](x: var Rational[T], y: T) = ## Multiply int `y` to rational `x`. x.num *= y reduce(x) proc reciprocal*[T](x: Rational[T]): Rational[T] = ## Calculate the reciprocal of `x`. (1/x) if x.num > 0: result.num = x.den result.den = x.num elif x.num < 0: result.num = -x.den result.den = -x.num else: raise newException(DivByZeroDefect, "division by zero") proc `/`*[T](x, y: Rational[T]): Rational[T] = ## Divide rationals `x` by `y`. result.num = x.num * y.den result.den = x.den * y.num reduce(result) proc `/`*[T](x: Rational[T], y: T): Rational[T] = ## Divide rational `x` by int `y`. result.num = x.num result.den = x.den * y reduce(result) proc `/`*[T](x: T, y: Rational[T]): Rational[T] = ## Divide int `x` by Rational `y`. result.num = x * y.den result.den = y.num reduce(result) proc `/=`*[T](x: var Rational[T], y: Rational[T]) = ## Divide rationals `x` by `y` in place. x.num *= y.den x.den *= y.num reduce(x) proc `/=`*[T](x: var Rational[T], y: T) = ## Divide rational `x` by int `y` in place. x.den *= y reduce(x) proc cmp*(x, y: Rational): int = ## Compares two rationals. (x - y).num proc `<` *(x, y: Rational): bool = (x - y).num < 0 proc `<=` *(x, y: Rational): bool = (x - y).num <= 0 proc `==` *(x, y: Rational): bool = (x - y).num == 0 proc abs*[T](x: Rational[T]): Rational[T] = result.num = abs x.num result.den = abs x.den proc `div`*[T: SomeInteger](x, y: Rational[T]): T = ## Computes the rational truncated division. (x.num * y.den) div (y.num * x.den) proc `mod`*[T: SomeInteger](x, y: Rational[T]): Rational[T] = ## Computes the rational modulo by truncated division (remainder). ## This is same as ``x - (x div y) * y``. result = ((x.num * y.den) mod (y.num * x.den)) // (x.den * y.den) reduce(result) proc floorDiv*[T: SomeInteger](x, y: Rational[T]): T = ## Computes the rational floor division. ## ## Floor division is conceptually defined as ``floor(x / y)``. ## This is different from the ``div`` operator, which is defined ## as ``trunc(x / y)``. That is, ``div`` rounds towards ``0`` and ``floorDiv`` ## rounds down. floorDiv(x.num * y.den, y.num * x.den) proc floorMod*[T: SomeInteger](x, y: Rational[T]): Rational[T] = ## Computes the rational modulo by floor division (modulo). ## ## This is same as ``x - floorDiv(x, y) * y``. ## This proc behaves the same as the ``%`` operator in python. result = floorMod(x.num * y.den, y.num * x.den) // (x.den * y.den) reduce(result) proc hash*[T](x: Rational[T]): Hash = ## Computes hash for rational `x` # reduce first so that hash(x) == hash(y) for x == y var copy = x reduce(copy) var h: Hash = 0 h = h !& hash(copy.num) h = h !& hash(copy.den) result = !$h when isMainModule: var z = Rational[int](num: 0, den: 1) o = initRational(num = 1, den = 1) a = initRational(1, 2) b = -1 // -2 m1 = -1 // 1 tt = 10 // 2 assert(a == a) assert( (a-a) == z) assert( (a+b) == o) assert( (a/b) == o) assert( (a*b) == 1 // 4) assert( (3/a) == 6 // 1) assert( (a/3) == 1 // 6) assert(a*b == 1 // 4) assert(tt*z == z) assert(10*a == tt) assert(a*10 == tt) assert(tt/10 == a) assert(a-m1 == 3 // 2) assert(a+m1 == -1 // 2) assert(m1+tt == 16 // 4) assert(m1-tt == 6 // -1) assert(z < o) assert(z <= o) assert(z == z) assert(cmp(z, o) < 0) assert(cmp(o, z) > 0) assert(o == o) assert(o >= o) assert(not(o > o)) assert(cmp(o, o) == 0) assert(cmp(z, z) == 0) assert(hash(o) == hash(o)) assert(a == b) assert(a >= b) assert(not(b > a)) assert(cmp(a, b) == 0) assert(hash(a) == hash(b)) var x = 1//3 x *= 5//1 assert(x == 5//3) x += 2 // 9 assert(x == 17//9) x -= 9//18 assert(x == 25//18) x /= 1//2 assert(x == 50//18) var y = 1//3 y *= 4 assert(y == 4//3) y += 5 assert(y == 19//3) y -= 2 assert(y == 13//3) y /= 9 assert(y == 13//27) assert toRational(5) == 5//1 assert abs(toFloat(y) - 0.4814814814814815) < 1.0e-7 assert toInt(z) == 0 when sizeof(int) == 8: assert toRational(0.98765432) == 2111111029 // 2137499919 assert toRational(PI) == 817696623 // 260280919 when sizeof(int) == 4: assert toRational(0.98765432) == 80 // 81 assert toRational(PI) == 355 // 113 assert toRational(0.1) == 1 // 10 assert toRational(0.9) == 9 // 10 assert toRational(0.0) == 0 // 1 assert toRational(-0.25) == 1 // -4 assert toRational(3.2) == 16 // 5 assert toRational(0.33) == 33 // 100 assert toRational(0.22) == 11 // 50 assert toRational(10.0) == 10 // 1 assert (1//1) div (3//10) == 3 assert (-1//1) div (3//10) == -3 assert (3//10) mod (1//1) == 3//10 assert (-3//10) mod (1//1) == -3//10 assert floorDiv(1//1, 3//10) == 3 assert floorDiv(-1//1, 3//10) == -4 assert floorMod(3//10, 1//1) == 3//10 assert floorMod(-3//10, 1//1) == 7//10