# # # Nimrod's Runtime Library # (c) Copyright 2011 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # # Garbage Collector # # The basic algorithm is *Deferrent Reference Counting* with cycle detection. # Special care has been taken to avoid recursion as far as possible to avoid # stack overflows when traversing deep datastructures. This is comparable to # an incremental and generational GC. It should be well-suited for soft real # time applications (like games). # # Future Improvements: # * Support for multi-threading. However, locks for the reference counting # might turn out to be too slow. const CycleIncrease = 2 # is a multiplicative increase InitialCycleThreshold = 4*1024*1024 # X MB because cycle checking is slow ZctThreshold = 256 # we collect garbage if the ZCT's size # reaches this threshold # this seems to be a good value const rcIncrement = 0b1000 # so that lowest 3 bits are not touched # NOTE: Most colors are currently unused rcBlack = 0b000 # cell is colored black; in use or free rcGray = 0b001 # possible member of a cycle rcWhite = 0b010 # member of a garbage cycle rcPurple = 0b011 # possible root of a cycle rcZct = 0b100 # in ZCT rcRed = 0b101 # Candidate cycle undergoing sigma-computation rcOrange = 0b110 # Candidate cycle awaiting epoch boundary rcShift = 3 # shift by rcShift to get the reference counter colorMask = 0b111 type TWalkOp = enum waZctDecRef, waPush, waCycleDecRef TFinalizer {.compilerproc.} = proc (self: pointer) # A ref type can have a finalizer that is called before the object's # storage is freed. TGcStat {.final, pure.} = object stackScans: int # number of performed stack scans (for statistics) cycleCollections: int # number of performed full collections maxThreshold: int # max threshold that has been set maxStackSize: int # max stack size maxStackCells: int # max stack cells in ``decStack`` cycleTableSize: int # max entries in cycle table TGcHeap {.final, pure.} = object # this contains the zero count and # non-zero count table zct: TCellSeq # the zero count table decStack: TCellSeq # cells in the stack that are to decref again cycleRoots: TCellSet tempStack: TCellSeq # temporary stack for recursion elimination when hasThreadSupport: cycleRootsLock: TSysLock zctLock: TSysLock stat: TGcStat var stackBottom: pointer gch: TGcHeap cycleThreshold: int = InitialCycleThreshold recGcLock: int = 0 # we use a lock to prevent the garbage collector to be triggered in a # finalizer; the collector should not call itself this way! Thus every # object allocated by a finalizer will not trigger a garbage collection. # This is wasteful but safe and won't ever be a problem for sane # finalizers. This is a lock against recursive garbage collection, not a # lock for threads! proc aquire(gch: var TGcHeap) {.inline.} = when hasThreadSupport: if isMultiThreaded: aquire(gch.zctLock) aquire(gch.cycleRootsLock) proc release(gch: var TGcHeap) {.inline.} = when hasThreadSupport: if isMultiThreaded: release(gch.zctLock) release(gch.cycleRootsLock) proc addZCT(s: var TCellSeq, c: PCell) {.noinline.} = if (c.refcount and rcZct) == 0: c.refcount = c.refcount and not colorMask or rcZct add(s, c) proc cellToUsr(cell: PCell): pointer {.inline.} = # convert object (=pointer to refcount) to pointer to userdata result = cast[pointer](cast[TAddress](cell)+%TAddress(sizeof(TCell))) proc usrToCell(usr: pointer): PCell {.inline.} = # convert pointer to userdata to object (=pointer to refcount) result = cast[PCell](cast[TAddress](usr)-%TAddress(sizeof(TCell))) proc canbeCycleRoot(c: PCell): bool {.inline.} = result = ntfAcyclic notin c.typ.flags proc extGetCellType(c: pointer): PNimType {.compilerproc.} = # used for code generation concerning debugging result = usrToCell(c).typ proc internRefcount(p: pointer): int {.exportc: "getRefcount".} = result = int(usrToCell(p).refcount) shr rcShift # this that has to equals zero, otherwise we have to round up UnitsPerPage: when BitsPerPage mod (sizeof(int)*8) != 0: {.error: "(BitsPerPage mod BitsPerUnit) should be zero!".} when debugGC: proc writeCell(msg: CString, c: PCell) = var kind = -1 if c.typ != nil: kind = ord(c.typ.kind) when debugGC: c_fprintf(c_stdout, "[GC] %s: %p %d rc=%ld from %s(%ld)\n", msg, c, kind, c.refcount shr rcShift, c.filename, c.line) else: c_fprintf(c_stdout, "[GC] %s: %p %d rc=%ld\n", msg, c, kind, c.refcount shr rcShift) when traceGC: # traceGC is a special switch to enable extensive debugging type TCellState = enum csAllocated, csZctFreed, csCycFreed var states: array[TCellState, TCellSet] proc traceCell(c: PCell, state: TCellState) = case state of csAllocated: if c in states[csAllocated]: writeCell("attempt to alloc an already allocated cell", c) assert(false) excl(states[csCycFreed], c) excl(states[csZctFreed], c) of csZctFreed: if c in states[csZctFreed]: writeCell("attempt to free zct cell twice", c) assert(false) if c in states[csCycFreed]: writeCell("attempt to free with zct, but already freed with cyc", c) assert(false) if c notin states[csAllocated]: writeCell("attempt to free not an allocated cell", c) assert(false) excl(states[csAllocated], c) of csCycFreed: if c notin states[csAllocated]: writeCell("attempt to free a not allocated cell", c) assert(false) if c in states[csCycFreed]: writeCell("attempt to free cyc cell twice", c) assert(false) if c in states[csZctFreed]: writeCell("attempt to free with cyc, but already freed with zct", c) assert(false) excl(states[csAllocated], c) incl(states[state], c) proc writeLeakage() = var z = 0 var y = 0 var e = 0 for c in elements(states[csAllocated]): inc(e) if c in states[csZctFreed]: inc(z) elif c in states[csCycFreed]: inc(y) else: writeCell("leak", c) cfprintf(cstdout, "Allocations: %ld; ZCT freed: %ld; CYC freed: %ld\n", e, z, y) template gcTrace(cell, state: expr): stmt = when traceGC: traceCell(cell, state) # ----------------------------------------------------------------------------- # forward declarations: proc collectCT(gch: var TGcHeap) proc IsOnStack*(p: pointer): bool {.noinline.} proc forAllChildren(cell: PCell, op: TWalkOp) proc doOperation(p: pointer, op: TWalkOp) proc forAllChildrenAux(dest: Pointer, mt: PNimType, op: TWalkOp) # we need the prototype here for debugging purposes proc prepareDealloc(cell: PCell) = if cell.typ.finalizer != nil: # the finalizer could invoke something that # allocates memory; this could trigger a garbage # collection. Since we are already collecting we # prevend recursive entering here by a lock. # XXX: we should set the cell's children to nil! inc(recGcLock) (cast[TFinalizer](cell.typ.finalizer))(cellToUsr(cell)) dec(recGcLock) proc rtlAddCycleRoot(c: PCell) {.rtl, inl.} = # we MUST access gch as a global here, because this crosses DLL boundaries! when hasThreadSupport: if isMultiThreaded: Aquire(gch.cycleRootsLock) incl(gch.cycleRoots, c) when hasThreadSupport: if isMultiThreaded: Release(gch.cycleRootsLock) proc rtlAddZCT(c: PCell) {.rtl, inl.} = # we MUST access gch as a global here, because this crosses DLL boundaries! when hasThreadSupport: if isMultiThreaded: Aquire(gch.zctLock) addZCT(gch.zct, c) when hasThreadSupport: if isMultiThreaded: Release(gch.zctLock) proc decRef(c: PCell) {.inline.} = when stressGC: if c.refcount <% rcIncrement: writeCell("broken cell", c) assert(c.refcount >=% rcIncrement) #if c.refcount <% rcIncrement: quit("leck mich") if atomicDec(c.refcount, rcIncrement) <% rcIncrement: rtlAddZCT(c) elif canBeCycleRoot(c): rtlAddCycleRoot(c) proc incRef(c: PCell) {.inline.} = discard atomicInc(c.refcount, rcIncrement) if canBeCycleRoot(c): rtlAddCycleRoot(c) proc nimGCref(p: pointer) {.compilerProc, inline.} = incRef(usrToCell(p)) proc nimGCunref(p: pointer) {.compilerProc, inline.} = decRef(usrToCell(p)) proc asgnRef(dest: ppointer, src: pointer) {.compilerProc, inline.} = # the code generator calls this proc! assert(not isOnStack(dest)) # BUGFIX: first incRef then decRef! if src != nil: incRef(usrToCell(src)) if dest[] != nil: decRef(usrToCell(dest[])) dest[] = src proc asgnRefNoCycle(dest: ppointer, src: pointer) {.compilerProc, inline.} = # the code generator calls this proc if it is known at compile time that no # cycle is possible. if src != nil: var c = usrToCell(src) discard atomicInc(c.refcount, rcIncrement) if dest[] != nil: var c = usrToCell(dest[]) if atomicDec(c.refcount, rcIncrement) <% rcIncrement: rtlAddZCT(c) dest[] = src proc unsureAsgnRef(dest: ppointer, src: pointer) {.compilerProc.} = # unsureAsgnRef updates the reference counters only if dest is not on the # stack. It is used by the code generator if it cannot decide wether a # reference is in the stack or not (this can happen for var parameters). if not IsOnStack(dest): if src != nil: incRef(usrToCell(src)) # XXX finally use assembler for the stack checking instead! # the test for '!= nil' is correct, but I got tired of the segfaults # resulting from the crappy stack checking: if cast[int](dest[]) >=% PageSize: decRef(usrToCell(dest[])) dest[] = src proc initGC() = when not defined(useNimRtl): when traceGC: for i in low(TCellState)..high(TCellState): Init(states[i]) gch.stat.stackScans = 0 gch.stat.cycleCollections = 0 gch.stat.maxThreshold = 0 gch.stat.maxStackSize = 0 gch.stat.maxStackCells = 0 gch.stat.cycleTableSize = 0 # init the rt init(gch.zct) init(gch.tempStack) Init(gch.cycleRoots) Init(gch.decStack) when hasThreadSupport: InitLock(gch.cycleRootsLock) InitLock(gch.zctLock) new(gOutOfMem) # reserve space for the EOutOfMemory exception here! proc forAllSlotsAux(dest: pointer, n: ptr TNimNode, op: TWalkOp) = var d = cast[TAddress](dest) case n.kind of nkNone: assert(false) of nkSlot: forAllChildrenAux(cast[pointer](d +% n.offset), n.typ, op) of nkList: for i in 0..n.len-1: forAllSlotsAux(dest, n.sons[i], op) of nkCase: var m = selectBranch(dest, n) if m != nil: forAllSlotsAux(dest, m, op) proc forAllChildrenAux(dest: Pointer, mt: PNimType, op: TWalkOp) = var d = cast[TAddress](dest) if dest == nil: return # nothing to do if ntfNoRefs notin mt.flags: case mt.Kind of tyArray, tyArrayConstr, tyOpenArray: for i in 0..(mt.size div mt.base.size)-1: forAllChildrenAux(cast[pointer](d +% i *% mt.base.size), mt.base, op) of tyRef, tyString, tySequence: # leaf: doOperation(cast[ppointer](d)[], op) of tyObject, tyTuple, tyPureObject: forAllSlotsAux(dest, mt.node, op) else: nil proc forAllChildren(cell: PCell, op: TWalkOp) = assert(cell != nil) assert(cell.typ != nil) case cell.typ.Kind of tyRef: # common case forAllChildrenAux(cellToUsr(cell), cell.typ.base, op) of tySequence: var d = cast[TAddress](cellToUsr(cell)) var s = cast[PGenericSeq](d) if s != nil: for i in 0..s.len-1: forAllChildrenAux(cast[pointer](d +% i *% cell.typ.base.size +% GenericSeqSize), cell.typ.base, op) of tyString: nil else: assert(false) proc checkCollection {.inline.} = # checks if a collection should be done if recGcLock == 0: collectCT(gch) proc newObj(typ: PNimType, size: int): pointer {.compilerRtl.} = # generates a new object and sets its reference counter to 0 aquire(gch) assert(typ.kind in {tyRef, tyString, tySequence}) checkCollection() var res = cast[PCell](rawAlloc(allocator, size + sizeof(TCell))) zeroMem(res, size+sizeof(TCell)) assert((cast[TAddress](res) and (MemAlign-1)) == 0) # now it is buffered in the ZCT res.typ = typ when debugGC: if framePtr != nil and framePtr.prev != nil: res.filename = framePtr.prev.filename res.line = framePtr.prev.line res.refcount = rcZct # refcount is zero, but mark it to be in the ZCT assert(isAllocatedPtr(allocator, res)) # its refcount is zero, so add it to the ZCT: block addToZCT: # we check the last 8 entries (cache line) for a slot # that could be reused var L = gch.zct.len var d = gch.zct.d for i in countdown(L-1, max(0, L-8)): var c = d[i] if c.refcount >=% rcIncrement: c.refcount = c.refcount and not colorMask d[i] = res break addToZCT add(gch.zct, res) when logGC: writeCell("new cell", res) gcTrace(res, csAllocated) release(gch) result = cellToUsr(res) proc newSeq(typ: PNimType, len: int): pointer {.compilerRtl.} = # `newObj` already uses locks, so no need for them here. result = newObj(typ, addInt(mulInt(len, typ.base.size), GenericSeqSize)) cast[PGenericSeq](result).len = len cast[PGenericSeq](result).space = len proc growObj(old: pointer, newsize: int): pointer {.rtl.} = aquire(gch) checkCollection() var ol = usrToCell(old) assert(ol.typ != nil) assert(ol.typ.kind in {tyString, tySequence}) var res = cast[PCell](rawAlloc(allocator, newsize + sizeof(TCell))) var elemSize = 1 if ol.typ.kind != tyString: elemSize = ol.typ.base.size var oldsize = cast[PGenericSeq](old).len*elemSize + GenericSeqSize copyMem(res, ol, oldsize + sizeof(TCell)) zeroMem(cast[pointer](cast[TAddress](res)+% oldsize +% sizeof(TCell)), newsize-oldsize) assert((cast[TAddress](res) and (MemAlign-1)) == 0) assert(res.refcount shr rcShift <=% 1) #if res.refcount <% rcIncrement: # add(gch.zct, res) #else: # XXX: what to do here? # decRef(ol) if (ol.refcount and colorMask) == rcZct: var j = gch.zct.len-1 var d = gch.zct.d while j >= 0: if d[j] == ol: d[j] = res break dec(j) if canBeCycleRoot(ol): excl(gch.cycleRoots, ol) when logGC: writeCell("growObj old cell", ol) writeCell("growObj new cell", res) gcTrace(ol, csZctFreed) gcTrace(res, csAllocated) when reallyDealloc: rawDealloc(allocator, ol) else: assert(ol.typ != nil) zeroMem(ol, sizeof(TCell)) release(gch) result = cellToUsr(res) # ---------------- cycle collector ------------------------------------------- proc doOperation(p: pointer, op: TWalkOp) = if p == nil: return var c: PCell = usrToCell(p) assert(c != nil) case op # faster than function pointers because of easy prediction of waZctDecRef: assert(c.refcount >=% rcIncrement) c.refcount = c.refcount -% rcIncrement when logGC: writeCell("decref (from doOperation)", c) if c.refcount <% rcIncrement: addZCT(gch.zct, c) of waPush: add(gch.tempStack, c) of waCycleDecRef: assert(c.refcount >=% rcIncrement) c.refcount = c.refcount -% rcIncrement # we now use a much simpler and non-recursive algorithm for cycle removal proc collectCycles(gch: var TGcHeap) = var tabSize = 0 for c in elements(gch.cycleRoots): inc(tabSize) forallChildren(c, waCycleDecRef) gch.stat.cycleTableSize = max(gch.stat.cycleTableSize, tabSize) # restore reference counts (a depth-first traversal is needed): var marker: TCellSet Init(marker) for c in elements(gch.cycleRoots): if c.refcount >=% rcIncrement: if not containsOrIncl(marker, c): gch.tempStack.len = 0 forAllChildren(c, waPush) while gch.tempStack.len > 0: dec(gch.tempStack.len) var d = gch.tempStack.d[gch.tempStack.len] d.refcount = d.refcount +% rcIncrement if d in gch.cycleRoots and not containsOrIncl(marker, d): forAllChildren(d, waPush) # remove cycles: for c in elements(gch.cycleRoots): if c.refcount <% rcIncrement: gch.tempStack.len = 0 forAllChildren(c, waPush) while gch.tempStack.len > 0: dec(gch.tempStack.len) var d = gch.tempStack.d[gch.tempStack.len] if d.refcount <% rcIncrement: if d notin gch.cycleRoots: # d is leaf of c and not part of cycle addZCT(gch.zct, d) when logGC: writeCell("add to ZCT (from cycle collector)", d) prepareDealloc(c) gcTrace(c, csCycFreed) when logGC: writeCell("cycle collector dealloc cell", c) when reallyDealloc: rawDealloc(allocator, c) else: assert(c.typ != nil) zeroMem(c, sizeof(TCell)) Deinit(gch.cycleRoots) Init(gch.cycleRoots) proc gcMark(p: pointer) {.inline.} = # the addresses are not as cells on the stack, so turn them to cells: var cell = usrToCell(p) var c = cast[TAddress](cell) if c >% PageSize and (c and (MemAlign-1)) == 0: # fast check: does it look like a cell? if isAllocatedPtr(allocator, cell): # mark the cell: cell.refcount = cell.refcount +% rcIncrement add(gch.decStack, cell) proc markThreadStacks(gch: var TGcHeap) = when hasThreadSupport: nil # ----------------- stack management -------------------------------------- # inspired from Smart Eiffel when defined(sparc): const stackIncreases = false elif defined(hppa) or defined(hp9000) or defined(hp9000s300) or defined(hp9000s700) or defined(hp9000s800) or defined(hp9000s820): const stackIncreases = true else: const stackIncreases = false when not defined(useNimRtl): proc setStackBottom(theStackBottom: pointer) = #c_fprintf(c_stdout, "stack bottom: %p;\n", theStackBottom) # the first init must be the one that defines the stack bottom: if stackBottom == nil: stackBottom = theStackBottom else: var a = cast[TAddress](theStackBottom) # and not PageMask - PageSize*2 var b = cast[TAddress](stackBottom) when stackIncreases: stackBottom = cast[pointer](min(a, b)) else: stackBottom = cast[pointer](max(a, b)) proc stackSize(): int {.noinline.} = var stackTop {.volatile.}: pointer result = abs(cast[int](addr(stackTop)) - cast[int](stackBottom)) when defined(sparc): # For SPARC architecture. proc isOnStack(p: pointer): bool = var stackTop {.volatile.}: pointer var b = cast[TAddress](stackBottom) var a = cast[TAddress](addr(stackTop)) var x = cast[TAddress](p) result = a <=% x and x <=% b proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} = when defined(sparcv9): asm """"flushw \n" """ else: asm """"ta 0x3 ! ST_FLUSH_WINDOWS\n" """ var max = stackBottom sp: PPointer stackTop: array[0..1, pointer] sp = addr(stackTop[0]) # Addresses decrease as the stack grows. while sp <= max: gcMark(sp[]) sp = cast[ppointer](cast[TAddress](sp) +% sizeof(pointer)) elif defined(ELATE): {.error: "stack marking code is to be written for this architecture".} elif stackIncreases: # --------------------------------------------------------------------------- # Generic code for architectures where addresses increase as the stack grows. # --------------------------------------------------------------------------- proc isOnStack(p: pointer): bool = var stackTop {.volatile.}: pointer var a = cast[TAddress](stackBottom) var b = cast[TAddress](addr(stackTop)) var x = cast[TAddress](p) result = a <=% x and x <=% b var jmpbufSize {.importc: "sizeof(jmp_buf)", nodecl.}: int # a little hack to get the size of a TJmpBuf in the generated C code # in a platform independant way proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} = var registers: C_JmpBuf if c_setjmp(registers) == 0'i32: # To fill the C stack with registers. var max = cast[TAddress](stackBottom) var sp = cast[TAddress](addr(registers)) +% jmpbufSize -% sizeof(pointer) # sp will traverse the JMP_BUF as well (jmp_buf size is added, # otherwise sp would be below the registers structure). while sp >=% max: gcMark(cast[ppointer](sp)[]) sp = sp -% sizeof(pointer) else: # --------------------------------------------------------------------------- # Generic code for architectures where addresses decrease as the stack grows. # --------------------------------------------------------------------------- proc isOnStack(p: pointer): bool = var stackTop {.volatile.}: pointer var b = cast[TAddress](stackBottom) var a = cast[TAddress](addr(stackTop)) var x = cast[TAddress](p) result = a <=% x and x <=% b proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} = # We use a jmp_buf buffer that is in the C stack. # Used to traverse the stack and registers assuming # that 'setjmp' will save registers in the C stack. var registers: C_JmpBuf if c_setjmp(registers) == 0'i32: # To fill the C stack with registers. var max = cast[TAddress](stackBottom) var sp = cast[TAddress](addr(registers)) while sp <=% max: gcMark(cast[ppointer](sp)[]) sp = sp +% sizeof(pointer) # ---------------------------------------------------------------------------- # end of non-portable code # ---------------------------------------------------------------------------- proc CollectZCT(gch: var TGcHeap) = # Note: Freeing may add child objects to the ZCT! So essentially we do # deep freeing, which is bad for incremental operation. In order to # avoid a deep stack, we move objects to keep the ZCT small. # This is performance critical! var L = addr(gch.zct.len) while L[] > 0: var c = gch.zct.d[0] # remove from ZCT: assert((c.refcount and colorMask) == rcZct) c.refcount = c.refcount and not colorMask gch.zct.d[0] = gch.zct.d[L[] - 1] dec(L[]) if c.refcount <% rcIncrement: # It may have a RC > 0, if it is in the hardware stack or # it has not been removed yet from the ZCT. This is because # ``incref`` does not bother to remove the cell from the ZCT # as this might be too slow. # In any case, it should be removed from the ZCT. But not # freed. **KEEP THIS IN MIND WHEN MAKING THIS INCREMENTAL!** if canBeCycleRoot(c): excl(gch.cycleRoots, c) when logGC: writeCell("zct dealloc cell", c) gcTrace(c, csZctFreed) # We are about to free the object, call the finalizer BEFORE its # children are deleted as well, because otherwise the finalizer may # access invalid memory. This is done by prepareDealloc(): prepareDealloc(c) forAllChildren(c, waZctDecRef) when reallyDealloc: rawDealloc(allocator, c) else: assert(c.typ != nil) zeroMem(c, sizeof(TCell)) proc unmarkStackAndRegisters(gch: var TGcHeap) = var d = gch.decStack.d for i in 0..gch.decStack.len-1: assert isAllocatedPtr(allocator, d[i]) # decRef(d[i]) inlined: cannot create a cycle var c = d[i] if atomicDec(c.refcount, rcIncrement) <% rcIncrement: rtlAddZCT(c) assert c.typ != nil gch.decStack.len = 0 proc collectCT(gch: var TGcHeap) = if gch.zct.len >= ZctThreshold or (cycleGC and getOccupiedMem() >= cycleThreshold) or stressGC: gch.stat.maxStackSize = max(gch.stat.maxStackSize, stackSize()) assert(gch.decStack.len == 0) markStackAndRegisters(gch) markThreadStacks(gch) gch.stat.maxStackCells = max(gch.stat.maxStackCells, gch.decStack.len) inc(gch.stat.stackScans) collectZCT(gch) when cycleGC: if getOccupiedMem() >= cycleThreshold or stressGC: collectCycles(gch) collectZCT(gch) inc(gch.stat.cycleCollections) cycleThreshold = max(InitialCycleThreshold, getOccupiedMem() * cycleIncrease) gch.stat.maxThreshold = max(gch.stat.maxThreshold, cycleThreshold) unmarkStackAndRegisters(gch) when not defined(useNimRtl): proc GC_disable() = discard atomicInc(recGcLock, 1) proc GC_enable() = if recGcLock > 0: discard atomicDec(recGcLock, 1) proc GC_setStrategy(strategy: TGC_Strategy) = case strategy of gcThroughput: nil of gcResponsiveness: nil of gcOptimizeSpace: nil of gcOptimizeTime: nil proc GC_enableMarkAndSweep() = cycleThreshold = InitialCycleThreshold proc GC_disableMarkAndSweep() = cycleThreshold = high(cycleThreshold)-1 # set to the max value to suppress the cycle detector proc GC_fullCollect() = aquire(gch) var oldThreshold = cycleThreshold cycleThreshold = 0 # forces cycle collection collectCT(gch) cycleThreshold = oldThreshold release(gch) proc GC_getStatistics(): string = GC_disable() result = "[GC] total memory: " & $(getTotalMem()) & "\n" & "[GC] occupied memory: " & $(getOccupiedMem()) & "\n" & "[GC] stack scans: " & $gch.stat.stackScans & "\n" & "[GC] stack cells: " & $gch.stat.maxStackCells & "\n" & "[GC] cycle collections: " & $gch.stat.cycleCollections & "\n" & "[GC] max threshold: " & $gch.stat.maxThreshold & "\n" & "[GC] zct capacity: " & $gch.zct.cap & "\n" & "[GC] max cycle table size: " & $gch.stat.cycleTableSize & "\n" & "[GC] max stack size: " & $gch.stat.maxStackSize when traceGC: writeLeakage() GC_enable()