/tests/destructor/

f='#n234'>234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
#
#
#            Nim's Runtime Library
#        (c) Copyright 2010 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements complex numbers.
## Complex numbers are currently implemented as generic on a 64-bit or 32-bit float.

{.push checks: off, line_dir: off, stack_trace: off, debugger: off.}
# the user does not want to trace a part of the standard library!

import math

type
  Complex*[T: SomeFloat] = object
    re*, im*: T
    ## A complex number, consisting of a real and an imaginary part.
  Complex64* = Complex[float64]
    ## Alias for a pair of 64-bit floats.
  Complex32* = Complex[float32]
    ## Alias for a pair of 32-bit floats.

proc complex*[T: SomeFloat](re: T; im: T = 0.0): Complex[T] =
  result.re = re
  result.im = im

proc complex32*(re: float32; im: float32 = 0.0): Complex[float32] =
  result.re = re
  result.im = im

proc complex64*(re: float64; im: float64 = 0.0): Complex[float64] =
  result.re = re
  result.im = im

template im*(arg: typedesc[float32]): Complex32 = complex[float32](0, 1)
template im*(arg: typedesc[float64]): Complex64 = complex[float64](0, 1)
template im*(arg: float32): Complex32 = complex[float32](0, arg)
template im*(arg: float64): Complex64 = complex[float64](0, arg)

proc abs*[T](z: Complex[T]): T =
  ## Return the distance from (0,0) to ``z``.
  result = hypot(z.re, z.im)

proc abs2*[T](z: Complex[T]): T =
  ## Return the squared distance from (0,0) to ``z``.
  result = z.re*z.re + z.im*z.im

proc conjugate*[T](z: Complex[T]): Complex[T] =
  ## Conjugate of complex number ``z``.
  result.re = z.re
  result.im = -z.im

proc inv*[T](z: Complex[T]): Complex[T] =
  ## Multiplicative inverse of complex number ``z``.
  conjugate(z) / abs2(z)

proc `==` *[T](x, y: Complex[T]): bool =
  ## Compare two complex numbers ``x`` and ``y`` for equality.
  result = x.re == y.re and x.im == y.im

proc `+` *[T](x: T; y: Complex[T]): Complex[T] =
  ## Add a real number to a complex number.
  result.re = x + y.re
  result.im = y.im

proc `+` *[T](x: Complex[T]; y: T): Complex[T] =
  ## Add a complex number to a real number.
  result.re = x.re + y
  result.im = x.im

proc `+` *[T](x, y: Complex[T]): Complex[T] =
  ## Add two complex numbers.
  result.re = x.re + y.re
  result.im = x.im + y.im

proc `-` *[T](z: Complex[T]): Complex[T] =
  ## Unary minus for complex numbers.
  result.re = -z.re
  result.im = -z.im

proc `-` *[T](x: T; y: Complex[T]): Complex[T] =
  ## Subtract a complex number from a real number.
  x + (-y)

proc `-` *[T](x: Complex[T]; y: T): Complex[T] =
  ## Subtract a real number from a complex number.
  result.re = x.re - y
  result.im = x.im

proc `-` *[T](x, y: Complex[T]): Complex[T] =
  ## Subtract two complex numbers.
  result.re = x.re - y.re
  result.im = x.im - y.im

proc `/` *[T](x: Complex[T]; y: T): Complex[T] =
  ## Divide complex number ``x`` by real number ``y``.
  result.re = x.re / y
  result.im = x.im / y

proc `/` *[T](x: T; y: Complex[T]): Complex[T] =
  ## Divide real number ``x`` by complex number ``y``.
  result = x * inv(y)

proc `/` *[T](x, y: Complex[T]): Complex[T] =
  ## Divide ``x`` by ``y``.
  var r, den: T
  if abs(y.re) < abs(y.im):
    r = y.re / y.im
    den = y.im + r * y.re
    result.re = (x.re * r + x.im) / den
    result.im = (x.im * r - x.re) / den
  else:
    r = y.im / y.re
    den = y.re + r * y.im
    result.re = (x.re + r * x.im) / den
    result.im = (x.im - r * x.re) / den

proc `*` *[T](x: T; y: Complex[T]): Complex[T] =
  ## Multiply a real number and a complex number.
  result.re = x * y.re
  result.im = x * y.im

proc `*` *[T](x: Complex[T]; y: T): Complex[T] =
  ## Multiply a complex number with a real number.
  result.re = x.re * y
  result.im = x.im * y

proc `*` *[T](x, y: Complex[T]): Complex[T] =
  ## Multiply ``x`` with ``y``.
  result.re = x.re * y.re - x.im * y.im
  result.im = x.im * y.re + x.re * y.im


proc `+=` *[T](x: var Complex[T]; y: Complex[T]) =
  ## Add ``y`` to ``x``.
  x.re += y.re
  x.im += y.im

proc `-=` *[T](x: var Complex[T]; y: Complex[T]) =
  ## Subtract ``y`` from ``x``.
  x.re -= y.re
  x.im -= y.im

proc `*=` *[T](x: var Complex[T]; y: Complex[T]) =
  ## Multiply ``y`` to ``x``.
  let im = x.im * y.re + x.re * y.im
  x.re = x.re * y.re - x.im * y.im
  x.im = im

proc `/=` *[T](x: var Complex[T]; y: Complex[T]) =
  ## Divide ``x`` by ``y`` in place.
  x = x / y


proc sqrt*[T](z: Complex[T]): Complex[T] =
  ## Square root for a complex number ``z``.
  var x, y, w, r: T

  if z.re == 0.0 and z.im == 0.0:
    result = z
  else:
    x = abs(z.re)
    y = abs(z.im)
    if x >= y:
      r = y / x
      w = sqrt(x) * sqrt(0.5 * (1.0 + sqrt(1.0 + r * r)))
    else:
      r = x / y
      w = sqrt(y) * sqrt(0.5 * (r + sqrt(1.0 + r * r)))

    if z.re >= 0.0:
      result.re = w
      result.im = z.im / (w * 2.0)
    else:
      result.im = if z.im >= 0.0: w else: -w
      result.re = z.im / (result.im + result.im)

proc exp*[T](z: Complex[T]): Complex[T] =
  ## ``e`` raised to the power ``z``.
  var
    rho = exp(z.re)
    theta = z.im
  result.re = rho * cos(theta)
  result.im = rho * sin(theta)

proc ln*[T](z: Complex[T]): Complex[T] =
  ## Returns the natural log of ``z``.
  result.re = ln(abs(z))
  result.im = arctan2(z.im, z.re)

proc log10*[T](z: Complex[T]): Complex[T] =
  ## Returns the log base 10 of ``z``.
  result = ln(z) / ln(10.0)

proc log2*[T](z: Complex[T]): Complex[T] =
  ## Returns the log base 2 of ``z``.
  result = ln(z) / ln(2.0)

proc pow*[T](x, y: Complex[T]): Complex[T] =
  ## ``x`` raised to the power ``y``.
  if x.re == 0.0 and x.im == 0.0:
    if y.re == 0.0 and y.im == 0.0:
      result.re = 1.0
      result.im = 0.0
    else:
      result.re = 0.0
      result.im = 0.0
  elif y.re == 1.0 and y.im == 0.0:
    result = x
  elif y.re == -1.0 and y.im == 0.0:
    result = T(1.0) / x
  else:
    var
      rho = abs(x)
      theta = arctan2(x.im, x.re)
      s = pow(rho, y.re) * exp(-y.im * theta)
      r = y.re * theta + y.im * ln(rho)
    result.re = s * cos(r)
    result.im = s * sin(r)

proc pow*[T](x: Complex[T]; y: T): Complex[T] =
  ## Complex number ``x`` raised to the power ``y``.
  pow(x, complex[T](y))


proc sin*[T](z: Complex[T]): Complex[T] =
  ## Returns the sine of ``z``.
  result.re = sin(z.re) * cosh(z.im)
  result.im = cos(z.re) * sinh(z.im)

proc arcsin*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse sine of ``z``.
  result = -im(T) * ln(im(T) * z + sqrt(T(1.0) - z*z))

proc cos*[T](z: Complex[T]): Complex[T] =
  ## Returns the cosine of ``z``.
  result.re = cos(z.re) * cosh(z.im)
  result.im = -sin(z.re) * sinh(z.im)

proc arccos*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse cosine of ``z``.
  result = -im(T) * ln(z + sqrt(z*z - T(1.0)))

proc tan*[T](z: Complex[T]): Complex[T] =
  ## Returns the tangent of ``z``.
  result = sin(z) / cos(z)

proc arctan*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse tangent of ``z``.
  result = T(0.5)*im(T) * (ln(T(1.0) - im(T)*z) - ln(T(1.0) + im(T)*z))

proc cot*[T](z: Complex[T]): Complex[T] =
  ## Returns the cotangent of ``z``.
  result = cos(z)/sin(z)

proc arccot*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse cotangent of ``z``.
  result = T(0.5)*im(T) * (ln(T(1.0) - im(T)/z) - ln(T(1.0) + im(T)/z))

proc sec*[T](z: Complex[T]): Complex[T] =
  ## Returns the secant of ``z``.
  result = T(1.0) / cos(z)

proc arcsec*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse secant of ``z``.
  result = -im(T) * ln(im(T) * sqrt(1.0 - 1.0/(z*z)) + T(1.0)/z)

proc csc*[T](z: Complex[T]): Complex[T] =
  ## Returns the cosecant of ``z``.
  result = T(1.0) / sin(z)

proc arccsc*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse cosecant of ``z``.
  result = -im(T) * ln(sqrt(T(1.0) - T(1.0)/(z*z)) + im(T)/z)

proc sinh*[T](z: Complex[T]): Complex[T] =
  ## Returns the hyperbolic sine of ``z``.
  result = T(0.5) * (exp(z) - exp(-z))

proc arcsinh*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse hyperbolic sine of ``z``.
  result = ln(z + sqrt(z*z + 1.0))

proc cosh*[T](z: Complex[T]): Complex[T] =
  ## Returns the hyperbolic cosine of ``z``.
  result = T(0.5) * (exp(z) + exp(-z))

proc arccosh*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse hyperbolic cosine of ``z``.
  result = ln(z + sqrt(z*z - T(1.0)))

proc tanh*[T](z: Complex[T]): Complex[T] =
  ## Returns the hyperbolic tangent of ``z``.
  result = sinh(z) / cosh(z)

proc arctanh*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse hyperbolic tangent of ``z``.
  result = T(0.5) * (ln((T(1.0)+z) / (T(1.0)-z)))

proc sech*[T](z: Complex[T]): Complex[T] =
  ## Returns the hyperbolic secant of ``z``.
  result = T(2.0) / (exp(z) + exp(-z))

proc arcsech*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse hyperbolic secant of ``z``.
  result = ln(1.0/z + sqrt(T(1.0)/z+T(1.0)) * sqrt(T(1.0)/z-T(1.0)))

proc csch*[T](z: Complex[T]): Complex[T] =
  ## Returns the hyperbolic cosecant of ``z``.
  result = T(2.0) / (exp(z) - exp(-z))

proc arccsch*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse hyperbolic cosecant of ``z``.
  result = ln(T(1.0)/z + sqrt(T(1.0)/(z*z) + T(1.0)))

proc coth*[T](z: Complex[T]): Complex[T] =
  ## Returns the hyperbolic cotangent of ``z``.
  result = cosh(z) / sinh(z)

proc arccoth*[T](z: Complex[T]): Complex[T] =
  ## Returns the inverse hyperbolic cotangent of ``z``.
  result = T(0.5) * (ln(T(1.0) + T(1.0)/z) - ln(T(1.0) - T(1.0)/z))

proc phase*[T](z: Complex[T]): T =
  ## Returns the phase of ``z``.
  arctan2(z.im, z.re)

proc polar*[T](z: Complex[T]): tuple[r, phi: T] =
  ## Returns ``z`` in polar coordinates.
  (r: abs(z), phi: phase(z))

proc rect*[T](r, phi: T): Complex[T] =
  ## Returns the complex number with polar coordinates ``r`` and ``phi``.
  ##
  ## | ``result.re = r * cos(phi)``
  ## | ``result.im = r * sin(phi)``
  complex(r * cos(phi), r * sin(phi))


proc `$`*(z: Complex): string =
  ## Returns ``z``'s string representation as ``"(re, im)"``.
  result = "(" & $z.re & ", " & $z.im & ")"

{.pop.}


when isMainModule:
  proc `=~`[T](x, y: Complex[T]): bool =
    result = abs(x.re-y.re) < 1e-6 and abs(x.im-y.im) < 1e-6

  proc `=~`[T](x: Complex[T]; y: T): bool =
    result = abs(x.re-y) < 1e-6 and abs(x.im) < 1e-6

  var
    z: Complex64 = complex(0.0, 0.0)
    oo: Complex64 = complex(1.0, 1.0)
    a: Complex64 = complex(1.0, 2.0)
    b: Complex64 = complex(-1.0, -2.0)
    m1: Complex64 = complex(-1.0, 0.0)
    i: Complex64 = complex(0.0, 1.0)
    one: Complex64 = complex(1.0, 0.0)
    tt: Complex64 = complex(10.0, 20.0)
    ipi: Complex64 = complex(0.0, -PI)

  doAssert(a/2.0 =~ complex(0.5, 1.0))
  doAssert(a == a)
  doAssert((a-a) == z)
  doAssert((a+b) == z)
  doAssert((a+b) =~ 0.0)
  doAssert((a/b) == m1)
  doAssert((1.0/a) =~ complex(0.2, -0.4))
  doAssert((a*b) == complex(3.0, -4.0))
  doAssert(10.0*a == tt)
  doAssert(a*10.0 == tt)
  doAssert(tt/10.0 == a)
  doAssert(oo+(-1.0) == i)
  doAssert( (-1.0)+oo == i)
  doAssert(abs(oo) == sqrt(2.0))
  doAssert(conjugate(a) == complex(1.0, -2.0))
  doAssert(sqrt(m1) == i)
  doAssert(exp(ipi) =~ m1)

  doAssert(pow(a, b) =~ complex(-3.72999124927876, -1.68815826725068))
  doAssert(pow(z, a) =~ complex(0.0, 0.0))
  doAssert(pow(z, z) =~ complex(1.0, 0.0))
  doAssert(pow(a, one) =~ a)
  doAssert(pow(a, m1) =~ complex(0.2, -0.4))
  doAssert(pow(a, 2.0) =~ complex(-3.0, 4.0))
  doAssert(pow(a, 2) =~ complex(-3.0, 4.0))
  doAssert(not(pow(a, 2.0) =~ a))

  doAssert(ln(a) =~ complex(0.804718956217050, 1.107148717794090))
  doAssert(log10(a) =~ complex(0.349485002168009, 0.480828578784234))
  doAssert(log2(a) =~ complex(1.16096404744368, 1.59727796468811))

  doAssert(sin(a) =~ complex(3.16577851321617, 1.95960104142161))
  doAssert(cos(a) =~ complex(2.03272300701967, -3.05189779915180))
  doAssert(tan(a) =~ complex(0.0338128260798967, 1.0147936161466335))
  doAssert(cot(a) =~ 1.0 / tan(a))
  doAssert(sec(a) =~ 1.0 / cos(a))
  doAssert(csc(a) =~ 1.0 / sin(a))
  doAssert(arcsin(a) =~ complex(0.427078586392476, 1.528570919480998))
  doAssert(arccos(a) =~ complex(1.14371774040242, -1.52857091948100))
  doAssert(arctan(a) =~ complex(1.338972522294494, 0.402359478108525))
  doAssert(arccot(a) =~ complex(0.2318238045004031, -0.402359478108525))
  doAssert(arcsec(a) =~ complex(1.384478272687081, 0.3965682301123288))
  doAssert(arccsc(a) =~ complex(0.1863180541078155, -0.3965682301123291))

  doAssert(cosh(a) =~ complex(-0.642148124715520, 1.068607421382778))
  doAssert(sinh(a) =~ complex(-0.489056259041294, 1.403119250622040))
  doAssert(tanh(a) =~ complex(1.1667362572409199, -0.243458201185725))
  doAssert(sech(a) =~ 1.0 / cosh(a))
  doAssert(csch(a) =~ 1.0 / sinh(a))
  doAssert(coth(a) =~ 1.0 / tanh(a))
  doAssert(arccosh(a) =~ complex(1.528570919480998, 1.14371774040242))
  doAssert(arcsinh(a) =~ complex(1.469351744368185, 1.06344002357775))
  doAssert(arctanh(a) =~ complex(0.173286795139986, 1.17809724509617))
  doAssert(arcsech(a) =~ arccosh(1.0/a))
  doAssert(arccsch(a) =~ arcsinh(1.0/a))
  doAssert(arccoth(a) =~ arctanh(1.0/a))

  doAssert(phase(a) == 1.1071487177940904)
  var t = polar(a)
  doAssert(rect(t.r, t.phi) =~ a)
  doAssert(rect(1.0, 2.0) =~ complex(-0.4161468365471424, 0.9092974268256817))


  var
    i64: Complex32 = complex(0.0f, 1.0f)
    a64: Complex32 = 2.0f*i64 + 1.0.float32
    b64: Complex32 = complex(-1.0'f32, -2.0'f32)

  doAssert(a64 == a64)
  doAssert(a64 == -b64)
  doAssert(a64 + b64 =~ 0.0'f32)
  doAssert(not(pow(a64, b64) =~ a64))
  doAssert(pow(a64, 0.5f) =~ sqrt(a64))
  doAssert(pow(a64, 2) =~ complex(-3.0'f32, 4.0'f32))
  doAssert(sin(arcsin(b64)) =~ b64)
  doAssert(cosh(arccosh(a64)) =~ a64)

  doAssert(phase(a64) - 1.107149f < 1e-6)
  var t64 = polar(a64)
  doAssert(rect(t64.r, t64.phi) =~ a64)
  doAssert(rect(1.0f, 2.0f) =~ complex(-0.4161468f, 0.90929742f))
  doAssert(sizeof(a64) == 8)
  doAssert(sizeof(a) == 16)

  doAssert 123.0.im + 456.0 == complex64(456, 123)

  var localA = complex(0.1'f32)
  doAssert localA.im is float32