# # # Nim's Runtime Library # (c) Copyright 2018 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # # Compilerprocs for strings that do not depend on the string implementation. proc cmpStrings(a, b: string): int {.inline, compilerproc.} = let alen = a.len let blen = b.len let minlen = min(alen, blen) if minlen > 0: result = c_memcmp(unsafeAddr a[0], unsafeAddr b[0], cast[csize_t](minlen)) if result == 0: result = alen - blen else: result = alen - blen proc eqStrings(a, b: string): bool {.inline, compilerproc.} = let alen = a.len let blen = b.len if alen == blen: if alen == 0: return true return equalMem(unsafeAddr(a[0]), unsafeAddr(b[0]), alen) proc hashString(s: string): int {.compilerproc.} = # the compiler needs exactly the same hash function! # this used to be used for efficient generation of string case statements var h : uint = 0 for i in 0..len(s)-1: h = h + uint(s[i]) h = h + h shl 10 h = h xor (h shr 6) h = h + h shl 3 h = h xor (h shr 11) h = h + h shl 15 result = cast[int](h) proc addInt*(result: var string; x: int64) = ## Converts integer to its string representation and appends it to `result`. ## ## .. code-block:: Nim ## var ## a = "123" ## b = 45 ## a.addInt(b) # a <- "12345" let base = result.len setLen(result, base + sizeof(x)*4) var i = 0 var y = x while true: var d = y div 10 result[base+i] = chr(abs(int(y - d*10)) + ord('0')) inc(i) y = d if y == 0: break if x < 0: result[base+i] = '-' inc(i) setLen(result, base+i) # mirror the string: for j in 0..i div 2 - 1: swap(result[base+j], result[base+i-j-1]) proc nimIntToStr(x: int): string {.compilerRtl.} = result = newStringOfCap(sizeof(x)*4) result.addInt x proc addCstringN(result: var string, buf: cstring; buflen: int) = # no nimvm support needed, so it doesn't need to be fast here either let oldLen = result.len let newLen = oldLen + buflen result.setLen newLen copyMem(result[oldLen].addr, buf, buflen) import formatfloat proc addFloat*(result: var string; x: float) = ## Converts float to its string representation and appends it to `result`. ## ## .. code-block:: Nim ## var ## a = "123" ## b = 45.67 ## a.addFloat(b) # a <- "12345.67" when nimvm: result.add $x else: var buffer {.noinit.}: array[65, char] let n = writeFloatToBuffer(buffer, x) result.addCstringN(cstring(buffer[0].addr), n) proc nimFloatToStr(f: float): string {.compilerproc.} = result = newStringOfCap(8) result.addFloat f proc c_strtod(buf: cstring, endptr: ptr cstring): float64 {. importc: "strtod", header: "", noSideEffect.} const IdentChars = {'a'..'z', 'A'..'Z', '0'..'9', '_'} powtens = [1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22] when defined(nimHasInvariant): {.push staticBoundChecks: off.} proc nimParseBiggestFloat(s: string, number: var BiggestFloat, start = 0): int {.compilerproc.} = # This routine attempt to parse float that can parsed quickly. # ie whose integer part can fit inside a 53bits integer. # their real exponent must also be <= 22. If the float doesn't follow # these restrictions, transform the float into this form: # INTEGER * 10 ^ exponent and leave the work to standard `strtod()`. # This avoid the problems of decimal character portability. # see: http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/ var i = start sign = 1.0 kdigits, fdigits = 0 exponent = 0 integer = uint64(0) fracExponent = 0 expSign = 1 firstDigit = -1 hasSign = false # Sign? if i < s.len and (s[i] == '+' or s[i] == '-'): hasSign = true if s[i] == '-': sign = -1.0 inc(i) # NaN? if i+2 < s.len and (s[i] == 'N' or s[i] == 'n'): if s[i+1] == 'A' or s[i+1] == 'a': if s[i+2] == 'N' or s[i+2] == 'n': if i+3 >= s.len or s[i+3] notin IdentChars: number = NaN return i+3 - start return 0 # Inf? if i+2 < s.len and (s[i] == 'I' or s[i] == 'i'): if s[i+1] == 'N' or s[i+1] == 'n': if s[i+2] == 'F' or s[i+2] == 'f': if i+3 >= s.len or s[i+3] notin IdentChars: number = Inf*sign return i+3 - start return 0 if i < s.len and s[i] in {'0'..'9'}: firstDigit = (s[i].ord - '0'.ord) # Integer part? while i < s.len and s[i] in {'0'..'9'}: inc(kdigits) integer = integer * 10'u64 + (s[i].ord - '0'.ord).uint64 inc(i) while i < s.len and s[i] == '_': inc(i) # Fractional part? if i < s.len and s[i] == '.': inc(i) # if no integer part, Skip leading zeros if kdigits <= 0: while i < s.len and s[i] == '0': inc(fracExponent) inc(i) while i < s.len and s[i] == '_': inc(i) if firstDigit == -1 and i < s.len and s[i] in {'0'..'9'}: firstDigit = (s[i].ord - '0'.ord) # get fractional part while i < s.len and s[i] in {'0'..'9'}: inc(fdigits) inc(fracExponent) integer = integer * 10'u64 + (s[i].ord - '0'.ord).uint64 inc(i) while i < s.len and s[i] == '_': inc(i) # if has no digits: return error if kdigits + fdigits <= 0 and (i == start or # no char consumed (empty string). (i == start + 1 and hasSign)): # or only '+' or '- return 0 if i+1 < s.len and s[i] in {'e', 'E'}: inc(i) if s[i] == '+' or s[i] == '-': if s[i] == '-': expSign = -1 inc(i) if s[i] notin {'0'..'9'}: return 0 while i < s.len and s[i] in {'0'..'9'}: exponent = exponent * 10 + (ord(s[i]) - ord('0')) inc(i) while i < s.len and s[i] == '_': inc(i) # underscores are allowed and ignored var realExponent = expSign*exponent - fracExponent let expNegative = realExponent < 0 var absExponent = abs(realExponent) # if exponent greater than can be represented: +/- zero or infinity if absExponent > 999: if expNegative: number = 0.0*sign else: number = Inf*sign return i - start # if integer is representable in 53 bits: fast path # max fast path integer is 1<<53 - 1 or 8999999999999999 (16 digits) let digits = kdigits + fdigits if digits <= 15 or (digits <= 16 and firstDigit <= 8): # max float power of ten with set bits above the 53th bit is 10^22 if absExponent <= 22: if expNegative: number = sign * integer.float / powtens[absExponent] else: number = sign * integer.float * powtens[absExponent] return i - start # if exponent is greater try to fit extra exponent above 22 by multiplying # integer part is there is space left. let slop = 15 - kdigits - fdigits if absExponent <= 22 + slop and not expNegative: number = sign * integer.float * powtens[slop] * powtens[absExponent-slop] return i - start # if failed: slow path with strtod. var t: array[500, char] # flaviu says: 325 is the longest reasonable literal var ti = 0 let maxlen = t.high - "e+000".len # reserve enough space for exponent result = i - start i = start # re-parse without error checking, any error should be handled by the code above. if i < s.len and s[i] == '.': i.inc while i < s.len and s[i] in {'0'..'9','+','-'}: if ti < maxlen: t[ti] = s[i]; inc(ti) inc(i) while i < s.len and s[i] in {'.', '_'}: # skip underscore and decimal point inc(i) # insert exponent t[ti] = 'E' inc(ti) t[ti] = if expNegative: '-' else: '+' inc(ti, 4) # insert adjusted exponent t[ti-1] = ('0'.ord + absExponent mod 10).char absExponent = absExponent div 10 t[ti-2] = ('0'.ord + absExponent mod 10).char absExponent = absExponent div 10 t[ti-3] = ('0'.ord + absExponent mod 10).char when defined(nimNoArrayToCstringConversion): number = c_strtod(addr t, nil) else: number = c_strtod(t, nil) when defined(nimHasInvariant): {.pop.} # staticBoundChecks proc nimInt64ToStr(x: int64): string {.compilerRtl.} = result = newStringOfCap(sizeof(x)*4) result.addInt x proc nimBoolToStr(x: bool): string {.compilerRtl.} = return if x: "true" else: "false" proc nimCharToStr(x: char): string {.compilerRtl.} = result = newString(1) result[0] = x proc `$`*(x: uint64): string {.noSideEffect, raises: [].} = ## The stringify operator for an unsigned integer argument. Returns `x` ## converted to a decimal string. if x == 0: result = "0" else: result = newString(60) var i = 0 var n = x while n != 0: let nn = n div 10'u64 result[i] = char(n - 10'u64 * nn + ord('0')) inc i n = nn result.setLen i let half = i div 2 # Reverse for t in 0 .. half-1: swap(result[t], result[i-t-1]) when defined(gcDestructors): proc GC_getStatistics*(): string = result = "[GC] total memory: " result.addInt getTotalMem() result.add "\n[GC] occupied memory: " result.addInt getOccupiedMem() result.add '\n' #"[GC] cycle collections: " & $gch.stat.cycleCollections & "\n" &