# # # Nim's Runtime Library # (c) Copyright 2017 Nim contributors # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ##[ String `interpolation`:idx: / `format`:idx: inspired by Python's ``f``-strings. ``fmt`` vs. ``&`` ================= You can use either ``fmt`` or the unary ``&`` operator for formatting. The difference between them is subtle but important. The ``fmt"{expr}"`` syntax is more aesthetically pleasing, but it hides a small gotcha. The string is a `generalized raw string literal `_. This has some surprising effects: .. code-block:: nim import strformat let msg = "hello" doAssert fmt"{msg}\n" == "hello\\n" Because the literal is a raw string literal, the ``\n`` is not interpreted as an escape sequence. There are multiple ways to get around this, including the use of the ``&`` operator: .. code-block:: nim import strformat let msg = "hello" doAssert &"{msg}\n" == "hello\n" doAssert fmt"{msg}{'\n'}" == "hello\n" doAssert fmt("{msg}\n") == "hello\n" doAssert "{msg}\n".fmt == "hello\n" The choice of style is up to you. Formatting strings ================== .. code-block:: nim import strformat doAssert &"""{"abc":>4}""" == " abc" doAssert &"""{"abc":<4}""" == "abc " Formatting floats ================= .. code-block:: nim import strformat doAssert fmt"{-12345:08}" == "-0012345" doAssert fmt"{-1:3}" == " -1" doAssert fmt"{-1:03}" == "-01" doAssert fmt"{16:#X}" == "0x10" doAssert fmt"{123.456}" == "123.456" doAssert fmt"{123.456:>9.3f}" == " 123.456" doAssert fmt"{123.456:9.3f}" == " 123.456" doAssert fmt"{123.456:9.4f}" == " 123.4560" doAssert fmt"{123.456:>9.0f}" == " 123." doAssert fmt"{123.456:<9.4f}" == "123.4560 " doAssert fmt"{123.456:e}" == "1.234560e+02" doAssert fmt"{123.456:>13e}" == " 1.234560e+02" doAssert fmt"{123.456:13e}" == " 1.234560e+02" Implementation details ====================== An expression like ``&"{key} is {value:arg} {{z}}"`` is transformed into: .. code-block:: nim var temp = newStringOfCap(educatedCapGuess) format(key, temp) format(" is ", temp) format(value, arg, temp) format(" {z}", temp) temp Parts of the string that are enclosed in the curly braces are interpreted as Nim code, to escape an ``{`` or ``}`` double it. ``&`` delegates most of the work to an open overloaded set of ``format`` procs. The required signature for a type ``T`` that supports formatting is usually ``proc format(x: T; result: var string)`` for efficiency but can also be ``proc format(x: T): string``. ``add`` and ``$`` procs are used as the fallback implementation. This is the concrete lookup algorithm that ``&`` uses: .. code-block:: nim when compiles(format(arg, res)): format(arg, res) elif compiles(format(arg)): res.add format(arg) elif compiles(add(res, arg)): res.add(arg) else: res.add($arg) The subexpression after the colon (``arg`` in ``&"{key} is {value:arg} {{z}}"``) is an optional argument passed to ``format``. If an optional argument is present the following lookup algorithm is used: .. code-block:: nim when compiles(format(arg, option, res)): format(arg, option, res) else: res.add format(arg, option) For strings and numeric types the optional argument is a so-called "standard format specifier". Standard format specifier for strings, integers and floats ========================================================== The general form of a standard format specifier is:: [[fill]align][sign][#][0][minimumwidth][.precision][type] The square brackets ``[]`` indicate an optional element. The optional align flag can be one of the following: '<' Forces the field to be left-aligned within the available space. (This is the default for strings.) '>' Forces the field to be right-aligned within the available space. (This is the default for numbers.) '^' Forces the field to be centered within the available space. Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so that the alignment option has no meaning in this case. The optional 'fill' character defines the character to be used to pad the field to the minimum width. The fill character, if present, must be followed by an alignment flag. The 'sign' option is only valid for numeric types, and can be one of the following: ================= ==================================================== Sign Meaning ================= ==================================================== ``+`` Indicates that a sign should be used for both positive as well as negative numbers. ``-`` Indicates that a sign should be used only for negative numbers (this is the default behavior). (space) Indicates that a leading space should be used on positive numbers. ================= ==================================================== If the '#' character is present, integers use the 'alternate form' for formatting. This means that binary, octal, and hexadecimal output will be prefixed with '0b', '0o', and '0x', respectively. 'width' is a decimal integer defining the minimum field width. If not specified, then the field width will be determined by the content. If the width field is preceded by a zero ('0') character, this enables zero-padding. The 'precision' is a decimal number indicating how many digits should be displayed after the decimal point in a floating point conversion. For non-numeric types the field indicates the maximum field size - in other words, how many characters will be used from the field content. The precision is ignored for integer conversions. Finally, the 'type' determines how the data should be presented. The available integer presentation types are: ================= ==================================================== Type Result ================= ==================================================== ``b`` Binary. Outputs the number in base 2. ``d`` Decimal Integer. Outputs the number in base 10. ``o`` Octal format. Outputs the number in base 8. ``x`` Hex format. Outputs the number in base 16, using lower-case letters for the digits above 9. ``X`` Hex format. Outputs the number in base 16, using uppercase letters for the digits above 9. (None) the same as 'd' ================= ==================================================== The available floating point presentation types are: ================= ==================================================== Type Result ================= ==================================================== ``e`` Exponent notation. Prints the number in scientific notation using the letter 'e' to indicate the exponent. ``E`` Exponent notation. Same as 'e' except it converts the number to uppercase. ``f`` Fixed point. Displays the number as a fixed-point number. ``F`` Fixed point. Same as 'f' except it converts the number to uppercase. ``g`` General format. This prints the number as a fixed-point number, unless the number is too large, in which case it switches to 'e' exponent notation. ``G`` General format. Same as 'g' except switches to 'E' if the number gets to large. (None) similar to 'g', except that it prints at least one digit after the decimal point. ================= ==================================================== Future directions ================= A curly expression with commas in it like ``{x, argA, argB}`` could be transformed to ``format(x, argA, argB, res)`` in order to support formatters that do not need to parse a custom language within a custom language but instead prefer to use Nim's existing syntax. This also helps in readability since there is only so much you can cram into single letter DSLs. ]## import macros, parseutils, unicode import strutils template callFormat(res, arg) {.dirty.} = when arg is string: # workaround in order to circumvent 'strutils.format' which matches # too but doesn't adhere to our protocol. res.add arg elif compiles(format(arg, res)) and # Check if format returns void not (compiles do: discard format(arg, res)): format(arg, res) elif compiles(format(arg)): res.add format(arg) elif compiles(add(res, arg)): res.add(arg) else: res.add($arg) template callFormatOption(res, arg, option) {.dirty.} = when compiles(format(arg, option, res)): format(arg, option, res) elif compiles(format(arg, option)): res.add format(arg, option) else: format($arg, option, res) macro `&`*(pattern: string): untyped = ## For a specification of the ``&`` macro, see the module level documentation. if pattern.kind notin {nnkStrLit..nnkTripleStrLit}: error "string formatting (fmt(), &) only works with string literals", pattern let f = pattern.strVal var i = 0 let res = genSym(nskVar, "fmtRes") result = newNimNode(nnkStmtListExpr, lineInfoFrom=pattern) # XXX: https://github.com/nim-lang/Nim/issues/8405 # When compiling with -d:useNimRtl, certain procs such as `count` from the strutils # module are not accessible at compile-time: let expectedGrowth = when defined(useNimRtl): 0 else: count(f, '{') * 10 result.add newVarStmt(res, newCall(bindSym"newStringOfCap", newLit(f.len + expectedGrowth))) var strlit = "" while i < f.len: if f[i] == '{': inc i if f[i] == '{': inc i strlit.add '{' else: if strlit.len > 0: result.add newCall(bindSym"add", res, newLit(strlit)) strlit = "" var subexpr = "" while i < f.len and f[i] != '}' and f[i] != ':': subexpr.add f[i] inc i let x = parseExpr(subexpr) if f[i] == ':': inc i var options = "" while i < f.len and f[i] != '}': options.add f[i] inc i result.add getAst(callFormatOption(res, x, newLit(options))) else: result.add getAst(callFormat(res, x)) if f[i] == '}': inc i else: doAssert false, "invalid format string: missing '}'" elif f[i] == '}': if f[i+1] == '}': strlit.add '}' inc i, 2 else: doAssert false, "invalid format string: '}' instead of '}}'" inc i else: strlit.add f[i] inc i if strlit.len > 0: result.add newCall(bindSym"add", res, newLit(strlit)) result.add res when defined(debugFmtDsl): echo repr result template fmt*(pattern: string): untyped = ## An alias for ``&``. bind `&` &pattern proc mkDigit(v: int, typ: char): string {.inline.} = assert(v < 26) if v < 10: result = $chr(ord('0') + v) else: result = $chr(ord(if typ == 'x': 'a' else: 'A') + v - 10) proc alignString*(s: string, minimumWidth: int; align = '\0'; fill = ' '): string = ## Aligns ``s`` using ``fill`` char. ## This is only of interest if you want to write a custom ``format`` proc that ## should support the standard format specifiers. if minimumWidth == 0: result = s else: let sRuneLen = if s.validateUtf8 == -1: s.runeLen else: s.len let toFill = minimumWidth - sRuneLen if toFill <= 0: result = s elif align == '<' or align == '\0': result = s & repeat(fill, toFill) elif align == '^': let half = toFill div 2 result = repeat(fill, half) & s & repeat(fill, toFill - half) else: result = repeat(fill, toFill) & s type StandardFormatSpecifier* = object ## Type that describes "standard format specifiers". fill*, align*: char ## Desired fill and alignment. sign*: char ## Desired sign. alternateForm*: bool ## Whether to prefix binary, octal and hex numbers ## with ``0b``, ``0o``, ``0x``. padWithZero*: bool ## Whether to pad with zeros rather than spaces. minimumWidth*, precision*: int ## Desired minium width and precision. typ*: char ## Type like 'f', 'g' or 'd'. endPosition*: int ## End position in the format specifier after ## ``parseStandardFormatSpecifier`` returned. proc formatInt(n: SomeNumber; radix: int; spec: StandardFormatSpecifier): string = ## Converts ``n`` to string. If ``n`` is `SomeFloat`, it casts to `int64`. ## Conversion is done using ``radix``. If result's length is lesser than ## ``minimumWidth``, it aligns result to the right or left (depending on ``a``) ## with ``fill`` char. when n is SomeUnsignedInt: var v = n.uint64 let negative = false else: var v = n.int64 let negative = v.int64 < 0 if negative: # FIXME: overflow error for low(int64) v = v * -1 var xx = "" if spec.alternateForm: case spec.typ of 'X': xx = "0x" of 'x': xx = "0x" of 'b': xx = "0b" of 'o': xx = "0o" else: discard if v == 0: result = "0" else: result = "" while v > type(v)(0): let d = v mod type(v)(radix) v = v div type(v)(radix) result.add(mkDigit(d.int, spec.typ)) for idx in 0..<(result.len div 2): swap result[idx], result[result.len - idx - 1] if spec.padWithZero: let sign = negative or spec.sign != '-' let toFill = spec.minimumWidth - result.len - xx.len - ord(sign) if toFill > 0: result = repeat('0', toFill) & result if negative: result = "-" & xx & result elif spec.sign != '-': result = spec.sign & xx & result else: result = xx & result if spec.align == '<': for i in result.len.. 0: result = repeat(spec.fill, toFill) & result proc parseStandardFormatSpecifier*(s: string; start = 0; ignoreUnknownSuffix = false): StandardFormatSpecifier = ## An exported helper proc that parses the "standard format specifiers", ## as specified by the grammar:: ## ## [[fill]align][sign][#][0][minimumwidth][.precision][type] ## ## This is only of interest if you want to write a custom ``format`` proc that ## should support the standard format specifiers. If ``ignoreUnknownSuffix`` is true, ## an unknown suffix after the ``type`` field is not an error. const alignChars = {'<', '>', '^'} result.fill = ' ' result.align = '\0' result.sign = '-' var i = start if i + 1 < s.len and s[i+1] in alignChars: result.fill = s[i] result.align = s[i+1] inc i, 2 elif i < s.len and s[i] in alignChars: result.align = s[i] inc i if i < s.len and s[i] in {'-', '+', ' '}: result.sign = s[i] inc i if i < s.len and s[i] == '#': result.alternateForm = true inc i if i+1 < s.len and s[i] == '0' and s[i+1] in {'0'..'9'}: result.padWithZero = true inc i let parsedLength = parseSaturatedNatural(s, result.minimumWidth, i) inc i, parsedLength if i < s.len and s[i] == '.': inc i let parsedLengthB = parseSaturatedNatural(s, result.precision, i) inc i, parsedLengthB else: result.precision = -1 if i < s.len and s[i] in {'A'..'Z', 'a'..'z'}: result.typ = s[i] inc i result.endPosition = i if i != s.len and not ignoreUnknownSuffix: raise newException(ValueError, "invalid format string, cannot parse: " & s[i..^1]) proc format*(value: SomeInteger; specifier: string; res: var string) = ## Standard format implementation for ``SomeInteger``. It makes little ## sense to call this directly, but it is required to exist ## by the ``&`` macro. let spec = parseStandardFormatSpecifier(specifier) var radix = 10 case spec.typ of 'x', 'X': radix = 16 of 'd', '\0': discard of 'b': radix = 2 of 'o': radix = 8 else: raise newException(ValueError, "invalid type in format string for number, expected one " & " of 'x', 'X', 'b', 'd', 'o' but got: " & spec.typ) res.add formatInt(value, radix, spec) proc format*(value: SomeFloat; specifier: string; res: var string) = ## Standard format implementation for ``SomeFloat``. It makes little ## sense to call this directly, but it is required to exist ## by the ``&`` macro. let spec = parseStandardFormatSpecifier(specifier) var fmode = ffDefault case spec.typ of 'e', 'E': fmode = ffScientific of 'f', 'F': fmode = ffDecimal of 'g', 'G': fmode = ffDefault of '\0': discard else: raise newException(ValueError, "invalid type in format string for number, expected one " & " of 'e', 'E', 'f', 'F', 'g', 'G' but got: " & spec.typ) var f = formatBiggestFloat(value, fmode, spec.precision) var sign = false if value >= 0.0: if spec.sign != '-': sign = true if value == 0.0: if 1.0 / value == Inf: # only insert the sign if value != negZero f.insert($spec.sign, 0) else: f.insert($spec.sign, 0) else: sign = true if spec.padWithZero: var sign_str = "" if sign: sign_str = $f[0] f = f[1..^1] let toFill = spec.minimumWidth - f.len - ord(sign) if toFill > 0: f = repeat('0', toFill) & f if sign: f = sign_str & f # the default for numbers is right-alignment: let align = if spec.align == '\0': '>' else: spec.align let result = alignString(f, spec.minimumWidth, align, spec.fill) if spec.typ in {'A'..'Z'}: res.add toUpperAscii(result) else: res.add result proc format*(value: string; specifier: string; res: var string) = ## Standard format implementation for ``string``. It makes little ## sense to call this directly, but it is required to exist ## by the ``&`` macro. let spec = parseStandardFormatSpecifier(specifier) var value = value case spec.typ of 's', '\0': discard else: raise newException(ValueError, "invalid type in format string for string, expected 's', but got " & spec.typ) if spec.precision != -1: if spec.precision < runelen(value): setLen(value, runeOffset(value, spec.precision)) res.add alignString(value, spec.minimumWidth, spec.align, spec.fill) when isMainModule: template check(actual, expected: string) = doAssert actual == expected from strutils import toUpperAscii, repeat # Basic tests let s = "string" check &"{0} {s}", "0 string" check &"{s[0..2].toUpperAscii}", "STR" check &"{-10:04}", "-010" check &"{-10:<04}", "-010" check &"{-10:>04}", "-010" check &"0x{10:02X}", "0x0A" check &"{10:#04X}", "0x0A" check &"""{"test":#>5}""", "#test" check &"""{"test":>5}""", " test" check &"""{"test":#^7}""", "#test##" check &"""{"test": <5}""", "test " check &"""{"test":<5}""", "test " check &"{1f:.3f}", "1.000" check &"Hello, {s}!", "Hello, string!" # Tests for identifers without parenthesis check &"{s} works{s}", "string worksstring" check &"{s:>7}", " string" doAssert(not compiles(&"{s_works}")) # parsed as identifier `s_works` # Misc general tests check &"{{}}", "{}" check &"{0}%", "0%" check &"{0}%asdf", "0%asdf" check &("\n{\"\\n\"}\n"), "\n\n\n" check &"""{"abc"}s""", "abcs" # String tests check &"""{"abc"}""", "abc" check &"""{"abc":>4}""", " abc" check &"""{"abc":<4}""", "abc " check &"""{"":>4}""", " " check &"""{"":<4}""", " " # Int tests check &"{12345}", "12345" check &"{ - 12345}", "-12345" check &"{12345:6}", " 12345" check &"{12345:>6}", " 12345" check &"{12345:4}", "12345" check &"{12345:08}", "00012345" check &"{-12345:08}", "-0012345" check &"{0:0}", "0" check &"{0:02}", "00" check &"{-1:3}", " -1" check &"{-1:03}", "-01" check &"{10}", "10" check &"{16:#X}", "0x10" check &"{16:^#7X}", " 0x10 " check &"{16:^+#7X}", " +0x10 " # Hex tests check &"{0:x}", "0" check &"{-0:x}", "0" check &"{255:x}", "ff" check &"{255:X}", "FF" check &"{-255:x}", "-ff" check &"{-255:X}", "-FF" check &"{255:x} uNaffeCteD CaSe", "ff uNaffeCteD CaSe" check &"{255:X} uNaffeCteD CaSe", "FF uNaffeCteD CaSe" check &"{255:4x}", " ff" check &"{255:04x}", "00ff" check &"{-255:4x}", " -ff" check &"{-255:04x}", "-0ff" # Float tests check &"{123.456}", "123.456" check &"{-123.456}", "-123.456" check &"{123.456:.3f}", "123.456" check &"{123.456:+.3f}", "+123.456" check &"{-123.456:+.3f}", "-123.456" check &"{-123.456:.3f}", "-123.456" check &"{123.456:1g}", "123.456" check &"{123.456:.1f}", "123.5" check &"{123.456:.0f}", "123." #check &"{123.456:.0f}", "123." check &"{123.456:>9.3f}", " 123.456" check &"{123.456:9.3f}", " 123.456" check &"{123.456:>9.4f}", " 123.4560" check &"{123.456:>9.0f}", " 123." check &"{123.456:<9.4f}", "123.4560 " # Float (scientific) tests check &"{123.456:e}", "1.234560e+02" check &"{123.456:>13e}", " 1.234560e+02" check &"{123.456:<13e}", "1.234560e+02 " check &"{123.456:.1e}", "1.2e+02" check &"{123.456:.2e}", "1.23e+02" check &"{123.456:.3e}", "1.235e+02" # Note: times.format adheres to the format protocol. Test that this # works: import times var dt = initDateTime(01, mJan, 2000, 00, 00, 00) check &"{dt:yyyy-MM-dd}", "2000-01-01" var tm = fromUnix(0) discard &"{tm}" # Unicode string tests check &"""{"αβγ"}""", "αβγ" check &"""{"αβγ":>5}""", " αβγ" check &"""{"αβγ":<5}""", "αβγ " check &"""a{"a"}α{"α"}€{"€"}𐍈{"𐍈"}""", "aaαα€€𐍈𐍈" check &"""a{"a":2}α{"α":2}€{"€":2}𐍈{"𐍈":2}""", "aa αα €€ 𐍈𐍈 " # Invalid unicode sequences should be handled as plain strings. # Invalid examples taken from: https://stackoverflow.com/a/3886015/1804173 let invalidUtf8 = [ "\xc3\x28", "\xa0\xa1", "\xe2\x28\xa1", "\xe2\x82\x28", "\xf0\x28\x8c\xbc", "\xf0\x90\x28\xbc", "\xf0\x28\x8c\x28" ] for s in invalidUtf8: check &"{s:>5}", repeat(" ", 5-s.len) & s import json doAssert fmt"{'a'} {'b'}" == "a b" echo("All tests ok")