# # # Nim's Runtime Library # (c) Copyright 2017 Nim contributors # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ##[ String `interpolation`:idx: / `format`:idx: inspired by Python's f-strings. # `fmt` vs. `&` You can use either `fmt` or the unary `&` operator for formatting. The difference between them is subtle but important. The `fmt"{expr}"` syntax is more aesthetically pleasing, but it hides a small gotcha. The string is a `generalized raw string literal `_. This has some surprising effects: ]## runnableExamples: let msg = "hello" assert fmt"{msg}\n" == "hello\\n" ##[ Because the literal is a raw string literal, the `\n` is not interpreted as an escape sequence. There are multiple ways to get around this, including the use of the `&` operator: ]## runnableExamples: let msg = "hello" assert &"{msg}\n" == "hello\n" assert fmt"{msg}{'\n'}" == "hello\n" assert fmt("{msg}\n") == "hello\n" assert "{msg}\n".fmt == "hello\n" ##[ The choice of style is up to you. # Formatting strings ]## runnableExamples: assert &"""{"abc":>4}""" == " abc" assert &"""{"abc":<4}""" == "abc " ##[ # Formatting floats ]## runnableExamples: assert fmt"{-12345:08}" == "-0012345" assert fmt"{-1:3}" == " -1" assert fmt"{-1:03}" == "-01" assert fmt"{16:#X}" == "0x10" assert fmt"{123.456}" == "123.456" assert fmt"{123.456:>9.3f}" == " 123.456" assert fmt"{123.456:9.3f}" == " 123.456" assert fmt"{123.456:9.4f}" == " 123.4560" assert fmt"{123.456:>9.0f}" == " 123." assert fmt"{123.456:<9.4f}" == "123.4560 " assert fmt"{123.456:e}" == "1.234560e+02" assert fmt"{123.456:>13e}" == " 1.234560e+02" assert fmt"{123.456:13e}" == " 1.234560e+02" ##[ # Debugging strings `fmt"{expr=}"` expands to `fmt"expr={expr}"` namely the text of the expression, an equal sign and the results of evaluated expression. ]## runnableExamples: assert fmt"{123.456=}" == "123.456=123.456" assert fmt"{123.456=:>9.3f}" == "123.456= 123.456" let x = "hello" assert fmt"{x=}" == "x=hello" assert fmt"{x =}" == "x =hello" let y = 3.1415926 assert fmt"{y=:.2f}" == fmt"y={y:.2f}" assert fmt"{y=}" == fmt"y={y}" assert fmt"{y = : <8}" == fmt"y = 3.14159 " proc hello(a: string, b: float): int = 12 assert fmt"{hello(x, y) = }" == "hello(x, y) = 12" assert fmt"{x.hello(y) = }" == "x.hello(y) = 12" assert fmt"{hello x, y = }" == "hello x, y = 12" ##[ Note that it is space sensitive: ]## runnableExamples: let x = "12" assert fmt"{x=}" == "x=12" assert fmt"{x =:}" == "x =12" assert fmt"{x =}" == "x =12" assert fmt"{x= :}" == "x= 12" assert fmt"{x= }" == "x= 12" assert fmt"{x = :}" == "x = 12" assert fmt"{x = }" == "x = 12" assert fmt"{x = :}" == "x = 12" assert fmt"{x = }" == "x = 12" ##[ # Implementation details An expression like `&"{key} is {value:arg} {{z}}"` is transformed into: .. code-block:: nim var temp = newStringOfCap(educatedCapGuess) temp.formatValue(key, "") temp.add(" is ") temp.formatValue(value, arg) temp.add(" {z}") temp Parts of the string that are enclosed in the curly braces are interpreted as Nim code, to escape a `{` or `}`, double it. `&` delegates most of the work to an open overloaded set of `formatValue` procs. The required signature for a type `T` that supports formatting is usually `proc formatValue(result: var string; x: T; specifier: string)`. The subexpression after the colon (`arg` in `&"{key} is {value:arg} {{z}}"`) is optional. It will be passed as the last argument to `formatValue`. When the colon with the subexpression it is left out, an empty string will be taken instead. For strings and numeric types the optional argument is a so-called "standard format specifier". # Standard format specifiers for strings, integers and floats The general form of a standard format specifier is:: [[fill]align][sign][#][0][minimumwidth][.precision][type] The square brackets `[]` indicate an optional element. The optional 'align' flag can be one of the following: '<' Forces the field to be left-aligned within the available space. (This is the default for strings.) '>' Forces the field to be right-aligned within the available space. (This is the default for numbers.) '^' Forces the field to be centered within the available space. Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so that the alignment option has no meaning in this case. The optional 'fill' character defines the character to be used to pad the field to the minimum width. The fill character, if present, must be followed by an alignment flag. The 'sign' option is only valid for numeric types, and can be one of the following: ================= ==================================================== Sign Meaning ================= ==================================================== `+` Indicates that a sign should be used for both positive as well as negative numbers. `-` Indicates that a sign should be used only for negative numbers (this is the default behavior). (space) Indicates that a leading space should be used on positive numbers. ================= ==================================================== If the '#' character is present, integers use the 'alternate form' for formatting. This means that binary, octal and hexadecimal output will be prefixed with '0b', '0o' and '0x', respectively. 'width' is a decimal integer defining the minimum field width. If not specified, then the field width will be determined by the content. If the width field is preceded by a zero ('0') character, this enables zero-padding. The 'precision' is a decimal number indicating how many digits should be displayed after the decimal point in a floating point conversion. For non-numeric types the field indicates the maximum field size - in other words, how many characters will be used from the field content. The precision is ignored for integer conversions. Finally, the 'type' determines how the data should be presented. The available integer presentation types are: ================= ==================================================== Type Result ================= ==================================================== `b` Binary. Outputs the number in base 2. `d` Decimal Integer. Outputs the number in base 10. `o` Octal format. Outputs the number in base 8. `x` Hex format. Outputs the number in base 16, using lower-case letters for the digits above 9. `X` Hex format. Outputs the number in base 16, using uppercase letters for the digits above 9. (None) The same as 'd'. ================= ==================================================== The available floating point presentation types are: ================= ==================================================== Type Result ================= ==================================================== `e` Exponent notation. Prints the number in scientific notation using the letter 'e' to indicate the exponent. `E` Exponent notation. Same as 'e' except it converts the number to uppercase. `f` Fixed point. Displays the number as a fixed-point number. `F` Fixed point. Same as 'f' except it converts the number to uppercase. `g` General format. This prints the number as a fixed-point number, unless the number is too large, in which case it switches to 'e' exponent notation. `G` General format. Same as 'g' except it switches to 'E' if the number gets to large. (None) Similar to 'g', except that it prints at least one digit after the decimal point. ================= ==================================================== # Limitations Because of the well defined order how templates and macros are expanded, strformat cannot expand template arguments: .. code-block:: nim template myTemplate(arg: untyped): untyped = echo "arg is: ", arg echo &"--- {arg} ---" let x = "abc" myTemplate(x) First the template `myTemplate` is expanded, where every identifier `arg` is substituted with its argument. The `arg` inside the format string is not seen by this process, because it is part of a quoted string literal. It is not an identifier yet. Then the strformat macro creates the `arg` identifier from the string literal, an identifier that cannot be resolved anymore. The workaround for this is to bind the template argument to a new local variable. .. code-block:: nim template myTemplate(arg: untyped): untyped = block: let arg1 {.inject.} = arg echo "arg is: ", arg1 echo &"--- {arg1} ---" The use of `{.inject.}` here is necessary again because of template expansion order and hygienic templates. But since we generally want to keep the hygiene of `myTemplate`, and we do not want `arg1` to be injected into the context where `myTemplate` is expanded, everything is wrapped in a `block`. # Future directions A curly expression with commas in it like `{x, argA, argB}` could be transformed to `formatValue(result, x, argA, argB)` in order to support formatters that do not need to parse a custom language within a custom language but instead prefer to use Nim's existing syntax. This would also help with readability, since there is only so much you can cram into single letter DSLs. ]## import std/[macros, parseutils, unicode] import std/strutils except format proc mkDigit(v: int, typ: char): string {.inline.} = assert(v < 26) if v < 10: result = $chr(ord('0') + v) else: result = $chr(ord(if typ == 'x': 'a' else: 'A') + v - 10) proc alignString*(s: string, minimumWidth: int; align = '\0'; fill = ' '): string = ## Aligns `s` using the `fill` char. ## This is only of interest if you want to write a custom `format` proc that ## should support the standard format specifiers. if minimumWidth == 0: result = s else: let sRuneLen = if s.validateUtf8 == -1: s.runeLen else: s.len let toFill = minimumWidth - sRuneLen if toFill <= 0: result = s elif align == '<' or align == '\0': result = s & repeat(fill, toFill) elif align == '^': let half = toFill div 2 result = repeat(fill, half) & s & repeat(fill, toFill - half) else: result = repeat(fill, toFill) & s type StandardFormatSpecifier* = object ## Type that describes "standard format specifiers". fill*, align*: char ## Desired fill and alignment. sign*: char ## Desired sign. alternateForm*: bool ## Whether to prefix binary, octal and hex numbers ## with `0b`, `0o`, `0x`. padWithZero*: bool ## Whether to pad with zeros rather than spaces. minimumWidth*, precision*: int ## Desired minimum width and precision. typ*: char ## Type like 'f', 'g' or 'd'. endPosition*: int ## End position in the format specifier after ## `parseStandardFormatSpecifier` returned. proc formatInt(n: SomeNumber; radix: int; spec: StandardFormatSpecifier): string = ## Converts `n` to a string. If `n` is `SomeFloat`, it casts to `int64`. ## Conversion is done using `radix`. If result's length is less than ## `minimumWidth`, it aligns result to the right or left (depending on `a`) ## with the `fill` char. when n is SomeUnsignedInt: var v = n.uint64 let negative = false else: let n = n.int64 let negative = n < 0 var v = if negative: # `uint64(-n)`, but accounts for `n == low(int64)` uint64(not n) + 1 else: uint64(n) var xx = "" if spec.alternateForm: case spec.typ of 'X': xx = "0x" of 'x': xx = "0x" of 'b': xx = "0b" of 'o': xx = "0o" else: discard if v == 0: result = "0" else: result = "" while v > typeof(v)(0): let d = v mod typeof(v)(radix) v = v div typeof(v)(radix) result.add(mkDigit(d.int, spec.typ)) for idx in 0..<(result.len div 2): swap result[idx], result[result.len - idx - 1] if spec.padWithZero: let sign = negative or spec.sign != '-' let toFill = spec.minimumWidth - result.len - xx.len - ord(sign) if toFill > 0: result = repeat('0', toFill) & result if negative: result = "-" & xx & result elif spec.sign != '-': result = spec.sign & xx & result else: result = xx & result if spec.align == '<': for i in result.len.. 0: result = repeat(spec.fill, toFill) & result proc parseStandardFormatSpecifier*(s: string; start = 0; ignoreUnknownSuffix = false): StandardFormatSpecifier = ## An exported helper proc that parses the "standard format specifiers", ## as specified by the grammar:: ## ## [[fill]align][sign][#][0][minimumwidth][.precision][type] ## ## This is only of interest if you want to write a custom `format` proc that ## should support the standard format specifiers. If `ignoreUnknownSuffix` is true, ## an unknown suffix after the `type` field is not an error. const alignChars = {'<', '>', '^'} result.fill = ' ' result.align = '\0' result.sign = '-' var i = start if i + 1 < s.len and s[i+1] in alignChars: result.fill = s[i] result.align = s[i+1] inc i, 2 elif i < s.len and s[i] in alignChars: result.align = s[i] inc i if i < s.len and s[i] in {'-', '+', ' '}: result.sign = s[i] inc i if i < s.len and s[i] == '#': result.alternateForm = true inc i if i + 1 < s.len and s[i] == '0' and s[i+1] in {'0'..'9'}: result.padWithZero = true inc i let parsedLength = parseSaturatedNatural(s, result.minimumWidth, i) inc i, parsedLength if i < s.len and s[i] == '.': inc i let parsedLengthB = parseSaturatedNatural(s, result.precision, i) inc i, parsedLengthB else: result.precision = -1 if i < s.len and s[i] in {'A'..'Z', 'a'..'z'}: result.typ = s[i] inc i result.endPosition = i if i != s.len and not ignoreUnknownSuffix: raise newException(ValueError, "invalid format string, cannot parse: " & s[i..^1]) proc formatValue*[T: SomeInteger](result: var string; value: T; specifier: string) = ## Standard format implementation for `SomeInteger`. It makes little ## sense to call this directly, but it is required to exist ## by the `&` macro. if specifier.len == 0: result.add $value return let spec = parseStandardFormatSpecifier(specifier) var radix = 10 case spec.typ of 'x', 'X': radix = 16 of 'd', '\0': discard of 'b': radix = 2 of 'o': radix = 8 else: raise newException(ValueError, "invalid type in format string for number, expected one " & " of 'x', 'X', 'b', 'd', 'o' but got: " & spec.typ) result.add formatInt(value, radix, spec) proc formatValue*(result: var string; value: SomeFloat; specifier: string) = ## Standard format implementation for `SomeFloat`. It makes little ## sense to call this directly, but it is required to exist ## by the `&` macro. if specifier.len == 0: result.add $value return let spec = parseStandardFormatSpecifier(specifier) var fmode = ffDefault case spec.typ of 'e', 'E': fmode = ffScientific of 'f', 'F': fmode = ffDecimal of 'g', 'G': fmode = ffDefault of '\0': discard else: raise newException(ValueError, "invalid type in format string for number, expected one " & " of 'e', 'E', 'f', 'F', 'g', 'G' but got: " & spec.typ) var f = formatBiggestFloat(value, fmode, spec.precision) var sign = false if value >= 0.0: if spec.sign != '-': sign = true if value == 0.0: if 1.0 / value == Inf: # only insert the sign if value != negZero f.insert($spec.sign, 0) else: f.insert($spec.sign, 0) else: sign = true if spec.padWithZero: var signStr = "" if sign: signStr = $f[0] f = f[1..^1] let toFill = spec.minimumWidth - f.len - ord(sign) if toFill > 0: f = repeat('0', toFill) & f if sign: f = signStr & f # the default for numbers is right-alignment: let align = if spec.align == '\0': '>' else: spec.align let res = alignString(f, spec.minimumWidth, align, spec.fill) if spec.typ in {'A'..'Z'}: result.add toUpperAscii(res) else: result.add res proc formatValue*(result: var string; value: string; specifier: string) = ## Standard format implementation for `string`. It makes little ## sense to call this directly, but it is required to exist ## by the `&` macro. let spec = parseStandardFormatSpecifier(specifier) var value = value case spec.typ of 's', '\0': discard else: raise newException(ValueError, "invalid type in format string for string, expected 's', but got " & spec.typ) if spec.precision != -1: if spec.precision < runeLen(value): setLen(value, runeOffset(value, spec.precision)) result.add alignString(value, spec.minimumWidth, spec.align, spec.fill) proc formatValue[T: not SomeInteger](result: var string; value: T; specifier: string) = mixin `$` formatValue(result, $value, specifier) template formatValue(result: var string; value: char; specifier: string) = result.add value template formatValue(result: var string; value: cstring; specifier: string) = result.add value proc strformatImpl(pattern: NimNode; openChar, closeChar: char): NimNode = if pattern.kind notin {nnkStrLit..nnkTripleStrLit}: error "string formatting (fmt(), &) only works with string literals", pattern if openChar == ':' or closeChar == ':': error "openChar and closeChar must not be ':'" let f = pattern.strVal var i = 0 let res = genSym(nskVar, "fmtRes") result = newNimNode(nnkStmtListExpr, lineInfoFrom = pattern) # XXX: https://github.com/nim-lang/Nim/issues/8405 # When compiling with -d:useNimRtl, certain procs such as `count` from the strutils # module are not accessible at compile-time: let expectedGrowth = when defined(useNimRtl): 0 else: count(f, '{') * 10 result.add newVarStmt(res, newCall(bindSym"newStringOfCap", newLit(f.len + expectedGrowth))) var strlit = "" while i < f.len: if f[i] == openChar: inc i if f[i] == openChar: inc i strlit.add openChar else: if strlit.len > 0: result.add newCall(bindSym"add", res, newLit(strlit)) strlit = "" var subexpr = "" while i < f.len and f[i] != closeChar and f[i] != ':': if f[i] == '=': let start = i inc i i += f.skipWhitespace(i) if f[i] == closeChar or f[i] == ':': result.add newCall(bindSym"add", res, newLit(subexpr & f[start ..< i])) else: subexpr.add f[start ..< i] else: subexpr.add f[i] inc i var x: NimNode try: x = parseExpr(subexpr) except ValueError: when declared(getCurrentExceptionMsg): let msg = getCurrentExceptionMsg() error("could not parse `" & subexpr & "`.\n" & msg, pattern) else: error("could not parse `" & subexpr & "`.\n", pattern) let formatSym = bindSym("formatValue", brOpen) var options = "" if f[i] == ':': inc i while i < f.len and f[i] != closeChar: options.add f[i] inc i if f[i] == closeChar: inc i else: doAssert false, "invalid format string: missing '}'" result.add newCall(formatSym, res, x, newLit(options)) elif f[i] == closeChar: if f[i+1] == closeChar: strlit.add closeChar inc i, 2 else: doAssert false, "invalid format string: '}' instead of '}}'" inc i else: strlit.add f[i] inc i if strlit.len > 0: result.add newCall(bindSym"add", res, newLit(strlit)) result.add res when defined(debugFmtDsl): echo repr result macro `&`*(pattern: string): untyped = strformatImpl(pattern, '{', '}') ## For a specification of the `&` macro, see the module level documentation. macro fmt*(pattern: string): untyped = strformatImpl(pattern, '{', '}') ## An alias for `& <#&.m,string>`_. macro fmt*(pattern: string; openChar, closeChar: char): untyped = ## The same as `fmt <#fmt.m,string>`_, but uses `openChar` instead of `'{'` ## and `closeChar` instead of `'}'`. runnableExamples: let testInt = 123 assert "".fmt('<', '>') == "123" assert """(()"foo" & "bar"())""".fmt(')', '(') == "(foobar)" assert """ ""{"123+123"}"" """.fmt('"', '"') == " \"{246}\" " strformatImpl(pattern, openChar.intVal.char, closeChar.intVal.char)