import std/[complex, math] proc `=~`[T](x, y: Complex[T]): bool = result = abs(x.re-y.re) < 1e-6 and abs(x.im-y.im) < 1e-6 proc `=~`[T](x: Complex[T]; y: T): bool = result = abs(x.re-y) < 1e-6 and abs(x.im) < 1e-6 let z: Complex64 = complex(0.0, 0.0) oo: Complex64 = complex(1.0, 1.0) a: Complex64 = complex(1.0, 2.0) b: Complex64 = complex(-1.0, -2.0) m1: Complex64 = complex(-1.0, 0.0) i: Complex64 = complex(0.0, 1.0) one: Complex64 = complex(1.0, 0.0) tt: Complex64 = complex(10.0, 20.0) ipi: Complex64 = complex(0.0, -PI) doAssert(a/2.0 =~ complex(0.5, 1.0)) doAssert(a == a) doAssert((a-a) == z) doAssert((a+b) == z) doAssert((a+b) =~ 0.0) doAssert((a/b) == m1) doAssert((1.0/a) =~ complex(0.2, -0.4)) doAssert((a*b) == complex(3.0, -4.0)) doAssert(10.0*a == tt) doAssert(a*10.0 == tt) doAssert(tt/10.0 == a) doAssert(oo+(-1.0) == i) doAssert( (-1.0)+oo == i) doAssert(abs(oo) == sqrt(2.0)) doAssert(conjugate(a) == complex(1.0, -2.0)) doAssert(sqrt(m1) == i) doAssert(exp(ipi) =~ m1) doAssert(pow(a, b) =~ complex(-3.72999124927876, -1.68815826725068)) doAssert(pow(z, a) =~ complex(0.0, 0.0)) doAssert(pow(z, z) =~ complex(1.0, 0.0)) doAssert(pow(a, one) =~ a) doAssert(pow(a, m1) =~ complex(0.2, -0.4)) doAssert(pow(a, 2.0) =~ complex(-3.0, 4.0)) doAssert(pow(a, 2) =~ complex(-3.0, 4.0)) doAssert(not(pow(a, 2.0) =~ a)) doAssert(ln(a) =~ complex(0.804718956217050, 1.107148717794090)) doAssert(log10(a) =~ complex(0.349485002168009, 0.480828578784234)) doAssert(log2(a) =~ complex(1.16096404744368, 1.59727796468811)) doAssert(sin(a) =~ complex(3.16577851321617, 1.95960104142161)) doAssert(cos(a) =~ complex(2.03272300701967, -3.05189779915180)) doAssert(tan(a) =~ complex(0.0338128260798967, 1.0147936161466335)) doAssert(cot(a) =~ 1.0 / tan(a)) doAssert(sec(a) =~ 1.0 / cos(a)) doAssert(csc(a) =~ 1.0 / sin(a)) doAssert(arcsin(a) =~ complex(0.427078586392476, 1.528570919480998)) doAssert(arccos(a) =~ complex(1.14371774040242, -1.52857091948100)) doAssert(arctan(a) =~ complex(1.338972522294494, 0.402359478108525)) doAssert(arccot(a) =~ complex(0.2318238045004031, -0.402359478108525)) doAssert(arcsec(a) =~ complex(1.384478272687081, 0.3965682301123288)) doAssert(arccsc(a) =~ complex(0.1863180541078155, -0.3965682301123291)) doAssert(cosh(a) =~ complex(-0.642148124715520, 1.068607421382778)) doAssert(sinh(a) =~ complex(-0.489056259041294, 1.403119250622040)) doAssert(tanh(a) =~ complex(1.1667362572409199, -0.243458201185725)) doAssert(sech(a) =~ 1.0 / cosh(a)) doAssert(csch(a) =~ 1.0 / sinh(a)) doAssert(coth(a) =~ 1.0 / tanh(a)) doAssert(arccosh(a) =~ complex(1.528570919480998, 1.14371774040242)) doAssert(arcsinh(a) =~ complex(1.469351744368185, 1.06344002357775)) doAssert(arctanh(a) =~ complex(0.173286795139986, 1.17809724509617)) doAssert(arcsech(a) =~ arccosh(1.0/a)) doAssert(arccsch(a) =~ arcsinh(1.0/a)) doAssert(arccoth(a) =~ arctanh(1.0/a)) doAssert(phase(a) == 1.1071487177940904) let t = polar(a) doAssert(rect(t.r, t.phi) =~ a) doAssert(rect(1.0, 2.0) =~ complex(-0.4161468365471424, 0.9092974268256817)) let i64: Complex32 = complex(0.0f, 1.0f) a64: Complex32 = 2.0f*i64 + 1.0.float32 b64: Complex32 = complex(-1.0'f32, -2.0'f32) doAssert(a64 == a64) doAssert(a64 == -b64) doAssert(a64 + b64 =~ 0.0'f32) doAssert(not(pow(a64, b64) =~ a64)) doAssert(pow(a64, 0.5f) =~ sqrt(a64)) doAssert(pow(a64, 2) =~ complex(-3.0'f32, 4.0'f32)) doAssert(sin(arcsin(b64)) =~ b64) doAssert(cosh(arccosh(a64)) =~ a64) doAssert(phase(a64) - 1.107149f < 1e-6) let t64 = polar(a64) doAssert(rect(t64.r, t64.phi) =~ a64) doAssert(rect(1.0f, 2.0f) =~ complex(-0.4161468f, 0.90929742f)) doAssert(sizeof(a64) == 8) doAssert(sizeof(a) == 16) doAssert 123.0.im + 456.0 == complex64(456, 123) let localA = complex(0.1'f32) doAssert localA.im is float32