# # # Nim's Runtime Library # (c) Copyright 2015 Dennis Felsing # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## This module implements rational numbers, consisting of a numerator `num` and ## a denominator `den`, both of type int. The denominator can not be 0. import math import hashes type Rational*[T] = object ## a rational number, consisting of a numerator and denominator num*, den*: T func initRational*[T: SomeInteger](num, den: T): Rational[T] = ## Create a new rational number. assert(den != 0, "a denominator of zero value is invalid") result.num = num result.den = den func `//`*[T](num, den: T): Rational[T] = initRational[T](num, den) ## A friendlier version of `initRational`. Example usage: ## ## .. code-block:: nim ## var x = 1//3 + 1//5 func `$`*[T](x: Rational[T]): string = ## Turn a rational number into a string. result = $x.num & "/" & $x.den func toRational*[T: SomeInteger](x: T): Rational[T] = ## Convert some integer `x` to a rational number. result.num = x result.den = 1 func toRational*(x: float, n: int = high(int) shr (sizeof(int) div 2 * 8)): Rational[int] = ## Calculates the best rational numerator and denominator ## that approximates to `x`, where the denominator is ## smaller than `n` (default is the largest possible ## int to give maximum resolution). ## ## The algorithm is based on the theory of continued fractions. ## ## .. code-block:: Nim ## import math, rationals ## for i in 1..10: ## let t = (10 ^ (i+3)).int ## let x = toRational(PI, t) ## let newPI = x.num / x.den ## echo x, " ", newPI, " error: ", PI - newPI, " ", t # David Eppstein / UC Irvine / 8 Aug 1993 # With corrections from Arno Formella, May 2008 var m11, m22 = 1 m12, m21 = 0 ai = int(x) x = x while m21 * ai + m22 <= n: swap m12, m11 swap m22, m21 m11 = m12 * ai + m11 m21 = m22 * ai + m21 if x == float(ai): break # division by zero x = 1/(x - float(ai)) if x > float(high(int32)): break # representation failure ai = int(x) result = m11 // m21 func toFloat*[T](x: Rational[T]): float = ## Convert a rational number `x` to a float. x.num / x.den func toInt*[T](x: Rational[T]): int = ## Convert a rational number `x` to an int. Conversion rounds towards 0 if ## `x` does not contain an integer value. x.num div x.den func reduce*[T: SomeInteger](x: var Rational[T]) = ## Reduce rational `x`. let common = gcd(x.num, x.den) if x.den > 0: x.num = x.num div common x.den = x.den div common elif x.den < 0: x.num = -x.num div common x.den = -x.den div common else: raise newException(DivByZeroDefect, "division by zero") func `+` *[T](x, y: Rational[T]): Rational[T] = ## Add two rational numbers. let common = lcm(x.den, y.den) result.num = common div x.den * x.num + common div y.den * y.num result.den = common reduce(result) func `+` *[T](x: Rational[T], y: T): Rational[T] = ## Add rational `x` to int `y`. result.num = x.num + y * x.den result.den = x.den func `+` *[T](x: T, y: Rational[T]): Rational[T] = ## Add int `x` to rational `y`. result.num = x * y.den + y.num result.den = y.den func `+=` *[T](x: var Rational[T], y: Rational[T]) = ## Add rational `y` to rational `x`. let common = lcm(x.den, y.den) x.num = common div x.den * x.num + common div y.den * y.num x.den = common reduce(x) func `+=` *[T](x: var Rational[T], y: T) = ## Add int `y` to rational `x`. x.num += y * x.den func `-` *[T](x: Rational[T]): Rational[T] = ## Unary minus for rational numbers. result.num = -x.num result.den = x.den func `-` *[T](x, y: Rational[T]): Rational[T] = ## Subtract two rational numbers. let common = lcm(x.den, y.den) result.num = common div x.den * x.num - common div y.den * y.num result.den = common reduce(result) func `-` *[T](x: Rational[T], y: T): Rational[T] = ## Subtract int `y` from rational `x`. result.num = x.num - y * x.den result.den = x.den func `-` *[T](x: T, y: Rational[T]): Rational[T] = ## Subtract rational `y` from int `x`. result.num = x * y.den - y.num result.den = y.den func `-=` *[T](x: var Rational[T], y: Rational[T]) = ## Subtract rational `y` from rational `x`. let common = lcm(x.den, y.den) x.num = common div x.den * x.num - common div y.den * y.num x.den = common reduce(x) func `-=` *[T](x: var Rational[T], y: T) = ## Subtract int `y` from rational `x`. x.num -= y * x.den func `*` *[T](x, y: Rational[T]): Rational[T] = ## Multiply two rational numbers. result.num = x.num * y.num result.den = x.den * y.den reduce(result) func `*` *[T](x: Rational[T], y: T): Rational[T] = ## Multiply rational `x` with int `y`. result.num = x.num * y result.den = x.den reduce(result) func `*` *[T](x: T, y: Rational[T]): Rational[T] = ## Multiply int `x` with rational `y`. result.num = x * y.num result.den = y.den reduce(result) func `*=` *[T](x: var Rational[T], y: Rational[T]) = ## Multiply rationals `y` to `x`. x.num *= y.num x.den *= y.den reduce(x) func `*=` *[T](x: var Rational[T], y: T) = ## Multiply int `y` to rational `x`. x.num *= y reduce(x) func reciprocal*[T](x: Rational[T]): Rational[T] = ## Calculate the reciprocal of `x`. (1/x) if x.num > 0: result.num = x.den result.den = x.num elif x.num < 0: result.num = -x.den result.den = -x.num else: raise newException(DivByZeroDefect, "division by zero") func `/`*[T](x, y: Rational[T]): Rational[T] = ## Divide rationals `x` by `y`. result.num = x.num * y.den result.den = x.den * y.num reduce(result) func `/`*[T](x: Rational[T], y: T): Rational[T] = ## Divide rational `x` by int `y`. result.num = x.num result.den = x.den * y reduce(result) func `/`*[T](x: T, y: Rational[T]): Rational[T] = ## Divide int `x` by Rational `y`. result.num = x * y.den result.den = y.num reduce(result) func `/=`*[T](x: var Rational[T], y: Rational[T]) = ## Divide rationals `x` by `y` in place. x.num *= y.den x.den *= y.num reduce(x) func `/=`*[T](x: var Rational[T], y: T) = ## Divide rational `x` by int `y` in place. x.den *= y reduce(x) func cmp*(x, y: Rational): int = ## Compares two rationals. (x - y).num func `<` *(x, y: Rational): bool = (x - y).num < 0 func `<=` *(x, y: Rational): bool = (x - y).num <= 0 func `==` *(x, y: Rational): bool = (x - y).num == 0 func abs*[T](x: Rational[T]): Rational[T] = result.num = abs x.num result.den = abs x.den func `div`*[T: SomeInteger](x, y: Rational[T]): T = ## Computes the rational truncated division. (x.num * y.den) div (y.num * x.den) func `mod`*[T: SomeInteger](x, y: Rational[T]): Rational[T] = ## Computes the rational modulo by truncated division (remainder). ## This is same as ``x - (x div y) * y``. result = ((x.num * y.den) mod (y.num * x.den)) // (x.den * y.den) reduce(result) func floorDiv*[T: SomeInteger](x, y: Rational[T]): T = ## Computes the rational floor division. ## ## Floor division is conceptually defined as ``floor(x / y)``. ## This is different from the ``div`` operator, which is defined ## as ``trunc(x / y)``. That is, ``div`` rounds towards ``0`` and ``floorDiv`` ## rounds down. floorDiv(x.num * y.den, y.num * x.den) func floorMod*[T: SomeInteger](x, y: Rational[T]): Rational[T] = ## Computes the rational modulo by floor division (modulo). ## ## This is same as ``x - floorDiv(x, y) * y``. ## This func behaves the same as the ``%`` operator in python. result = floorMod(x.num * y.den, y.num * x.den) // (x.den * y.den) reduce(result) func hash*[T](x: Rational[T]): Hash = ## Computes hash for rational `x` # reduce first so that hash(x) == hash(y) for x == y var copy = x reduce(copy) var h: Hash = 0 h = h !& hash(copy.num) h = h !& hash(copy.den) result = !$h