# # # Nimrod's Runtime Library # (c) Copyright 2009 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # ## The compiler depends on the System module to work properly and the System ## module depends on the compiler. Most of the routines listed here use ## special compiler magic. ## Each module implicitly imports the System module; it may not be listed ## explicitly. Because of this there cannot be a user-defined module named ## ``system``. {.push hints: off.} type int* {.magic: Int.} ## default integer type; bitwidth depends on ## architecture, but is always the same as a pointer int8* {.magic: Int8.} ## signed 8 bit integer type int16* {.magic: Int16.} ## signed 16 bit integer type int32* {.magic: Int32.} ## signed 32 bit integer type int64* {.magic: Int64.} ## signed 64 bit integer type float* {.magic: Float.} ## default floating point type float32* {.magic: Float32.} ## 32 bit floating point type float64* {.magic: Float64.} ## 64 bit floating point type type # we need to start a new type section here, so that ``0`` can have a type bool* {.magic: Bool.} = enum ## built-in boolean type false = 0, true = 1 type char* {.magic: Char.} ## built-in 8 bit character type (unsigned) string* {.magic: String.} ## built-in string type cstring* {.magic: Cstring.} ## built-in cstring (*compatible string*) type pointer* {.magic: Pointer.} ## built-in pointer type Ordinal* {.magic: Ordinal.}[T] type `nil` {.magic: "Nil".} expr* {.magic: Expr.} ## meta type to denote an expression (for templates) stmt* {.magic: Stmt.} ## meta type to denote a statement (for templates) typeDesc* {.magic: TypeDesc.} ## meta type to denote ## a type description (for templates) proc defined*[T](x: T): bool {.magic: "Defined", noSideEffect.} ## Special comile-time procedure that checks whether `x` is ## defined. `x` has to be an identifier or a qualified identifier. ## This can be used to check whether a library provides a certain ## feature or not: ## ## .. code-block:: Nimrod ## when not defined(strutils.toUpper): ## # provide our own toUpper proc here, because strutils is ## # missing it. proc definedInScope*[T](x: T): bool {. magic: "DefinedInScope", noSideEffect.} ## Special comile-time procedure that checks whether `x` is ## defined in the current scope. `x` has to be an identifier. # these require compiler magic: proc `not` *(x: bool): bool {.magic: "Not", noSideEffect.} ## Boolean not; returns true iff ``x == false``. proc `and`*(x, y: bool): bool {.magic: "And", noSideEffect.} ## Boolean ``and``; returns true iff ``x == y == true``. ## Evaluation is short-circuited: This means that if ``x`` is false, ## ``y`` will not even be evaluated. proc `or`*(x, y: bool): bool {.magic: "Or", noSideEffect.} ## Boolean ``or``; returns true iff ``not (not x and not y)``. ## Evaluation is short-circuited: This means that if ``x`` is true, ## ``y`` will not even be evaluated. proc `xor`*(x, y: bool): bool {.magic: "Xor", noSideEffect.} ## Boolean `exclusive or`; returns true iff ``x != y``. proc new*[T](a: var ref T) {.magic: "New", noSideEffect.} ## creates a new object of type ``T`` and returns a safe (traced) ## reference to it in ``a``. proc new*[T](a: var ref T, finalizer: proc (x: ref T)) {. magic: "NewFinalize", noSideEffect.} ## creates a new object of type ``T`` and returns a safe (traced) ## reference to it in ``a``. When the garbage collector frees the object, ## `finalizer` is called. The `finalizer` may not keep a reference to the ## object pointed to by `x`. The `finalizer` cannot prevent the GC from ## freeing the object. Note: The `finalizer` refers to the type `T`, not to ## the object! This means that for each object of type `T` the finalizer ## will be called! # for low and high the return type T may not be correct, but # we handle that with compiler magic in SemLowHigh() proc high*[T](x: T): T {.magic: "High", noSideEffect.} ## returns the highest possible index of an array, a sequence, a string or ## the highest possible value of an ordinal value `x`. As a special ## semantic rule, `x` may also be a type identifier. proc low*[T](x: T): T {.magic: "Low", noSideEffect.} ## returns the lowest possible index of an array, a sequence, a string or ## the lowest possible value of an ordinal value `x`. As a special ## semantic rule, `x` may also be a type identifier. type range*{.magic: "Range".} [T] ## Generic type to construct range types. array*{.magic: "Array".}[I, T] ## Generic type to construct ## fixed-length arrays. openarray*{.magic: "OpenArray".}[T] ## Generic type to construct open arrays. ## Open arrays are implemented as a ## pointer to the array data and a ## length field. seq*{.magic: "Seq".}[T] ## Generic type to construct sequences. set*{.magic: "Set".}[T] ## Generic type to construct bit sets. when not defined(EcmaScript) and not defined(NimrodVM): type TGenericSeq {.compilerproc, pure.} = object len, space: int PGenericSeq {.exportc.} = ptr TGenericSeq # len and space without counting the terminating zero: NimStringDesc {.compilerproc, final.} = object of TGenericSeq data: array[0..100_000_000, char] NimString = ptr NimStringDesc include "system/hti" type Byte* = Int8 ## this is an alias for ``int8``, that is a signed ## int 8 bits wide. Natural* = range[0..high(int)] ## is an int type ranging from zero to the maximum value ## of an int. This type is often useful for documentation and debugging. Positive* = range[1..high(int)] ## is an int type ranging from one to the maximum value ## of an int. This type is often useful for documentation and debugging. TObject* {.exportc: "TNimObject".} = object ## the root of Nimrod's object hierarchy. Objects should ## inherit from TObject or one of its descendants. However, ## objects that have no ancestor are allowed. PObject* = ref TObject ## reference to TObject E_Base* {.compilerproc.} = object of TObject ## base exception class; ## each exception has to ## inherit from `E_Base`. name*: cstring ## The exception's name is its Nimrod identifier. ## This field is filled automatically in the ## ``raise`` statement. msg* {.exportc: "message".}: cstring ## the exception's message. Not ## providing an ## exception message is bad style. EAsynch* = object of E_Base ## Abstract exception class for ## *asynchronous exceptions* (interrupts). ## This is rarely needed: Most ## exception types inherit from `ESynch` ESynch* = object of E_Base ## Abstract exception class for ## *synchronous exceptions*. Most exceptions ## should be inherited (directly or indirectly) ## from ESynch. ESystem* = object of ESynch ## Abstract class for exceptions that the runtime ## system raises. EIO* = object of ESystem ## raised if an IO error occured. EOS* = object of ESystem ## raised if an operating system service failed. EInvalidLibrary* = object of EOS ## raised if a dynamic library ## could not be loaded. ERessourceExhausted* = object of ESystem ## raised if a ressource request ## could not be fullfilled. EArithmetic* = object of ESynch ## raised if any kind of arithmetic ## error occured. EDivByZero* {.compilerproc.} = object of EArithmetic ## is the exception class for integer divide-by-zero ## errors. EOverflow* {.compilerproc.} = object of EArithmetic ## is the exception class for integer calculations ## whose results are too large to fit in the ## provided bits. EAccessViolation* {.compilerproc.} = object of ESynch ## the exception class for invalid memory access errors EAssertionFailed* {.compilerproc.} = object of ESynch ## is the exception class for Assert ## procedures that is raised if the ## assertion proves wrong EControlC* = object of EAsynch ## is the exception class for Ctrl+C ## key presses in console applications. EInvalidValue* = object of ESynch ## is the exception class for string ## and object conversion errors. EOutOfMemory* = object of ESystem ## is the exception class for ## unsuccessful attempts to allocate ## memory. EInvalidIndex* = object of ESynch ## is raised if an array index is out ## of bounds. EInvalidField* = object of ESynch ## is raised if a record field is not ## accessible because its dicriminant's ## value does not fit. EOutOfRange* = object of ESynch ## is raised if a range check error ## occured. EStackOverflow* = object of ESystem ## is raised if the hardware stack ## used for subroutine calls overflowed. ENoExceptionToReraise* = object of ESynch ## is raised if there is no ## exception to reraise. EInvalidObjectAssignment* = object of ESynch ## is raised if an object gets assigned to its ## farther's object. EInvalidObjectConversion* = object of ESynch ## is raised if an object is converted to an incompatible ## object type. TResult* = enum Failure, Success proc sizeof*[T](x: T): natural {.magic: "SizeOf", noSideEffect.} ## returns the size of ``x`` in bytes. Since this is a low-level proc, ## its usage is discouraged - using ``new`` for the most cases suffices ## that one never needs to know ``x``'s size. As a special semantic rule, ## ``x`` may also be a type identifier (``sizeof(int)`` is valid). proc succ*[T](x: ordinal[T], y = 1): T {.magic: "Succ", noSideEffect.} ## returns the ``y``-th successor of the value ``x``. ``T`` has to be ## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised ## or a compile time error occurs. proc pred*[T](x: ordinal[T], y = 1): T {.magic: "Pred", noSideEffect.} ## returns the ``y``-th predecessor of the value ``x``. ``T`` has to be ## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised ## or a compile time error occurs. proc inc*[T](x: var ordinal[T], y = 1) {.magic: "Inc", noSideEffect.} ## increments the ordinal ``x`` by ``y``. If such a value does not ## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a ## short notation for: ``x = succ(x, y)``. proc dec*[T](x: var ordinal[T], y = 1) {.magic: "Dec", noSideEffect.} ## decrements the ordinal ``x`` by ``y``. If such a value does not ## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a ## short notation for: ``x = pred(x, y)``. proc newSeq*[T](s: var seq[T], len: int) {.magic: "NewSeq", noSideEffect.} ## creates a new sequence of type ``seq[T]`` with length ``len``. ## This is equivalent to ``s = @[]; setlen(s, len)``, but more ## efficient since no reallocation is needed. proc len*[T](x: openarray[T]): int {.magic: "LengthOpenArray", noSideEffect.} proc len*(x: string): int {.magic: "LengthStr", noSideEffect.} proc len*(x: cstring): int {.magic: "LengthStr", noSideEffect.} proc len*[I, T](x: array[I, T]): int {.magic: "LengthArray", noSideEffect.} proc len*[T](x: seq[T]): int {.magic: "LengthSeq", noSideEffect.} ## returns the length of an array, a sequence or a string. ## This is rougly the same as ``high(T)-low(T)+1``, but its resulting type is ## always an int. # set routines: proc incl*[T](x: var set[T], y: T) {.magic: "Incl", noSideEffect.} ## includes element ``y`` to the set ``x``. This is the same as ## ``x = x + {y}``, but it might be more efficient. proc excl*[T](x: var set[T], y: T) {.magic: "Excl", noSideEffect.} ## excludes element ``y`` to the set ``x``. This is the same as ## ``x = x - {y}``, but it might be more efficient. proc card*[T](x: set[T]): int {.magic: "Card", noSideEffect.} ## returns the cardinality of the set ``x``, i.e. the number of elements ## in the set. proc ord*[T](x: T): int {.magic: "Ord", noSideEffect.} ## returns the internal int value of an ordinal value ``x``. proc chr*(u: range[0..255]): char {.magic: "Chr", noSideEffect.} ## converts an int in the range 0..255 to a character. # -------------------------------------------------------------------------- # built-in operators proc ze*(x: int8): int {.magic: "Ze8ToI", noSideEffect.} ## zero extends a smaller integer type to ``int``. This treats `x` as ## unsigned. proc ze*(x: int16): int {.magic: "Ze16ToI", noSideEffect.} ## zero extends a smaller integer type to ``int``. This treats `x` as ## unsigned. proc ze64*(x: int8): int64 {.magic: "Ze8ToI64", noSideEffect.} ## zero extends a smaller integer type to ``int64``. This treats `x` as ## unsigned. proc ze64*(x: int16): int64 {.magic: "Ze16ToI64", noSideEffect.} ## zero extends a smaller integer type to ``int64``. This treats `x` as ## unsigned. proc ze64*(x: int32): int64 {.magic: "Ze32ToI64", noSideEffect.} ## zero extends a smaller integer type to ``int64``. This treats `x` as ## unsigned. proc ze64*(x: int): int64 {.magic: "ZeIToI64", noDecl, noSideEffect.} ## zero extends a smaller integer type to ``int64``. This treats `x` as ## unsigned. Does nothing if the size of an ``int`` is the same as ``int64``. ## (This is the case on 64 bit processors.) proc toU8*(x: int): int8 {.magic: "ToU8", noSideEffect.} ## treats `x` as unsigned and converts it to a byte by taking the last 8 bits ## from `x`. proc toU16*(x: int): int16 {.magic: "ToU16", noSideEffect.} ## treats `x` as unsigned and converts it to an ``int16`` by taking the last ## 16 bits from `x`. proc toU32*(x: int64): int32 {.magic: "ToU32", noSideEffect.} ## treats `x` as unsigned and converts it to an ``int32`` by taking the ## last 32 bits from `x`. # integer calculations: proc `+` *(x: int): int {.magic: "UnaryPlusI", noSideEffect.} proc `+` *(x: int8): int8 {.magic: "UnaryPlusI", noSideEffect.} proc `+` *(x: int16): int16 {.magic: "UnaryPlusI", noSideEffect.} proc `+` *(x: int32): int32 {.magic: "UnaryPlusI", noSideEffect.} proc `+` *(x: int64): int64 {.magic: "UnaryPlusI64", noSideEffect.} ## Unary `+` operator for an integer. Has no effect. proc `-` *(x: int): int {.magic: "UnaryMinusI", noSideEffect.} proc `-` *(x: int8): int8 {.magic: "UnaryMinusI", noSideEffect.} proc `-` *(x: int16): int16 {.magic: "UnaryMinusI", noSideEffect.} proc `-` *(x: int32): int32 {.magic: "UnaryMinusI", noSideEffect.} proc `-` *(x: int64): int64 {.magic: "UnaryMinusI64", noSideEffect.} ## Unary `-` operator for an integer. Negates `x`. proc `not` *(x: int): int {.magic: "BitnotI", noSideEffect.} proc `not` *(x: int8): int8 {.magic: "BitnotI", noSideEffect.} proc `not` *(x: int16): int16 {.magic: "BitnotI", noSideEffect.} proc `not` *(x: int32): int32 {.magic: "BitnotI", noSideEffect.} proc `not` *(x: int64): int64 {.magic: "BitnotI64", noSideEffect.} ## computes the `bitwise complement` of the integer `x`. proc `+` *(x, y: int): int {.magic: "AddI", noSideEffect.} proc `+` *(x, y: int8): int8 {.magic: "AddI", noSideEffect.} proc `+` *(x, y: int16): int16 {.magic: "AddI", noSideEffect.} proc `+` *(x, y: int32): int32 {.magic: "AddI", noSideEffect.} proc `+` *(x, y: int64): int64 {.magic: "AddI64", noSideEffect.} ## Binary `+` operator for an integer. proc `-` *(x, y: int): int {.magic: "SubI", noSideEffect.} proc `-` *(x, y: int8): int8 {.magic: "SubI", noSideEffect.} proc `-` *(x, y: int16): int16 {.magic: "SubI", noSideEffect.} proc `-` *(x, y: int32): int32 {.magic: "SubI", noSideEffect.} proc `-` *(x, y: int64): int64 {.magic: "SubI64", noSideEffect.} ## Binary `-` operator for an integer. proc `*` *(x, y: int): int {.magic: "MulI", noSideEffect.} proc `*` *(x, y: int8): int8 {.magic: "MulI", noSideEffect.} proc `*` *(x, y: int16): int16 {.magic: "MulI", noSideEffect.} proc `*` *(x, y: int32): int32 {.magic: "MulI", noSideEffect.} proc `*` *(x, y: int64): int64 {.magic: "MulI64", noSideEffect.} ## Binary `*` operator for an integer. proc `div` *(x, y: int): int {.magic: "DivI", noSideEffect.} proc `div` *(x, y: int8): int8 {.magic: "DivI", noSideEffect.} proc `div` *(x, y: int16): int16 {.magic: "DivI", noSideEffect.} proc `div` *(x, y: int32): int32 {.magic: "DivI", noSideEffect.} proc `div` *(x, y: int64): int64 {.magic: "DivI64", noSideEffect.} ## computes the integer division. This is roughly the same as ## ``floor(x/y)``. proc `mod` *(x, y: int): int {.magic: "ModI", noSideEffect.} proc `mod` *(x, y: int8): int8 {.magic: "ModI", noSideEffect.} proc `mod` *(x, y: int16): int16 {.magic: "ModI", noSideEffect.} proc `mod` *(x, y: int32): int32 {.magic: "ModI", noSideEffect.} proc `mod` *(x, y: int64): int64 {.magic: "ModI64", noSideEffect.} ## computes the integer modulo operation. This is the same as ## ``x - (x div y) * y``. proc `shr` *(x, y: int): int {.magic: "ShrI", noSideEffect.} proc `shr` *(x, y: int8): int8 {.magic: "ShrI", noSideEffect.} proc `shr` *(x, y: int16): int16 {.magic: "ShrI", noSideEffect.} proc `shr` *(x, y: int32): int32 {.magic: "ShrI", noSideEffect.} proc `shr` *(x, y: int64): int64 {.magic: "ShrI64", noSideEffect.} ## computes the `shift right` operation of `x` and `y`. proc `shl` *(x, y: int): int {.magic: "ShlI", noSideEffect.} proc `shl` *(x, y: int8): int8 {.magic: "ShlI", noSideEffect.} proc `shl` *(x, y: int16): int16 {.magic: "ShlI", noSideEffect.} proc `shl` *(x, y: int32): int32 {.magic: "ShlI", noSideEffect.} proc `shl` *(x, y: int64): int64 {.magic: "ShlI64", noSideEffect.} ## computes the `shift left` operation of `x` and `y`. proc `and` *(x, y: int): int {.magic: "BitandI", noSideEffect.} proc `and` *(x, y: int8): int8 {.magic: "BitandI", noSideEffect.} proc `and` *(x, y: int16): int16 {.magic: "BitandI", noSideEffect.} proc `and` *(x, y: int32): int32 {.magic: "BitandI", noSideEffect.} proc `and` *(x, y: int64): int64 {.magic: "BitandI64", noSideEffect.} ## computes the `bitwise and` of numbers `x` and `y`. proc `or` *(x, y: int): int {.magic: "BitorI", noSideEffect.} proc `or` *(x, y: int8): int8 {.magic: "BitorI", noSideEffect.} proc `or` *(x, y: int16): int16 {.magic: "BitorI", noSideEffect.} proc `or` *(x, y: int32): int32 {.magic: "BitorI", noSideEffect.} proc `or` *(x, y: int64): int64 {.magic: "BitorI64", noSideEffect.} ## computes the `bitwise or` of numbers `x` and `y`. proc `xor` *(x, y: int): int {.magic: "BitxorI", noSideEffect.} proc `xor` *(x, y: int8): int8 {.magic: "BitxorI", noSideEffect.} proc `xor` *(x, y: int16): int16 {.magic: "BitxorI", noSideEffect.} proc `xor` *(x, y: int32): int32 {.magic: "BitxorI", noSideEffect.} proc `xor` *(x, y: int64): int64 {.magic: "BitxorI64", noSideEffect.} ## computes the `bitwise xor` of numbers `x` and `y`. proc `==` *(x, y: int): bool {.magic: "EqI", noSideEffect.} proc `==` *(x, y: int8): bool {.magic: "EqI", noSideEffect.} proc `==` *(x, y: int16): bool {.magic: "EqI", noSideEffect.} proc `==` *(x, y: int32): bool {.magic: "EqI", noSideEffect.} proc `==` *(x, y: int64): bool {.magic: "EqI64", noSideEffect.} ## Compares two integers for equality. proc `<=` *(x, y: int): bool {.magic: "LeI", noSideEffect.} proc `<=` *(x, y: int8): bool {.magic: "LeI", noSideEffect.} proc `<=` *(x, y: int16): bool {.magic: "LeI", noSideEffect.} proc `<=` *(x, y: int32): bool {.magic: "LeI", noSideEffect.} proc `<=` *(x, y: int64): bool {.magic: "LeI64", noSideEffect.} ## Returns true iff `x` is less than or equal to `y`. proc `<` *(x, y: int): bool {.magic: "LtI", noSideEffect.} proc `<` *(x, y: int8): bool {.magic: "LtI", noSideEffect.} proc `<` *(x, y: int16): bool {.magic: "LtI", noSideEffect.} proc `<` *(x, y: int32): bool {.magic: "LtI", noSideEffect.} proc `<` *(x, y: int64): bool {.magic: "LtI64", noSideEffect.} ## Returns true iff `x` is less than `y`. proc abs*(x: int): int {.magic: "AbsI", noSideEffect.} proc abs*(x: int8): int8 {.magic: "AbsI", noSideEffect.} proc abs*(x: int16): int16 {.magic: "AbsI", noSideEffect.} proc abs*(x: int32): int32 {.magic: "AbsI", noSideEffect.} proc abs*(x: int64): int64 {.magic: "AbsI64", noSideEffect.} ## returns the absolute value of `x`. If `x` is ``low(x)`` (that ## is -MININT for its type), an overflow exception is thrown (if overflow ## checking is turned on). proc `+%` *(x, y: int): int {.magic: "AddU", noSideEffect.} proc `+%` *(x, y: int8): int8 {.magic: "AddU", noSideEffect.} proc `+%` *(x, y: int16): int16 {.magic: "AddU", noSideEffect.} proc `+%` *(x, y: int32): int32 {.magic: "AddU", noSideEffect.} proc `+%` *(x, y: int64): int64 {.magic: "AddU64", noSideEffect.} ## treats `x` and `y` as unsigned and adds them. The result is truncated to ## fit into the result. This implements modulo arithmetic. No overflow ## errors are possible. proc `-%` *(x, y: int): int {.magic: "SubU", noSideEffect.} proc `-%` *(x, y: int8): int8 {.magic: "SubU", noSideEffect.} proc `-%` *(x, y: int16): int16 {.magic: "SubU", noSideEffect.} proc `-%` *(x, y: int32): int32 {.magic: "SubU", noSideEffect.} proc `-%` *(x, y: int64): int64 {.magic: "SubU64", noSideEffect.} ## treats `x` and `y` as unsigned and subtracts them. The result is ## truncated to fit into the result. This implements modulo arithmetic. ## No overflow errors are possible. proc `*%` *(x, y: int): int {.magic: "MulU", noSideEffect.} proc `*%` *(x, y: int8): int8 {.magic: "MulU", noSideEffect.} proc `*%` *(x, y: int16): int16 {.magic: "MulU", noSideEffect.} proc `*%` *(x, y: int32): int32 {.magic: "MulU", noSideEffect.} proc `*%` *(x, y: int64): int64 {.magic: "MulU64", noSideEffect.} ## treats `x` and `y` as unsigned and multiplies them. The result is ## truncated to fit into the result. This implements modulo arithmetic. ## No overflow errors are possible. proc `/%` *(x, y: int): int {.magic: "DivU", noSideEffect.} proc `/%` *(x, y: int8): int8 {.magic: "DivU", noSideEffect.} proc `/%` *(x, y: int16): int16 {.magic: "DivU", noSideEffect.} proc `/%` *(x, y: int32): int32 {.magic: "DivU", noSideEffect.} proc `/%` *(x, y: int64): int64 {.magic: "DivU64", noSideEffect.} ## treats `x` and `y` as unsigned and divides them. The result is ## truncated to fit into the result. This implements modulo arithmetic. ## No overflow errors are possible. proc `%%` *(x, y: int): int {.magic: "ModU", noSideEffect.} proc `%%` *(x, y: int8): int8 {.magic: "ModU", noSideEffect.} proc `%%` *(x, y: int16): int16 {.magic: "ModU", noSideEffect.} proc `%%` *(x, y: int32): int32 {.magic: "ModU", noSideEffect.} proc `%%` *(x, y: int64): int64 {.magic: "ModU64", noSideEffect.} ## treats `x` and `y` as unsigned and compute the modulo of `x` and `y`. ## The result is truncated to fit into the result. ## This implements modulo arithmetic. ## No overflow errors are possible. proc `<=%` *(x, y: int): bool {.magic: "LeU", noSideEffect.} proc `<=%` *(x, y: int8): bool {.magic: "LeU", noSideEffect.} proc `<=%` *(x, y: int16): bool {.magic: "LeU", noSideEffect.} proc `<=%` *(x, y: int32): bool {.magic: "LeU", noSideEffect.} proc `<=%` *(x, y: int64): bool {.magic: "LeU64", noSideEffect.} ## treats `x` and `y` as unsigned and compares them. ## Returns true iff ``unsigned(x) <= unsigned(y)``. proc `<%` *(x, y: int): bool {.magic: "LtU", noSideEffect.} proc `<%` *(x, y: int8): bool {.magic: "LtU", noSideEffect.} proc `<%` *(x, y: int16): bool {.magic: "LtU", noSideEffect.} proc `<%` *(x, y: int32): bool {.magic: "LtU", noSideEffect.} proc `<%` *(x, y: int64): bool {.magic: "LtU64", noSideEffect.} ## treats `x` and `y` as unsigned and compares them. ## Returns true iff ``unsigned(x) < unsigned(y)``. # floating point operations: proc `+` *(x: float): float {.magic: "UnaryPlusF64", noSideEffect.} proc `-` *(x: float): float {.magic: "UnaryMinusF64", noSideEffect.} proc `+` *(x, y: float): float {.magic: "AddF64", noSideEffect.} proc `-` *(x, y: float): float {.magic: "SubF64", noSideEffect.} proc `*` *(x, y: float): float {.magic: "MulF64", noSideEffect.} proc `/` *(x, y: float): float {.magic: "DivF64", noSideEffect.} ## computes the floating point division proc `==` *(x, y: float): bool {.magic: "EqF64", noSideEffect.} proc `<=` *(x, y: float): bool {.magic: "LeF64", noSideEffect.} proc `<` *(x, y: float): bool {.magic: "LtF64", noSideEffect.} proc abs*(x: float): float {.magic: "AbsF64", noSideEffect.} proc min*(x, y: float): float {.magic: "MinF64", noSideEffect.} proc max*(x, y: float): float {.magic: "MaxF64", noSideEffect.} # set operators proc `*` *[T](x, y: set[T]): set[T] {.magic: "MulSet", noSideEffect.} ## This operator computes the intersection of two sets. proc `+` *[T](x, y: set[T]): set[T] {.magic: "PlusSet", noSideEffect.} ## This operator computes the union of two sets. proc `-` *[T](x, y: set[T]): set[T] {.magic: "MinusSet", noSideEffect.} ## This operator computes the difference of two sets. proc `-+-` *[T](x, y: set[T]): set[T] {.magic: "SymDiffSet", noSideEffect.} ## computes the symmetric set difference. This is the same as ## ``(A - B) + (B - A)``, but more efficient. # comparison operators: proc `==` *[T](x, y: ordinal[T]): bool {.magic: "EqEnum", noSideEffect.} proc `==` *(x, y: pointer): bool {.magic: "EqRef", noSideEffect.} proc `==` *(x, y: string): bool {.magic: "EqStr", noSideEffect.} proc `==` *(x, y: cstring): bool {.magic: "EqCString", noSideEffect.} proc `==` *(x, y: char): bool {.magic: "EqCh", noSideEffect.} proc `==` *(x, y: bool): bool {.magic: "EqB", noSideEffect.} proc `==` *[T](x, y: set[T]): bool {.magic: "EqSet", noSideEffect.} proc `==` *[T](x, y: ref T): bool {.magic: "EqRef", noSideEffect.} proc `==` *[T](x, y: ptr T): bool {.magic: "EqRef", noSideEffect.} proc `<=` *[T](x, y: ordinal[T]): bool {.magic: "LeEnum", noSideEffect.} proc `<=` *(x, y: string): bool {.magic: "LeStr", noSideEffect.} proc `<=` *(x, y: char): bool {.magic: "LeCh", noSideEffect.} proc `<=` *[T](x, y: set[T]): bool {.magic: "LeSet", noSideEffect.} proc `<=` *(x, y: bool): bool {.magic: "LeB", noSideEffect.} proc `<=` *[T](x, y: ref T): bool {.magic: "LePtr", noSideEffect.} proc `<=` *(x, y: pointer): bool {.magic: "LePtr", noSideEffect.} proc `<` *[T](x, y: ordinal[T]): bool {.magic: "LtEnum", noSideEffect.} proc `<` *(x, y: string): bool {.magic: "LtStr", noSideEffect.} proc `<` *(x, y: char): bool {.magic: "LtCh", noSideEffect.} proc `<` *[T](x, y: set[T]): bool {.magic: "LtSet", noSideEffect.} proc `<` *(x, y: bool): bool {.magic: "LtB", noSideEffect.} proc `<` *[T](x, y: ref T): bool {.magic: "LtPtr", noSideEffect.} proc `<` *[T](x, y: ptr T): bool {.magic: "LtPtr", noSideEffect.} proc `<` *(x, y: pointer): bool {.magic: "LtPtr", noSideEffect.} template `!=` * (x, y: expr): expr = ## unequals operator. This is a shorthand for ``not (x == y)``. not (x == y) template `>=` * (x, y: expr): expr = ## "is greater or equals" operator. This is the same as ``y <= x``. y <= x template `>` * (x, y: expr): expr = ## "is greater" operator. This is the same as ``y < x``. y < x proc contains*[T](x: set[T], y: T): bool {.magic: "InSet", noSideEffect.} ## One should overload this proc if one wants to overload the ``in`` operator. ## The parameters are in reverse order! ``a in b`` is a template for ## ``contains(b, a)``. ## This is because the unification algorithm that Nimrod uses for overload ## resolution works from left to right. ## But for the ``in`` operator that would be the wrong direction for this ## piece of code: ## ## .. code-block:: Nimrod ## var s: set[range['a'..'z']] = {'a'..'c'} ## writeln(stdout, 'b' in s) ## ## If ``in`` had been declared as ``[T](elem: T, s: set[T])`` then ``T`` would ## have been bound to ``char``. But ``s`` is not compatible to type ## ``set[char]``! The solution is to bind ``T`` to ``range['a'..'z']``. This ## is achieved by reversing the parameters for ``contains``; ``in`` then ## passes its arguments in reverse order. template `in` * (x, y: expr): expr = contains(y, x) template `not_in` * (x, y: expr): expr = not contains(y, x) proc `is` *[T, S](x: T, y: S): bool {.magic: "Is", noSideEffect.} template `is_not` *(x, y: expr): expr = not (x is y) proc cmp*[T, S: typeDesc](x: T, y: S): int = ## Generic compare proc. Returns a value < 0 iff x < y, a value > 0 iff x > y ## and 0 iff x == y. This is useful for writing generic algorithms without ## performance loss. This generic implementation uses the `==` and `<` ## operators. if x == y: return 0 if x < y: return -1 return 1 proc cmp*(x, y: string): int {.noSideEffect.} ## Compare proc for strings. More efficient than the generic version. proc `@` * [IDX, T](a: array[IDX, T]): seq[T] {. magic: "ArrToSeq", nosideeffect.} ## turns an array into a sequence. This most often useful for constructing ## sequences with the array constructor: ``@[1, 2, 3]`` has the type ## ``seq[int]``, while ``[1, 2, 3]`` has the type ``array[0..2, int]``. proc setLen*[T](s: var seq[T], newlen: int) {. magic: "SetLengthSeq", noSideEffect.} ## sets the length of `s` to `newlen`. ## ``T`` may be any sequence type. ## If the current length is greater than the new length, ## ``s`` will be truncated. proc setLen*(s: var string, newlen: int) {. magic: "SetLengthStr", noSideEffect.} ## sets the length of `s` to `newlen`. ## If the current length is greater than the new length, ## ``s`` will be truncated. proc newString*(len: int): string {. magic: "NewString", importc: "mnewString", noSideEffect.} ## returns a new string of length ``len`` but with uninitialized ## content. One needs to fill the string character after character ## with the index operator ``s[i]``. This procedure exists only for ## optimization purposes; the same effect can be achieved with the ## ``&`` operator. # concat operator: proc `&` * (x: string, y: char): string {. magic: "ConStrStr", noSideEffect, merge.} proc `&` * (x: char, y: char): string {. magic: "ConStrStr", noSideEffect, merge.} proc `&` * (x, y: string): string {. magic: "ConStrStr", noSideEffect, merge.} proc `&` * (x: char, y: string): string {. magic: "ConStrStr", noSideEffect, merge.} ## is the `concatenation operator`. It concatenates `x` and `y`. proc add*(x: var string, y: char) {.magic: "AppendStrCh", noSideEffect.} proc add*(x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.} when not defined(ECMAScript): {.push overflow_checks:off} proc add* (x: var string, y: cstring) = var i = 0 while y[i] != '\0': add(x, y[i]) inc(i) {.pop.} else: proc add* (x: var string, y: cstring) {.pure.} = asm """ var len = `x`[0].length-1; for (var i = 0; i < `y`.length; ++i) { `x`[0][len] = `y`.charCodeAt(i); ++len; } `x`[0][len] = 0 """ proc add *[T](x: var seq[T], y: T) {.magic: "AppendSeqElem", noSideEffect.} proc add *[T](x: var seq[T], y: openArray[T]) {.noSideEffect.} = ## Generic proc for adding a data item `y` to a container `x`. ## For containers that have an order, `add` means *append*. New generic ## containers should also call their adding proc `add` for consistency. ## Generic code becomes much easier to write if the Nimrod naming scheme is ## respected. var xl = x.len setLen(x, xl + y.len) for i in 0..high(y): x[xl+i] = y[i] proc repr*[T](x: T): string {.magic: "Repr", noSideEffect.} ## takes any Nimrod variable and returns its string representation. It ## works even for complex data graphs with cycles. This is a great ## debugging tool. type TAddress* = int ## is the signed integer type that should be used for converting ## pointers to integer addresses for readability. type BiggestInt* = int64 ## is an alias for the biggest signed integer type the Nimrod compiler ## supports. Currently this is ``int64``, but it is platform-dependant ## in general. BiggestFloat* = float64 ## is an alias for the biggest floating point type the Nimrod ## compiler supports. Currently this is ``float64``, but it is ## platform-dependant in general. type # these work for most platforms: cchar* {.importc: "char", nodecl.} = char ## This is the same as the type ``char`` in *C*. cschar* {.importc: "signed char", nodecl.} = byte ## This is the same as the type ``signed char`` in *C*. cshort* {.importc: "short", nodecl.} = int16 ## This is the same as the type ``short`` in *C*. cint* {.importc: "int", nodecl.} = int32 ## This is the same as the type ``int`` in *C*. clong* {.importc: "long", nodecl.} = int ## This is the same as the type ``long`` in *C*. clonglong* {.importc: "long long", nodecl.} = int64 ## This is the same as the type ``long long`` in *C*. cfloat* {.importc: "float", nodecl.} = float32 ## This is the same as the type ``float`` in *C*. cdouble* {.importc: "double", nodecl.} = float64 ## This is the same as the type ``double`` in *C*. clongdouble* {.importc: "long double", nodecl.} = BiggestFloat ## This is the same as the type ``long double`` in *C*. ## This C type is not supported by Nimrod's code generator cstringArray* {.importc: "char**", nodecl.} = ptr array [0..50_000, cstring] ## This is binary compatible to the type ``char**`` in *C*. The array's ## high value is large enough to disable bounds checking in practice. TEndian* = enum ## is a type describing the endianness of a processor. littleEndian, bigEndian PFloat32* = ptr Float32 ## an alias for ``ptr float32`` PFloat64* = ptr Float64 ## an alias for ``ptr float64`` PInt64* = ptr Int64 ## an alias for ``ptr int64`` PInt32* = ptr Int32 ## an alias for ``ptr int32`` const isMainModule* {.magic: "IsMainModule".}: bool = false ## is true only when accessed in the main module. This works thanks to ## compiler magic. It is useful to embed testing code in a module. CompileDate* {.magic: "CompileDate"}: string = "0000-00-00" ## is the date of compilation as a string of the form ## ``YYYY-MM-DD``. This works thanks to compiler magic. CompileTime* {.magic: "CompileTime"}: string = "00:00:00" ## is the time of compilation as a string of the form ## ``HH:MM:SS``. This works thanks to compiler magic. NimrodVersion* {.magic: "NimrodVersion"}: string = "0.0.0" ## is the version of Nimrod as a string. ## This works thanks to compiler magic. NimrodMajor* {.magic: "NimrodMajor"}: int = 0 ## is the major number of Nimrod's version. ## This works thanks to compiler magic. NimrodMinor* {.magic: "NimrodMinor"}: int = 0 ## is the minor number of Nimrod's version. ## This works thanks to compiler magic. NimrodPatch* {.magic: "NimrodPatch"}: int = 0 ## is the patch number of Nimrod's version. ## This works thanks to compiler magic. cpuEndian* {.magic: "CpuEndian"}: TEndian = littleEndian ## is the endianness of the target CPU. This is a valuable piece of ## information for low-level code only. This works thanks to compiler magic. hostOS* {.magic: "HostOS"}: string = "" ## a string that describes the host operating system. Possible values: ## "windows", "macosx", "linux", "netbsd", "freebsd", "openbsd", "solaris", ## "aix" hostCPU* {.magic: "HostCPU"}: string = "" ## a string that describes the host CPU. Possible values: ## "i386", "alpha", "powerpc", "sparc", "amd64", "mips", "arm" proc toFloat*(i: int): float {. magic: "ToFloat", noSideEffect, importc: "toFloat".} ## converts an integer `i` into a ``float``. If the conversion ## fails, `EInvalidValue` is raised. However, on most platforms the ## conversion cannot fail. proc toBiggestFloat*(i: biggestint): biggestfloat {. magic: "ToBiggestFloat", noSideEffect, importc: "toBiggestFloat".} ## converts an biggestint `i` into a ``biggestfloat``. If the conversion ## fails, `EInvalidValue` is raised. However, on most platforms the ## conversion cannot fail. proc toInt*(f: float): int {. magic: "ToInt", noSideEffect, importc: "toInt".} ## converts a floating point number `f` into an ``int``. Conversion ## rounds `f` if it does not contain an integer value. If the conversion ## fails (because `f` is infinite for example), `EInvalidValue` is raised. proc toBiggestInt*(f: biggestfloat): biggestint {. magic: "ToBiggestInt", noSideEffect, importc: "toBiggestInt".} ## converts a biggestfloat `f` into a ``biggestint``. Conversion ## rounds `f` if it does not contain an integer value. If the conversion ## fails (because `f` is infinite for example), `EInvalidValue` is raised. proc addQuitProc*(QuitProc: proc {.noconv.}) {.importc: "atexit", nodecl.} ## adds/registers a quit procedure. Each call to ``addQuitProc`` ## registers another quit procedure. Up to 30 procedures can be ## registered. They are executed on a last-in, first-out basis ## (that is, the last function registered is the first to be executed). ## ``addQuitProc`` raises an EOutOfIndex if ``quitProc`` cannot be ## registered. # Support for addQuitProc() is done by Ansi C's facilities here. # In case of an unhandled exeption the exit handlers should # not be called explicitly! The user may decide to do this manually though. proc copy*(s: string, first = 0): string {. magic: "CopyStr", importc: "copyStr", noSideEffect.} proc copy*(s: string, first, last: int): string {. magic: "CopyStrLast", importc: "copyStrLast", noSideEffect.} ## copies a slice of `s` into a new string and returns this new ## string. The bounds `first` and `last` denote the indices of ## the first and last characters that shall be copied. If ``last`` ## is omitted, it is treated as ``high(s)``. proc zeroMem*(p: Pointer, size: int) {.importc, noDecl.} ## overwrites the contents of the memory at ``p`` with the value 0. ## Exactly ``size`` bytes will be overwritten. Like any procedure ## dealing with raw memory this is *unsafe*. proc copyMem*(dest, source: Pointer, size: int) {.importc: "memcpy", noDecl.} ## copies the contents from the memory at ``source`` to the memory ## at ``dest``. Exactly ``size`` bytes will be copied. The memory ## regions may not overlap. Like any procedure dealing with raw ## memory this is *unsafe*. proc moveMem*(dest, source: Pointer, size: int) {.importc: "memmove", noDecl.} ## copies the contents from the memory at ``source`` to the memory ## at ``dest``. Exactly ``size`` bytes will be copied. The memory ## regions may overlap, ``moveMem`` handles this case appropriately ## and is thus somewhat more safe than ``copyMem``. Like any procedure ## dealing with raw memory this is still *unsafe*, though. proc equalMem*(a, b: Pointer, size: int): bool {. importc: "equalMem", noDecl, noSideEffect.} ## compares the memory blocks ``a`` and ``b``. ``size`` bytes will ## be compared. If the blocks are equal, true is returned, false ## otherwise. Like any procedure dealing with raw memory this is ## *unsafe*. proc alloc*(size: int): pointer {.noconv.} ## allocates a new memory block with at least ``size`` bytes. The ## block has to be freed with ``realloc(block, 0)`` or ## ``dealloc(block)``. The block is not initialized, so reading ## from it before writing to it is undefined behaviour! proc alloc0*(size: int): pointer {.noconv.} ## allocates a new memory block with at least ``size`` bytes. The ## block has to be freed with ``realloc(block, 0)`` or ## ``dealloc(block)``. The block is initialized with all bytes ## containing zero, so it is somewhat safer than ``alloc``. proc realloc*(p: Pointer, newsize: int): pointer {.noconv.} ## grows or shrinks a given memory block. If p is **nil** then a new ## memory block is returned. In either way the block has at least ## ``newsize`` bytes. If ``newsize == 0`` and p is not **nil** ## ``realloc`` calls ``dealloc(p)``. In other cases the block has to ## be freed with ``dealloc``. proc dealloc*(p: Pointer) {.noconv.} ## frees the memory allocated with ``alloc``, ``alloc0`` or ## ``realloc``. This procedure is dangerous! If one forgets to ## free the memory a leak occurs; if one tries to access freed ## memory (or just freeing it twice!) a core dump may happen ## or other memory may be corrupted. proc assert*(cond: bool) {.magic: "Assert", noSideEffect.} ## provides a means to implement `programming by contracts`:idx: in Nimrod. ## ``assert`` evaluates expression ``cond`` and if ``cond`` is false, it ## raises an ``EAssertionFailure`` exception. However, the compiler may ## not generate any code at all for ``assert`` if it is advised to do so. ## Use ``assert`` for debugging purposes only. proc swap*[T](a, b: var T) {.magic: "Swap", noSideEffect.} ## swaps the values `a` and `b`. This is often more efficient than ## ``tmp = a; a = b; b = tmp``. Particularly useful for sorting algorithms. template `>=%` *(x, y: expr): expr = y <=% x ## treats `x` and `y` as unsigned and compares them. ## Returns true iff ``unsigned(x) >= unsigned(y)``. template `>%` *(x, y: expr): expr = y <% x ## treats `x` and `y` as unsigned and compares them. ## Returns true iff ``unsigned(x) > unsigned(y)``. proc `$` *(x: int): string {.magic: "IntToStr", noSideEffect.} ## The stingify operator for an integer argument. Returns `x` ## converted to a decimal string. proc `$` *(x: int64): string {.magic: "Int64ToStr", noSideEffect.} ## The stingify operator for an integer argument. Returns `x` ## converted to a decimal string. proc `$` *(x: float): string {.magic: "FloatToStr", noSideEffect.} ## The stingify operator for a float argument. Returns `x` ## converted to a decimal string. proc `$` *(x: bool): string {.magic: "BoolToStr", noSideEffect.} ## The stingify operator for a boolean argument. Returns `x` ## converted to the string "false" or "true". proc `$` *(x: char): string {.magic: "CharToStr", noSideEffect.} ## The stingify operator for a character argument. Returns `x` ## converted to a string. proc `$` *(x: Cstring): string {.magic: "CStrToStr", noSideEffect.} ## The stingify operator for a CString argument. Returns `x` ## converted to a string. proc `$` *(x: string): string {.magic: "StrToStr", noSideEffect.} ## The stingify operator for a string argument. Returns `x` ## as it is. This operator is useful for generic code, so ## that ``$expr`` also works if ``expr`` is already a string. proc `$` *[T](x: ordinal[T]): string {.magic: "EnumToStr", noSideEffect.} ## The stingify operator for an enumeration argument. This works for ## any enumeration type thanks to compiler magic. If a ## a ``$`` operator for a concrete enumeration is provided, this is ## used instead. (In other words: *Overwriting* is possible.) # undocumented: proc getRefcount*[T](x: ref T): int {.importc: "getRefcount", noSideEffect.} ## retrieves the reference count of an heap-allocated object. The ## value is implementation-dependant. #proc writeStackTrace() {.export: "writeStackTrace".} when not defined(NimrodVM): proc getCurrentExceptionMsg*(): string {.exportc.} ## retrieves the error message that was attached to the current ## exception; if there is none, "" is returned. # new constants: const inf* {.magic: "Inf".} = 1.0 / 0.0 ## contains the IEEE floating point value of positive infinity. neginf* {.magic: "NegInf".} = -inf ## contains the IEEE floating point value of negative infinity. nan* {.magic: "NaN".} = 0.0 / 0.0 ## contains an IEEE floating point value of *Not A Number*. Note ## that you cannot compare a floating point value to this value ## and expect a reasonable result - use the `classify` procedure ## in the module ``math`` for checking for NaN. var dbgLineHook*: proc = nil ## set this variable to provide a procedure that should be called before ## each executed instruction. This should only be used by debuggers! ## Only code compiled with the ``debugger:on`` switch calls this hook. # GC interface: proc getOccupiedMem*(): int ## returns the number of bytes that are owned by the process and hold data. proc getFreeMem*(): int ## returns the number of bytes that are owned by the process, but do not ## hold any meaningful data. proc getTotalMem*(): int ## returns the number of bytes that are owned by the process. iterator countdown*[T](a, b: T, step = 1): T {.inline.} = ## Counts from ordinal value `a` down to `b` with the given ## step count. `T` may be any ordinal type, `step` may only ## be positive. var res = a while res >= b: yield res dec(res, step) iterator countup*[T](a, b: T, step = 1): T {.inline.} = ## Counts from ordinal value `a` up to `b` with the given ## step count. `T` may be any ordinal type, `step` may only ## be positive. var res = a while res <= b: yield res inc(res, step) # we cannot use ``for x in a..b: `` here, because that is not # known in the System module proc min*(x, y: int): int {.magic: "MinI", noSideEffect.} proc min*(x, y: int8): int8 {.magic: "MinI", noSideEffect.} proc min*(x, y: int16): int16 {.magic: "MinI", noSideEffect.} proc min*(x, y: int32): int32 {.magic: "MinI", noSideEffect.} proc min*(x, y: int64): int64 {.magic: "MinI64", noSideEffect.} ## The minimum value of two integers. proc min*[T](x: openarray[T]): T = ## The minimum value of an openarray. result = x[0] for i in 1..high(x): result = min(result, x[i]) proc max*(x, y: int): int {.magic: "MaxI", noSideEffect.} proc max*(x, y: int8): int8 {.magic: "MaxI", noSideEffect.} proc max*(x, y: int16): int16 {.magic: "MaxI", noSideEffect.} proc max*(x, y: int32): int32 {.magic: "MaxI", noSideEffect.} proc max*(x, y: int64): int64 {.magic: "MaxI64", noSideEffect.} ## The maximum value of two integers. proc max*[T](x: openarray[T]): T = ## The maximum value of an openarray. result = x[0] for i in 1..high(x): result = max(result, x[i]) iterator items*[T](a: openarray[T]): T {.inline.} = ## iterates over each item of `a`. var i = 0 while i < len(a): yield a[i] inc(i) iterator items*[IX, T](a: array[IX, T]): T {.inline.} = ## iterates over each item of `a`. var i = low(IX) if i <= high(IX): while true: yield a[i] if i >= high(IX): break inc(i) iterator items*[T](a: seq[T]): T {.inline.} = ## iterates over each item of `a`. var i = 0 while i < len(a): yield a[i] inc(i) iterator items*(a: string): char {.inline.} = ## iterates over each item of `a`. var i = 0 while i < len(a): yield a[i] inc(i) iterator items*[T](a: set[T]): T {.inline.} = ## iterates over each element of `a`. `items` iterates only over the ## elements that are really in the set (and not over the ones the set is ## able to hold). var i = low(T) if i <= high(T): while true: if i in a: yield i if i >= high(T): break inc(i) iterator items*(a: cstring): char {.inline.} = ## iterates over each item of `a`. var i = 0 while a[i] != '\0': yield a[i] inc(i) proc isNil*[T](x: seq[T]): bool {.noSideEffect, magic: "IsNil".} proc isNil*[T](x: ref T): bool {.noSideEffect, magic: "IsNil".} proc isNil*(x: string): bool {.noSideEffect, magic: "IsNil".} proc isNil*[T](x: ptr T): bool {.noSideEffect, magic: "IsNil".} proc isNil*(x: pointer): bool {.noSideEffect, magic: "IsNil".} proc isNil*(x: cstring): bool {.noSideEffect, magic: "IsNil".} ## Fast check whether `x` is nil. This is sometimes more efficient than ## ``== nil``. # Fixup some magic symbols here: #{.fixup_system.} # This is an undocumented pragma that can only be used # once in the system module. proc `&` *[T](x, y: openArray[T]): seq[T] {.noSideEffect.} = newSeq(result, x.len + y.len) for i in 0..x.len-1: result[i] = x[i] for i in 0..y.len-1: result[i+x.len] = y[i] proc `&` *[T](x: openArray[T], y: T): seq[T] {.noSideEffect.} = newSeq(result, x.len + 1) for i in 0..x.len-1: result[i] = x[i] result[x.len] = y proc `&` *[T](x: T, y: openArray[T]): seq[T] {.noSideEffect.} = newSeq(result, y.len + 1) for i in 0..y.len-1: result[i] = y[i] result[y.len] = x when not defined(NimrodVM): when not defined(ECMAScript): proc seqToPtr[T](x: seq[T]): pointer {.inline, nosideeffect.} = result = cast[pointer](x) else: proc seqToPtr[T](x: seq[T]): pointer {.pure, nosideeffect.} = asm """return `x`""" proc `==` *[T: typeDesc](x, y: seq[T]): bool {.noSideEffect.} = ## Generic equals operator for sequences: relies on a equals operator for ## the element type `T`. if seqToPtr(x) == seqToPtr(y): result = true elif seqToPtr(x) == nil or seqToPtr(y) == nil: result = false elif x.len == y.len: for i in 0..x.len-1: if x[i] != y[i]: return false result = true proc find*[T, S: typeDesc](a: T, item: S): int {.inline.}= ## Returns the first index of `item` in `a` or -1 if not found. This requires ## appropriate `items` and `==` procs to work. for i in items(a): if i == item: return inc(result) result = -1 proc contains*[T](a: openArray[T], item: T): bool {.inline.}= ## Returns true if `item` is in `a` or false if not found. This is a shortcut ## for ``find(a, item) >= 0``. return find(a, item) >= 0 proc pop*[T](s: var seq[T]): T {.inline, noSideEffect.} = ## returns the last item of `s` and decreases ``s.len`` by one. This treats ## `s` as a stack and implements the common *pop* operation. var L = s.len-1 result = s[L] setLen(s, L) proc each*[T, S](data: openArray[T], op: proc (x: T): S): seq[S] {. noSideEffect.} = ## The well-known ``map`` operation from functional programming. Applies ## `op` to every item in `data` and returns the result as a sequence. newSeq(result, data.len) for i in 0..data.len-1: result[i] = op(data[i]) # ----------------- FPU ------------------------------------------------------ #proc disableFPUExceptions*() # disables all floating point unit exceptions #proc enableFPUExceptions*() # enables all floating point unit exceptions # ----------------- GC interface --------------------------------------------- proc GC_disable*() ## disables the GC. If called n-times, n calls to `GC_enable` are needed to ## reactivate the GC. Note that in most circumstances one should only disable ## the mark and sweep phase with `GC_disableMarkAndSweep`. proc GC_enable*() ## enables the GC again. proc GC_fullCollect*() ## forces a full garbage collection pass. ## Ordinary code does not need to call this (and should not). type TGC_Strategy* = enum ## the strategy the GC should use for the application gcThroughput, ## optimize for throughput gcResponsiveness, ## optimize for responsiveness (default) gcOptimizeTime, ## optimize for speed gcOptimizeSpace ## optimize for memory footprint proc GC_setStrategy*(strategy: TGC_Strategy) ## tells the GC the desired strategy for the application. proc GC_enableMarkAndSweep*() proc GC_disableMarkAndSweep*() ## the current implementation uses a reference counting garbage collector ## with a seldomly run mark and sweep phase to free cycles. The mark and ## sweep phase may take a long time and is not needed if the application ## does not create cycles. Thus the mark and sweep phase can be deactivated ## and activated separately from the rest of the GC. proc GC_getStatistics*(): string ## returns an informative string about the GC's activity. This may be useful ## for tweaking. proc GC_ref*[T](x: ref T) {.magic: "GCref".} proc GC_ref*[T](x: seq[T]) {.magic: "GCref".} proc GC_ref*(x: string) {.magic: "GCref".} ## marks the object `x` as referenced, so that it will not be freed until ## it is unmarked via `GC_unref`. If called n-times for the same object `x`, ## n calls to `GC_unref` are needed to unmark `x`. proc GC_unref*[T](x: ref T) {.magic: "GCunref".} proc GC_unref*[T](x: seq[T]) {.magic: "GCunref".} proc GC_unref*(x: string) {.magic: "GCunref".} ## see the documentation of `GC_ref`. template accumulateResult*(iter: expr) = ## helps to convert an iterator to a proc. result = @[] for x in iter: add(result, x) {.push checks: off, line_dir: off, debugger: off.} # obviously we cannot generate checking operations here :-) # because it would yield into an endless recursion # however, stack-traces are available for most parts # of the code proc echo*[Ty](x: openarray[Ty]) {.magic: "Echo".} ## equivalent to ``writeln(stdout, x); flush(stdout)``. BUT: This is ## available for the ECMAScript target too! template newException(exceptn, message: expr): expr = block: # open a new scope var e: ref exceptn new(e) e.msg = message e const QuitSuccess* = 0 ## is the value that should be passed to ``quit`` to indicate ## success. QuitFailure* = 1 ## is the value that should be passed to ``quit`` to indicate ## failure. proc quit*(errorcode: int = QuitSuccess) {. magic: "Exit", importc: "exit", noDecl, noReturn.} ## stops the program immediately; before stopping the program the ## "quit procedures" are called in the opposite order they were added ## with ``addQuitProc``. ``quit`` never returns and ignores any ## exception that may have been raised by the quit procedures. ## It does *not* call the garbage collector to free all the memory, ## unless a quit procedure calls ``GC_collect``. when not defined(EcmaScript) and not defined(NimrodVM): proc quit*(errormsg: string) {.noReturn.} ## a shorthand for ``echo(errormsg); quit(quitFailure)``. when not defined(EcmaScript) and not defined(NimrodVM): proc initGC() var strDesc: TNimType strDesc.size = sizeof(string) strDesc.kind = tyString strDesc.flags = {ntfAcyclic} initGC() # BUGFIX: need to be called here! {.push stack_trace: off.} include "system/ansi_c" proc cmp(x, y: string): int = return int(c_strcmp(x, y)) const pccHack = if defined(pcc): "_" else: "" # Hack for PCC when defined(windows): # work-around C's sucking abstraction: # BUGFIX: stdin and stdout should be binary files! proc setmode(handle, mode: int) {.importc: pccHack & "setmode", header: "".} proc fileno(f: C_TextFileStar): int {.importc: pccHack & "fileno", header: "".} var O_BINARY {.importc: pccHack & "O_BINARY", nodecl.}: int # we use binary mode in Windows: setmode(fileno(c_stdin), O_BINARY) setmode(fileno(c_stdout), O_BINARY) when defined(endb): proc endbStep() # ----------------- IO Part -------------------------------------------------- type CFile {.importc: "FILE", nodecl, final.} = object # empty record for # data hiding TFile* = ptr CFile ## The type representing a file handle. TFileMode* = enum ## The file mode when opening a file. fmRead, ## Open the file for read access only. fmWrite, ## Open the file for write access only. fmReadWrite, ## Open the file for read and write access. ## If the file does not exist, it will be ## created. fmReadWriteExisting, ## Open the file for read and write access. ## If the file does not exist, it will not be ## created. fmAppend ## Open the file for writing only; append data ## at the end. TFileHandle* = cint ## type that represents an OS file handle; this is ## useful for low-level file access # text file handling: var stdin* {.importc: "stdin", noDecl.}: TFile ## The standard input stream. stdout* {.importc: "stdout", noDecl.}: TFile ## The standard output stream. stderr* {.importc: "stderr", noDecl.}: TFile ## The standard error stream. ## ## Note: In my opinion, this should not be used -- the concept of a ## separate error stream is a design flaw of UNIX. A seperate *message ## stream* is a good idea, but since it is named ``stderr`` there are few ## programs out there that distinguish properly between ``stdout`` and ## ``stderr``. So, that's what you get if you don't name your variables ## appropriately. It also annoys people if redirection via ``>output.txt`` ## does not work because the program writes to ``stderr``. proc OpenFile*(f: var TFile, filename: string, mode: TFileMode = fmRead, bufSize: int = -1): Bool {.deprecated.} ## **Deprecated since version 0.8.0**: Use `open` instead. proc OpenFile*(f: var TFile, filehandle: TFileHandle, mode: TFileMode = fmRead): Bool {.deprecated.} ## **Deprecated since version 0.8.0**: Use `open` instead. proc Open*(f: var TFile, filename: string, mode: TFileMode = fmRead, bufSize: int = -1): Bool ## Opens a file named `filename` with given `mode`. ## ## Default mode is readonly. Returns true iff the file could be opened. ## This throws no exception if the file could not be opened. The reason is ## that the programmer needs to provide an appropriate error message anyway ## (yes, even in scripts). proc Open*(f: var TFile, filehandle: TFileHandle, mode: TFileMode = fmRead): Bool ## Creates a ``TFile`` from a `filehandle` with given `mode`. ## ## Default mode is readonly. Returns true iff the file could be opened. proc CloseFile*(f: TFile) {.importc: "fclose", nodecl, deprecated.} ## Closes the file. ## **Deprecated since version 0.8.0**: Use `close` instead. proc Close*(f: TFile) {.importc: "fclose", nodecl.} ## Closes the file. proc EndOfFile*(f: TFile): Bool ## Returns true iff `f` is at the end. proc readChar*(f: TFile): char {.importc: "fgetc", nodecl.} ## Reads a single character from the stream `f`. If the stream ## has no more characters, `EEndOfFile` is raised. proc FlushFile*(f: TFile) {.importc: "fflush", noDecl.} ## Flushes `f`'s buffer. proc readFile*(filename: string): string ## Opens a file name `filename` for reading. Then reads the ## file's content completely into a string and ## closes the file afterwards. Returns the string. Returns nil if there was ## an error. Does not throw an IO exception. proc write*(f: TFile, r: float) proc write*(f: TFile, i: int) proc write*(f: TFile, s: string) proc write*(f: TFile, b: Bool) proc write*(f: TFile, c: char) proc write*(f: TFile, c: cstring) proc write*(f: TFile, a: openArray[string]) ## Writes a value to the file `f`. May throw an IO exception. proc readLine*(f: TFile): string ## reads a line of text from the file `f`. May throw an IO exception. ## Reading from an empty file buffer, does not throw an exception, but ## returns nil. A line of text may be delimited by ``CR``, ``LF`` or ## ``CRLF``. The newline character(s) are not part of the returned string. proc writeln*[Ty](f: TFile, x: Ty) {.inline.} ## writes a value `x` to `f` and then writes "\n". ## May throw an IO exception. proc writeln*[Ty](f: TFile, x: openArray[Ty]) {.inline.} ## writes a value `x` to `f` and then writes "\n". ## May throw an IO exception. proc getFileSize*(f: TFile): int64 ## retrieves the file size (in bytes) of `f`. proc ReadBytes*(f: TFile, a: var openarray[byte], start, len: int): int ## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns ## the actual number of bytes that have been read which may be less than ## `len` (if not as many bytes are remaining), but not greater. proc ReadChars*(f: TFile, a: var openarray[char], start, len: int): int ## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns ## the actual number of bytes that have been read which may be less than ## `len` (if not as many bytes are remaining), but not greater. proc readBuffer*(f: TFile, buffer: pointer, len: int): int ## reads `len` bytes into the buffer pointed to by `buffer`. Returns ## the actual number of bytes that have been read which may be less than ## `len` (if not as many bytes are remaining), but not greater. proc writeBytes*(f: TFile, a: openarray[byte], start, len: int): int ## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns ## the number of actual written bytes, which may be less than `len` in case ## of an error. proc writeChars*(f: tFile, a: openarray[char], start, len: int): int ## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns ## the number of actual written bytes, which may be less than `len` in case ## of an error. proc writeBuffer*(f: TFile, buffer: pointer, len: int): int ## writes the bytes of buffer pointed to by the parameter `buffer` to the ## file `f`. Returns the number of actual written bytes, which may be less ## than `len` in case of an error. proc setFilePos*(f: TFile, pos: int64) ## sets the position of the file pointer that is used for read/write ## operations. The file's first byte has the index zero. proc getFilePos*(f: TFile): int64 ## retrieves the current position of the file pointer that is used to ## read from the file `f`. The file's first byte has the index zero. include "system/sysio" iterator lines*(filename: string): string = ## Iterate over any line in the file named `filename`. ## If the file does not exist `EIO` is raised. var f: TFile if not open(f, filename): raise newException(EIO, "cannot open: " & filename) var res = "" while not endOfFile(f): rawReadLine(f, res) yield res Close(f) proc fileHandle*(f: TFile): TFileHandle {.importc: "fileno", header: ""} ## returns the OS file handle of the file ``f``. This is only useful for ## platform specific programming. proc quit(errormsg: string) = echo(errormsg) quit(quitFailure) # ---------------------------------------------------------------------------- include "system/excpt" # we cannot compile this with stack tracing on # as it would recurse endlessly! include "system/arithm" {.pop.} # stack trace include "system/dyncalls" include "system/sets" const GenericSeqSize = (2 * sizeof(int)) proc reprAny(p: pointer, typ: PNimType): string {.compilerproc.} proc getDiscriminant(aa: Pointer, n: ptr TNimNode): int = assert(n.kind == nkCase) var d: int var a = cast[TAddress](aa) case n.typ.size of 1: d = ze(cast[ptr int8](a +% n.offset)^) of 2: d = ze(cast[ptr int16](a +% n.offset)^) of 4: d = int(cast[ptr int32](a +% n.offset)^) else: assert(false) return d proc selectBranch(aa: Pointer, n: ptr TNimNode): ptr TNimNode = var discr = getDiscriminant(aa, n) if discr <% n.len: result = n.sons[discr] if result == nil: result = n.sons[n.len] # n.sons[n.len] contains the ``else`` part (but may be nil) else: result = n.sons[n.len] include "system/mm" include "system/sysstr" include "system/assign" include "system/repr" # we have to implement it here after gentostr for the cstrToNimStrDummy proc proc getCurrentExceptionMsg(): string = if excHandler == nil: return "" return $excHandler.exc.msg {.push stack_trace: off.} when defined(endb): include "system/debugger" when defined(profiler): include "system/profiler" {.pop.} # stacktrace elif defined(ecmaScript): include "system/ecmasys" elif defined(NimrodVM): # Stubs for the GC interface: proc GC_disable() = nil proc GC_enable() = nil proc GC_fullCollect() = nil proc GC_setStrategy(strategy: TGC_Strategy) = nil proc GC_enableMarkAndSweep() = nil proc GC_disableMarkAndSweep() = nil proc GC_getStatistics(): string = return "" proc getOccupiedMem(): int = return -1 proc getFreeMem(): int = return -1 proc getTotalMem(): int = return -1 proc cmp(x, y: string): int = if x == y: return 0 if x < y: return -1 return 1 proc dealloc(p: pointer) = nil proc alloc(size: int): pointer = nil proc alloc0(size: int): pointer = nil proc realloc(p: Pointer, newsize: int): pointer = nil {.pop.} # checks {.pop.} # hints